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ABSTRACT. In the ordinary way of representing relations, the order of the relata
plays a structural role, but in the states themselves such an order often does not
seem to be intrinsically present. An alternative way to represent relations makes
use of positions for the arguments. This is no problem for the love relation, but
for relations like the adjacency relation and cyclic relations, different assign-
ments of objects to the positions can give exactly the same states. This is a
puzzling situation. The question is what is the internal structure of relations? Is
the use of positions still justified, and if so, what is their ontological status? In
this paper mathematical models for relations are developed that provide more
insight into the structure of relations “out there” in the real world.
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affairs, substitution

1. INTRODUCTION

When I say “Koos loves Marietje” do I signify the same state of affairs as
I would if I said “Marietje is loved by Koos”? If you accept that states of
affairs are “out there” in reality, you will probably say “yes”. But then we
have two ways to describe a single state of affairs. Which one is better? If
we can’t say, then we might ask if there is a way to express the state of
affairs in a neutral way.

This is the problem Kit Fine takes up in his paper “Neutral Relations”
[2]. Fine shows the inadequacy of what he calls the standard view on
relations, according to which all relations hold of objects in a given order.
In search of a better alternative, he first proposes a positionalist view on
relations in which each relation comes with a set of positions. For
example, for the amatory relation, the positions would be Lover and
Beloved. Fine finds the positionalist view very natural and plausible, but
he also regards it as problematic. One of Fine’s objections is that on this
view no relation can be strictly symmetric. A second alternative proposed
by Fine is his antipositionalist view, which he claims combines the virtues of
the standard and the positionalist view.

If Fine is right that the positionalist view is wrong, then this would be very
disturbing, because it seems so natural and fundamental for our way of
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thinking. Therefore, I have three basic questions: (1) Can the positionalist
view in some way be saved from the objections raised by Fine? (2) For what
kind of relations are positional representations still adequate, and for what
kind are they not? (3) What is the most natural way to look at relations?

In this paper I develop mathematical models for different views on
relations that are not only of interest in themselves, but that also increase
our insight into the adequacy of different conceptions of relations. In
particular, I define directional models that agree with the standard view,
positional models that agree with the positionalist view, and an elegant
type of models, the substitution models, inspired by Fine’s antiposition-
alist view. I prove that a natural subclass of the substitution models
corresponds in a well-defined way to a subclass of the positional models.
As a consequence, without any commitment to an ontology of positions,
positional representations of relations are justified for a large class of
relations, including all kinds of symmetrical relations.

The structure of the paper is as follows. Section 2 briefly discusses the
views on relations as distinguished by Fine. Section 3 to 5 form the core
of this paper. In Section 3 types of mathematical models for relations are
developed, in Section 4 the relationship between the types is studied, and
in Section 5 we take a closer look at the positional structure of models. In
Section 6 we focus our attention on metaphysical aspects of the structure
of relations. In Section 7 I finish with a recapitulation of the main
argument, conclusions and suggestions for further inquiry.

A final note about the scope of this paper. The relations considered are
relations “out there” in the real world. Occasionally I will use the term
“real” relations to stress this point. If you like, you may regard the
mathematical relations as a subclass of the “real” relations. However, in my
arguments I will freely use what are called “relations” in set theory as tools.

2. ViEws oN RELATIONS

In his paper “Neutral Relations”, Kit Fine presents three views on
relations. He calls them the standard view, the positionalist view and the
antipositionalist view. 1 will briefly describe here the views as presented
by Fine, and criticize his objections against positionalism. In the
description I will stay close to Fine’s original formulations.

2.1. Standard View

According to the standard view, objects in a relation always come in a
given order. For example, we may say that the relation /oves holds of a
and b (in that order) just in case a loves b. A consequence of this view is
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that each binary relation has a converse [2, p. 2]. For example, the
converse of the relation on fop of is the relation beneath. The
consequence that each binary relation has a converse is a shortcoming
of this view for the following reason.

Suppose a block a is on top of a another block b. Then we have a state
of affairs s that may be described as the state of a’s being on top of b, but
that may also be described as the state of b’s being beneath a. If s is a
genuine relational complex, i.e. a state consisting of a relation in
combination with its relata, then there must be a single relation that can
be correctly said to figure in the complex in combination with the
given relata. We have no reason to choose either on top of or beneath
for this relation. Whatever this relation is, it cannot have a converse.
Therefore the standard view is objectionable from a metaphysical
perspective. [2, pp. 3—4]

If we consider relations as belonging to reality rather than to our
representation of it, then the order of the arguments is to be attributed to
our representations, not to the relation itself. It is an artifact of our
language that it leads us to suppose that relations themselves must apply
to arguments in a given order. [2, p. 6]

There is also a linguistic argument against the standard view. In a
graphic language, the love predicate could be a heart-shaped body with a
red and a black side. On the red side we write the name of the lover and
on the black side the beloved one. The relation signified by the heart does
not fit in with the standard view, since the sides of the heart are not
ordered in a relevant sense. [2, pp. 6—7]

2.2. Positionalist View

The positionalist view assumes that each relation has a fixed number of
positions or argument-places, which are specific entities that belong to the
relation. For example, the love relation has the positions Lover and
Beloved. [2, p. 10]

There is no intrinsic order to the positions. This makes the positionalist
view a neutral or unbiased conception of relations. This does however
not imply that on this view every relation is neutral in the sense that there
is no meaningful notion of converse for it. For we may get biased
relations like /oves by imposing an order on positions from the “outside”.
[2, p. 11]

Fine has two objections to the positionalist view. The first objection is
an ontological one. The positionalist is obliged to reify argument-places,
and may have to include them among the “fundamental furniture of the
universe”. But according to Fine we are strongly inclined to think that
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there should be an account of relational facts without any reference to
argument-places. The second objection concerns strictly symmetric
relations, i.e. relations for which different assignments of the objects to
the positions give identical states. For example, for the adjacency relation
the state of a’s being adjacent to b is the same as the state of b’s being
adjacent to a. But if @ and b occupy distinct positions within a state, then
switching the positions of ¢ and b cannot yield the same state. A proposed
way out to let objects in symmetric relations occupy the same position
does not work; for cyclic relations the positions occupied must be distinct
to distinguish certain states. Therefore, on the positionalist view no
strictly symmetric relations are possible. [2, pp. 16—17]

2.3. Antipositionalist View

On the positionalist view, the completion of a relation is the state we get
from assigning objects to the argument-places of the relation. In this case
it is a single-valued operation. However, the antipositionalist has no
argument-places to which objects can be assigned. He takes completion as
a multi-valued operation, yielding a plurality of states for the different
ways in which the relation might be completed by the objects. For
example, the completion of the love relation by Don José and Carmen
contains the state of Don José’s loving Carmen and the state of Carmen’s
loving Don José. [2, p. 19]

To distinguish different states, the antipositionalist makes use of the
idea that a state can be a completion of a relation in the same manner as
another state. We say that a state s is a completion of a given relation R

by constituents aj,as,...,a, in the same manner as a state t is a
completion of R by constituents by, by, ..., b,, if s can be obtained by
simultaneously substituting a;,as, ..., a, for by, b,, ..., b, int (and vice

versa). We assume that if the a;’s are the same, then the corresponding
b;’s are also the same (and vice versa). [2, p. 20]

So, for example, the state of Anthony’s loving Cleopatra is a
completion of the love relation by Anthony and Cleopatra in the same
manner as the state of Abelard’s loving Eloise is a completion of the love
relation by Abelard and Eloise.

The antipositionalist view has certain advantages over the positionalist
view: (1) It does not have the ontological problem of the positionalist
view, for it has no argument-places, (2) it does not have problems with
strictly symmetric relations, and (3) it can account for variably polyadic
relations. [2, pp. 21-22]

The notion of co-mannered completion, i.e. the notion of completion in
the same manner, should not be taken as a primitive. We defined the
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relation in the same manner in terms of substitution. Thus, we should see
the notion of co-mannered completion as a special case of the more
general notion of substitution. [2, pp. 25-28]

The antipositionalist can reconstruct the notion of position in terms of
co-positionality. We say that a in s is co-positional to b in t if s results
from ¢ by a substitution in which b goes into a (and vice versa) [2, p. 29].
If the antipositionalist accepts the existence of strictly symmetric
relations, he cannot satisfactorily reconstruct the positionalist’s account
of position, because if constituents occupy different positions, then
interchanging constituents will give a different state [2, p. 32].

On the standard conception, a relation applies to its relata in an
absolute manner; on the positionalist conception, a relation applies to its
relata relative to the positions of the relation, but with an absolute notion
of position; on the antipositionalist conception, we have the relative
notion of co-positionality. The antipositionalist has stripped the concept
of a relation to its core. [2, p. 32]

2.4. Criticizing Fine’s Objections to Positionalism

The first objection Fine raised against the positionalist view is that a “full-
blooded commitment to an ontology of positions” does not match our
inclination to think that a position-free account of relations is possible.
For me it is not clear whether we would a priori be strongly inclined to
think that such an account is possible. But in any event, Fine comes with
an elegant alternative account, the antipositionalist view.

According to Fine the antipositionalist can reconstruct positions, but
I find his solution not very satisfactory. Fine claims [2, p. 29]: “Positions
can then be taken to be the abstracts of constituents in relational com-
plexes with respect to the relation co-positionality.” The way I understand
this is that we would get for certain states of cyclic relations just one
position. Another peculiarity of Fine’s reconstruction of positions is that
certain relations can have more positions than the maximum number of
arguments an instance can have. Consider the love relation and the state s
of Narcissus’s loving Narcissus. By definition of co-positionality,
Narcissus in s is only co-positional to other objects in states where they
love themselves. This would give us three positions for the love relation
instead of two. So, positions reconstructed in this way are in general not
very similar to the positions of the positionalist. I find it somewhat
confusing to call the reconstructed entities positions. Perhaps it would be
better to call them roles.

Fine’s second objection against the positionalist view is that, for
strictly symmetric relations it is contradictory to assume both (1) that
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distinct objects occupy different positions, and (2) that position is
preserved under substitution [2, pp. 31-32]. However, in my view, this
does not mean that positional representations are dubious. I even think
that a positionalist might concede the argument of Fine, but respond that
the positions of a relation only have a mediating role. Assigning objects
to positions yields states, but I see no reason to assume that the objects
occupy these positions within the states.

Finally, Fine argues that if we accept strictly symmetric relations, then
the antipositionalist cannot give a satisfactory reconstruction of the
positionalist’s account of positions [2, p. 32, note 22]. In his argument for
this claim, Fine uses the supposition that according to a positionalist
objects must occupy positions within the states. But if you drop this
supposition—and as [ argued, we have good reasons for doing so—then a
satisfactory reconstruction of “normal” positions, as seen by the position-
alist, is possible for a large class of relations including all kind of sym-
metric relations, as I will show in Section 4.

In response to this criticism, Fine has said [private communication,
October 30, 2005] that in his paper “Neutral Relations” he was, for
simplicity, ignoring the fact that substitution is properly done on
occurrences, as is made clear in [1]. If we use the notion of what it is
for one occurrence of an individual to be co-positional with another
occurrence, then we can avoid the difficulty over there being too many
positions. If positions are something to be occupied, then we cannot
properly distinguish different positions within a cyclic relation.

Further, Fine has granted that he has no objection to a “thin” notion of
position (one which is not occupied) as such. But he does not think it is
basic; exemplification or completion through thin positions must be
understood in other terms. He remarked that he thinks his paper “Neutral
Relations” was not clear on how both of his objections to positionalism
are to positionalism as a basic account of what relations are.

In conclusion, I would say that these considerations give hope for a
non-basic form of positionalism, but they still leave us with questions
with respect to the adequacy of positional representations.

3. FramING RELATIONS

We will define different types of frames to model the logical space of
relations. The frames will all be of the form (S,0,...), where S is a
nonempty set of states, and O a nonempty set of objects. We may extend
the frames to models of the form (S, O, ..., H), where H is a subset of S
representing the states that obtain.
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3.1. Directional Frames

We start with frames in which the order of the relata is relevant.
Predicates like ¢ loves ’ can perfectly be expressed in these frames.

DEFINITION 3.1. A directional frame is a quadruple F = (S, O, «,I'),
where S is a nonempty set of states, O is a nonempty set of objects, « is
an ordinal number, and I' is a function from O® to S.

We call the cardinality of o the degree of the frame. We denote it as
degree r.

We call F a full frame if im ' = S.

I' is the function that sends the sequence of objects f € O to the state
that is the completion of the modeled relation with f.

Note that we allow the degree of a frame to be infinite. We do not want
to exclude upfront that some “real” relations might have an infinite number
of relata per state. But also if all “real” relations are of finite degree, then it
may still be useful to consider in our analysis frames of infinite degree,
because it may highlight how certain properties depend on the degree.

Note further that we do not make use of typed domains for the objects.
So, the models are not accurate for a relation like drinks, because “Mo drinks
beer” corresponds in a natural way to a state, but “beer drinks Mo” does not.
However, such refinements can easily be incorporated into the models.

EXAMPLE 3.2. For the relation loves we can make a directional frame F =
(S,0,a,T') with S states of loving, O people, « = {0, 1}, and I depicted as:

0 1 ©
Ry
_|

Because the arguments in directional frames are ordered, binary
directional frames have converses. More generally, all directional frames
have permutations:

DEFINITION 3.3. A directional frame F = (S, O, o, I') is a permutation
of F'=(8,0,d,T")if S =5,0=0',a =, and there is a bijection
m o — « such that for each f € O*, T'(f) =T"(f o 7).

We say that F has strict symmetry if there is a bijection m o« — « with
7 # id, such that for each f € O*, I'(f) =T'(f o 7).
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In our definition of directional frames we have chosen the arguments
to be well-ordered. However, it is not obvious that this is the most
appropriate choice for the infinite case. Perhaps we should also allow
other linear orderings.

In Section 2.1 I mentioned Fine's objection against the standard view that,
as a consequence of that view, each binary relation has a converse [2, p. 2].
This objection may also be expressed as a shortcoming of directional frames.

If there is a single underlying relation, then we would like to give a
neutral representation for it. The directional frames obviously fail in this
respect. We could of course take the class of permutations of a directional
frame as a neutral representation, but, as we will show in this paper, there
are simpler alternatives.

REMARK 3.4. Fine thinks that there are both neutral and biased relations
[2, p. 1]. Therefore he might find for a certain class of relations directional
models adequate. A different view on relations has been proposed by
Timothy Williamson [5]. For Williamson all relations are neutral, and he
will probably see no reason (apart from conventional ones) to prefer for any
relation any specific directional model as a representation.

3.2. Positional Frames

Instead of letting the order of the objects play a constitutive role for
relations, we can assign objects to orderless positions:

DEFINITION 3.5. A positional frame is a quadruple F = (S, 0, P,T'),
where § is a nonempty set of states, O is a nonempty set of objects, P is a
set of positions, and I is a function from O to S.

We call the cardinality of P the degree of the frame. We denote it as
degree .

We call F a full frame if im I'=S.

EXAMPLE 3.6. For the love relation we can make a positional frame
F =(S,0,P,T') with S states of loving, O people, P = {Lover, Beloved},
and I" depicted as:

Lover Beloved

%;}%v 4

Analogous to permutations of directional frames we can define positional
variants of positional frames:
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DEFINITION 3.7. A positional frame F = (S,0,P,T’) is a positional
variant of F' = (§',0',P',T") if § = §', O = O, and there is a bijection
m: P — P such that for each f € O, T'(f) =T'(f o ).

For directional frames we discussed the problem with converses. This
problem does not occur for positional frames, since there is no intrinsic
order in the positions. In Section 2.2 I mentioned two objections of
Fine against the positionalist view [2, p. 16] whose impact for positional
frames needs to be considered. The first objection is an ontological one,
namely that positions do not belong to the “fundamental furniture of the
universe”. The second objection concerns strictly symmetric relations.
Different assignments to positions may give identical completions.

The first objection has no force against positional frames as models
for the logical space of relations if we do not have to take the identity
of positions in the frames as basic. By presenting alternative frames and
by analyzing their relationship with positional frames we will show that
positions may be defined in other terms. Also the second objection I do
not consider as a disqualification of positional frames. What Fine con-
vincingly showed is that it would be wrong to assume that the positions
correspond one-to-one to some kind of entities in the complexes of
relations and that these entities are occupied by the constituents of the
relation. But in the positional frames the positions are not part of the
states nor is it said that objects occupy positions. The positions in the
positional frames only have a kind of mediating function. Assigning
objects to them yields states. In this paper I will defend that positional
frames are most appropriate for representing a large class of relations.

It is possible that certain positions play individually absolutely no
role for the states assigned by the function I'. We call such positions
dummy positions:

DEFINITION 3.8. Let F = (S,0,P,T') be a positional frame. We call
p € P a dummy position if for each f, g € O

f=rpyg=T()=T(g).

Perhaps surprisingly, dummy positions cannot always be dropped all
simultaneously as the next example shows.

EXAMPLE 3.9. Let F = (S,0,P,T') be a positional frame with O an
infinite set of objects, S the set of subsets of O modulo a finite difference, i.e.

S={4]|4C 0}
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with4={4' C O| A A A is finite}, P an infinite set of positions, and T
defined by I'(f) =imf.> Then each p € P is a dummy position, but not
for every f and g, T'(f) =T'(g). —

To handle variadic relations, i.e. relations with a variable number of
relata, we could define a variadic positional frame as a quadruple
(S,0,P,T), where T’ a function from ¥ to S with V' a set of partial
functions from P to O. In this paper we will not discuss this type of frames.

3.3. Substitution Frames

In this section, we present a type of frames, the substitution frames, that
agrees with the antipositionalist view.’

DEFINITION 3.10. A substitution frame is a triple F = (S, O, Z), where
S is a nonempty set of states, O is a nonempty set of objects, and X is a
function from S x 0% to S such that

Z(S, ido) =3,
2(s,8' 06) =Z(Z(s,0),8).

For convenience, we will often write s 76 or s - ¢ for 2(s, 6). Further,
we will also often write f - g for g o f. With this notation, X is such that
forall s € S and for all 6,8 € 0%, s-idp =s,ands- (§-&) = (s-6)-¢.

The two conditions on X agree with how we understand substitution.
The intended interpretation of s-¢6 is the state we get when we
simultaneously substitute in s for each object a the object 6(a).

REMARK 3.11. The two conditions on X say that X is a right action of
the monoid O° on S. In terms of category theory we could alternatively
have defined a substitution frame as a triple (S,0,Z*), where S is a
nonempty set of states, O is a nonempty set of objects, and =* is a functor
from the monoid O to the monoid S°.

EXAMPLE 3.12. For the love relation we can make a substitution frame
F = (S,0,X) with § states of loving, O people, and X depicted as:

ST
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For the state s of Hans’s loving Riétte, and 6: O — O with Hans+— Jan
and Riétte — Jos, s + 0 is the state of Jan's loving Jos. With X defined in
this way, the two conditions imposed on X in Definition 3.10 are clearly
fulfilled. Take for example ¢’ with Jan+— Henk and Jos— Lieke, then
s+ (6«0 is the same state as (s + 0) + &', namely the state of Henk's
loving Lieke. —

Substitution frames can also accommodate variadic relations (i.e.
variably polyadic relations), since states not connected by substitutions
can be united into a single frame. For example, for the variadic relation is
surrounded by we can make a substitution frame as follows:

EXAMPLE 3.13. Define F = (S, 0,X) with O a set of objects, S states
of objects being surrounded by a variable number of other objects, and X
such that for the state of a;’s being surrounded by a,as,...,a, a
substitution may result in the state of b,s being surrounded by
by, b3, ..., b,, where we do not exclude that in a state certain objects
may occur more than once. —

We now define the objects or relata of a state. The idea is to define
them as the objects for which it can make a difference for the resulting
state which objects are substituted for them.* We have, however, to be a
bit cautious in our formulation:

DEFINITION 3.14. Let F = (S,0,%) be a substitution frame. We call
A C O an object-domain of s € S if for every 6,6 O — O,

§=48=>5-6=s5-6.

We define the core of s as:

Corez(s) = ﬂ{A | 4 is an object-domain of s}.

If Corex(s) is an object-domain, then we call this set the objects of s. We
denote this set as Obx(s). If Corex(s) is not an object-domain, then we
leave Ob(s) undefined.

We will often write Core(s) and Ob(s) for Corez(s) and Obx(s).

LEMMA 3.15. Let F = (S,0,X) be a substitution frame. For every
s € S, the object-domains of s form a (possibly non-proper) filter on 0.
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Proof. To prove that the object-domains of s are closed under finite
intersection, let 4 and 4’ be object-domains of s. Let 8, 8’ O — O be
such that 6 =4~ &'. Define

6(a) ifa e 4-4,
8"(a) =1 6(a)=6(a) ifa € ANA,
&' (a) ifa € 4 —A.

Then 8" =46 and & =4 ¢. So, s - 6 =58 =5 - 8. Thus, ANA is
an object-domain of s.

It is trivial that the object-domains of s are upward closed.

Since an object-domain may be empty, we may have a non-proper
filter. =

The next example, which is related to Example 3.9, shows that not
every core is an object-domain.

EXAMPLE 3.16. Let F = (S,0,%) be a substitution frame with O an
infinite set, S the set of subsets of O modulo a finite difference, i.e.

S={4|4C0}
with 4 = {4' C O | A A A is finite}, and ¥ defined by

A-6 =84
s is well-defined, since for any 4,B C O, if A = B, theng[—A\] = g[E]
Further, F is a substitution frame, since

—

LA do-Wol=A
224-(6-8)=(6-08)A]=08[6[4]] =64 - & =(4-6) 7.
It is not difficult to see that for any 4 C O the core of Ais the empty set, but
if 4 is infinite, then the empty set is not an object-domain of 4. —

The next lemma gives a characterization of the core of a state in terms
of substitutions of one object at a time.

LEMMA 3.17. Let F = (S,0,X) be a substitution frame, for every
sesS)

Core(s) ={a|3b € O(s - idplar—b] # s)}.

Proof. Consider a € Core(s). Then O—{a} is not an object-domain.
Therefore, for some 61,0, we have 61 =p_(,) 6 and s - 61 # s - 0. We
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may choose b € O with b # a. Then, for &y = idp[a—b] we have
(50 . (51 = (S() . 52, and thus

(5'60)'61:S'(50'61):S'(50'62):(S'50)'52.

So, because s + 8; £ 5 + 6, we see that s + 6y # s.
The inclusion in the other direction is obvious. —

In the next lemma and examples we investigate the relationship
between object-domains, cores, and objects of different states.

LEMMA 3.18. Let F = (S,0,%) be a substitution frame. For every
s € 8, if A4 is an object-domain of s, then §[4] is an object-domain of s « 6.

Proof. Let ¢',6" be functions from O to O. If ¢' =414 ¢", then 6 - &' =4
6 - 8", So, if A is an object-domain of s, thens - 6 - & =s - 6 - &". -

Thus, by the lemma, if Ob(s) is defined, then Core(s - §) C §[Ob(s)].
The next example shows that not always Core(s - §) C §[Core(s)].

EXAMPLE 3.19. Let F = (S,0,%) be a substitution frame with O an
infinite set,

S ={(4,B) | 4,B C 0}

with B = {B' C O | BA B’ is finite}, and ¥ defined by

—

with C = {a | §(b) = a for infinitely many b € B}.

It is not difficult to verify that X is well-defined, that F is indeed a
substitution frame, and that Core(4,B) =A4. So, for so = (0,0),
Core(sp) = ), but for any constant function ¢,: D — D with value a,
Core(sy * ¢,) = a. —

Sometimes Ob(s « 6) # 6[Ob(s)], as is shown in the next example.

EXAMPLE 3.20. Let F = (S,0,%) be a substitution frame with S=
P(O), and X defined by

5 8[s] if ¢ is injective on s,
STOT0 otherwise.
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It is easy to verify that F is indeed a substitution frame, and that for all
s €S, we have Ob(s) =s. But, we also see that for any function
6: O — O that is not injective on s, Ob(s + §) = ().

If Ob(s) is undefined, then not necessarily Ob(s - ) is undefined as
well. This follows easily from Example 3.16. Also, if Ob(s) is defined,
then not necessarily Ob(s - ¢) is defined as well:

EXAMPLE 3.21. Let F = (S,0,X) be a substitution frame with O an
infinite set,

§={(4,0)|4CO0}U{(41)|4C0}
with 4 = {4' C O | A A 4’ is finite}, and T defined by

5 — (6[4],0) if s = (4,0) and ¢ is injective on s,
~ (8]4], 1)if s = (4,0) and & is not injective on s,or s = (4, 1).

It is not difficult to verify that X is well-defined, and that F is indeed a
substitution frame. Further, for all s = (4,0), Ob(s) is defined, but for

any function 6: O — O that is not injective on s, Ob(s - §) is not defined.
_|

For each substitution frame we can define its degree as a cardinal number:

DEFINITION 3.22. Let F = (S, O, %) be a substitution frame. For a state s
in S, we define the degree of s as:

degree(s) = glb {|4] | 4 is an object-domain of s}.
The degree of F we define as:
degree = lub {degree(s) | s € S}.

Here |A| denotes as usual the cardinality of 4, “glb” denotes the greatest
lower bound, and “lub” denotes the least upper bound. Note that the degree
of s and the degree of F always exist and are indeed cardinal numbers.

If the degree of a frame is infinite, then either (1) for all states s the set
Ob(s) is finite, but the size of the sets Ob(s) is unbounded, or (2) there is
some state s for which Ob(s) is infinite or not defined. In the last case all
object-domains of s are obviously infinite sets.

For any substitution frame F = (S, 0,X), degree, < |O|. If F is of
finite degree and degreer<|O|, then the simultaneous substitution of
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many objects of a state can be defined in terms of substitutions of one
object at a time. (cf. [2, p. 26, note 15]).

We may ask ourselves whether substitution frames are perhaps not too
limited. With substitution frames it is not possible to frame relations for
which Rabc and Reba represent the same state iff @ and b are not equal.
But could a “real” relation like this exist? Actually, I don't think this is
very likely. However, if such relations exist, then it might be worth
considering frames based on injective substitution. We will not discuss
such frames in this paper.

4. CORRESPONDING FRAMES

In this section, we present the main results of this paper. We show how
intimately related positional frames are with substitution frames.
Metaphysically the results are of interest because they give a justification
for using positional models for a large class of relations without any
commitment to an ontology of positions. In other words, the use of
positional frames for such relations does not force us to accept positions
as fundamental entities, because we can treat positions as “light” products
of our own mind. In Section 6 these metaphysical aspects will be
discussed in more detail.

DEFINITION 4.1. A substitution frame F = (S, 0, %) and a positional
frame G = (§', 0, P,T’) correspond if

1. S=8 =imT,
2.0=0,
3.T() »x 6 =T(f - 0).
Note that the first condition implies that G is a full frame. The last
condition states that for any ¢: O — O the following diagram commutes:

0

oFf of

r r

§——S

8

where & is defined by 6(f) = f - 6, and s is defined by Zs(s) = s - £ 6.

Further, we say that a substitution model M = (S,0,%,H) and a
positional model N = (S',O0,P,T,H') correspond if their frames
correspond and H = H'.
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SIMPLE SUBSTITUTION SIMPLE POSITIONAL
FRAMES FRAMES

< correspondence >

Figure 1. Relationship between simple frames

Not every substitution frame corresponds to a positional frame, but we
will show in Theorems 4.3 and 4.6 that the simple substitution frames
correspond to the simple positional frames (see Figure 1). Further, we will
show (1) that for each simple substitution frame of finite degree the
corresponding positional frame of the same degree is unique, modulo
positional variants, and (2) that for each simple positional frame the
corresponding substitution frame is always unique.

DEFINITION 4.2. Let F = (S, O, %) be a substitution frame. We call F
a simple substitution frame if there is a state sy such that

S={so+6]6:0— O}.
We call sq an initial state.

THEOREM 4.3. A substitution frame F corresponds to some positional
frame G of the same degree iff F is a simple substitution frame.
Further, if degree - is finite, then G is unique, modulo positional variants.

Proof. Let F = (S,0,%) be a substitution frame, and let G = (S, O, P, T')
be a corresponding positional frame of the same degree. Let fo: P — O be an
injection. Such a function exists, since |P| = degree; = degreer < |O.
By the injectivity of fo, there is for each f € O a § € OY such that
f = fo + 6. Thus, by condition 1 and 3 of the definition of corresponding
frames,

S=imT={T(f - 8)| & 0 — O} = {T(fy) - 6| 6: 0 — O}.

So, F is a simple substitution frame with I'(f;) as an initial state.
Conversely, let F = (S,0,%) be a simple substitution frame. We
construct a corresponding positional frame G = (S, O, P,T") as follows:

1. Choose an initial state sy € S.
2. Choose an object-domain 4 of sy with |4| = degree(so).
3. Define P = 4.
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4. Let f be an arbitrary element of OF. Let f* extend f to O — O.
Define I'(f) = so *# f 7.

Note that ' is well-defined, since all extensions of f are identical on P
and P is an object-domain of s.

We now show that the conditions of the definition of corresponding
frames are fulfilled and that G has the same degree as F.

Condition 1 follows from the following observations. Let s be an
arbitrary state in S. Because sy is an initial state, for some ¢ we have
s=s0 -7 6. Let f in O be the restriction of & to P. Then
[(f) =so 5 6 =s, which proves that S C imTI. Conversely, from the
definition of I it follows immediately that imI" C §.

Condition 2 is trivially fulfilled, and condition 3 follows from

L(f) sr8=(s0 5 /) r =50 7 (f - 8)" =T(f - §).

This proves that F corresponds to G.

Since sp is an initial state, for any s in S, degree(s) < degree(sy).
Therefore, degree = degree(sy) = |P| = degreeg.

To prove the uniqueness claim of the theorem, assume degree, is
finite. Let G’ = (S, O, P',T") be another corresponding frame of the same
degree. Consider again the injection fy € OF. Because the frames have the
same, finite degree, there is an injection f; € O such that I (f]) = T'(f).
So there is a bijection m: P* — P such that f; = 7 - f;. Further, for each
f € OF there is a 6: O — O such that f = f; - 6. Therefore,

L) =T - 8) =T(h) - 8 =T'(5) -7 6=T'(§ - ) =T'(x - fo - §)
=T'(r - f).

Thus, we showed that G and G are positional variants. —

If degree is infinite, then the corresponding positional frames with
the same degree are not always unique, modulo positional variants. A
trivial cause are dummy positions (see Definition 3.8), but dummy
positions are not the only obstacle, as the next example shows.

EXAMPLE 4.4. Let F =(S,0,%) with O = w, the set of natural
numbers, S ={s: w — (wU{oo}) | Ji(s(i) = c0)}, and X defined by

(s 7 8)(i)= ) s())

8()=i

with 7 + 00 = 00 + i = 00 + 0o = 00. Note that S can be regarded as a
set of multisets. It is easy to check that F is a simple substitution frame.
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A peculiar property of F is that it has initial states so, s, such that for any
6: O — O with 59 -7 6 = s, 6 is not injective on Ob(sy), namely

so =[0,1,2,3,...], i.e. 50(0) = oo, and for i > 1,s50(i) = 1;
5o =10,1°,2,3,.. ], i.e. sp(0) = s;(1) = oo, and for i > 2,5(i) = 1.

We exploit this peculiarity to define two dissimilar positional frames:

G = (S,0,w,I) with [(f) = 59 *# [
G = (S,0,w,T") with T'(f) = s} *5 f.

By the proof of Theorem 4.3 we see that G and G’ correspond to . Clearly,
G and G’ have no dummy positions. To see that G and G’ are not positional
variants, let 7: w — w be such that I" (id,,) =I'(id,, -7). Then sy = s * 7 T,
and so 7 cannot be bijective.

It is an open question what in this and similar cases could be regarded
as the “most natural” corresponding frame. —

Theorem 4.3 shows that for simple substitution frames of finite degree,
we can reconstruct indirectly the notion of position in a satisfactory way.
To characterize the positional frames that correspond to substitution
frames, we need the following definition:

DEFINITION 4.5. We say that a positional frame G = (S,0,P,T’)
respects substitution if for every 6: O — O,

I(f) =T(g) =T( - 6)=T(g - 9).
Now we state the counterpart of Theorem 4.3:

THEOREM 4.6. A positional frame G corresponds to some substitution
frame iff G is a full frame that respects substitution.
Further, the corresponding substitution frame is unique.

Proof. LetG = (S,0,P,T) be a positional frame and let 7 = (S, O, %) be
a corresponding substitution frame. Assume I'(f) = I'(g). Then for every
6: 0 — O,

L(f-0)=T(f) -r6=T(g) - 6=T(g - 9).
So, G respects substitution. Further, by condition 1 of the definition of
corresponding frames, G is a full frame.
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Conversely, let G = (S,0,P,T) be a full, substitution-respecting
positional frame. Let F = (S, O,X) with X defined by

L(f) s o=T(f-9).

Since G respects substitution, I'(f) =T(g) =T(f - 6) =T(g - 9).
Therefore ¥ is well-defined.
It is easy to see that F is a substitution frame:

L I(f) -5 ido = T(f -ido) = T(f),

2.T() -7 (6-8)=T(f-6-8) =T(f+6) -5 & =(T(f) 7 6) -7 .
The frames F and G correspond, since the conditions of the definition of
corresponding frames are trivially fulfilled.

The uniqueness of F follows immediately from the fact that for any
substitution frame F' that corresponds to G we must have ['(f) -z 6 =
[(f - 6) by condition 3 of the definition of corresponding frames. —

REMARK 4.7. For some substitution-respecting frames I'(f)) = I'(g) does
not imply imf = img, not even if the frames have no dummy positions.
Take for example a frame G = (S, O, P,T’) with |O| > 2, P = {p;,p>}, and
I' such that

I(f)=T(g) = (f =gor (f(p1) =f(p2) and g(p1) = g(p2)))-

Note that in the substitution frame corresponding to G the set of objects of one
of the states is empty. So, in particular for some f, Ob(I'(f)) S imf. It is an
open question whether some ‘“real” relations have frames with such
properties.

DEFINITION 4.8. Let G = (S, 0, P,T') be a positional frame. We call G
a simple positional frame if

1. |O| > |P|,
2. G is a full frame,
3. G respects substitution.

From Theorem 4.3 and Theorem 4.6 it follows immediately that:

COROLLARY 4.9. Every simple substitution frame corresponds to a
simple positional frame and vice versa.
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PATTERN-BASED FRAMES

PERMUTATION-BASED FRAMES

ROLE-BASED FRAMES

Figure 2. Subtypes of positional frames

5. PoSITIONAL STRUCTURE

The frames developed in Section 3 might be too general or too limited for
“real” relations. For example, it might be that relations can only have certain
limited forms of strict symmetry. Because a positionalist view on relations is
so natural for our way of thinking, we will investigate to what extent certain
subtypes of the positional frames are adequate for “real” relations. In our
analysis the notion of positional structure will play a central role.

DEFINITION 5.1. Let F = (S, 0, P,T’) be a positional frame. We define
the positional structure Er as:

Er ={(/,8) IT() =T(g)}-

Note that Er is an equivalence relation. Insight in the positional
structure for metaphysically meaningful relations might provide a better
understanding of the essence of relations. We will define three subtypes
of the positional frames in terms of structures that involve only their
positions (see Figure 2). We follow a bottom-up approach, starting with
the role-based frames.

5.1. Role-Based Frames

Positions can fulfill certain roles. In the positional frame for the amatory
relation one position fulfills the role of Lover and the other position the
role of Beloved. In this case positions and roles coincide. However, there
is no compelling reason why there would always be a one-to-one
correspondence between positions and roles. On the contrary, it is natural
to say that in the positional frame for the adjacency relation the two
positions fulfill the same role.
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DEFINITION 5.2. Let F = (S, 0, P,T') be a positional frame. Let p, p/
be elements of P. We say that p’ fulfills the same role as p if for some
bijection 7: P — P,

P =n(p) & f € O°(f Ex (f om)).
We define the role of p as:
Role(p) = {p' € P | p/ fulfills the same role as p},

and the roles of F as:

Rolesr = {Role(p) | p € P}.

Note that the relation fulfills the same role as is an equivalence relation.

We now define a type of positional frames for which changing the
positions of the objects does not change the corresponding state as long as
the roles of objects are kept invariant.

DEFINITION 5.3. Let F = (S,0,P,T") be a positional frame, and let
Ex be its positional structure. We call F a role-based frame if

Er ={(f, fom) | f € 0" & misarole-preserving permutation },

where 7: P — P is a role-preserving permutation if 7 is a bijection for
which the following diagram commutes:

p—" .p
p p
Roles#

with p: p— Role(p).

Note that the role-preserving permutations form a group.

We defined roles within the context of individual frames. In this
respect they differ from thematic roles which apply to arguments of
different predicates. For example, thematic roles like agent, patient, and
location are used to classify arguments of natural language predicates. We
will not study such kind of global roles in this paper.

Certain strictly symmetric relations can be modeled by role-based
models. For example, for the adjacency relation we can define a frame F
with two positions, say Next and Nixt. If F is strictly symmetric, then F
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is clearly a role-based frame with one role. However, in general for
circular relations no role-based frames are possible. We can see this by
rephrasing an argument of Fine [2, p. 17, note 10] in terms of roles:

EXAMPLE 54. Let F = (S,0,P,T) be a role-based frame with a, b,
and ¢ three different objects in O, P = {p;,p>,p3}, and®

T'abc = T'bca = T'cab.

Then the frame has just one role. But then also the state I'acb is
necessarily identical to I'abc. Similar observations can of course be made
for frames with more positions. Therefore, frames for “genuine” n-ary
circular relations with n > 3 are not role-based. —

5.2. Permutation-Based Frames

A natural generalization of the role-based frames are the permutation-
based frames:

DEFINITION 5.5. Let F = (S,0,P,T') be a positional frame, and let
Er be its positional structure. We define the permutation group of F as:

Permz = {m € P” | mis abijection & Vf € O"(fEr (fom))}.
We call F a permutation-based frame if

Er ={(f,fom)|f€O0" &mecPerms}.

Note that Perm is indeed a group.

Circular relations can adequately be framed by permutation-based
frames. For example, a ternary circular relation can be framed by a
permutation-based frame F with Perm generated by

(P 1 P2 p3>
P2 ps pr)

Unfortunately, also this type of frames has shortcomings, in particular
for certain relations of degree three and higher. Consider a relation R
in which Rabc represents the state that a loves b and b loves c¢. Then
Raba represents the same state as Jthab, but aba is not a permutation of
bab. This means that no permutation-based frame for this relation is
possible. From this we can infer a more general conclusion, namely that
the class of permutation-based frames is not closed under identification of
positions.
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5.3. Pattern-Based Frames

We now define a class of positional frames which turns out to be identical to
the class of substitution-respecting frames. These frames are of special interest,
since, as we showed in Theorem 4.6, the positional frames that correspond to a
substitution frame are precisely the full, substitution-respecting frames.

DEFINITION 5.6. Let F = (S,0,P,T") be a positional frame, and let
Ex be its positional structure. We define the pattern of F as:

Patterns = {(0,0") € 0" x Q" |Vh € O (ho o) Ex (hod'))}

with 0 =2 x P.
We call F a pattern-based frame if

Er ={(hoo,hod) | he O*F & (0,0') € Patterny}.

Note that Patternr is an equivalence relation.
Not every pattern-based frame is permutation-based, as the next
example shows:

EXAMPLE 5.7. Let F = (S,0,P,T’) be a positional frame with P =
{p1,p2,p3}, and Tabc being the state of a's loving b and b's loving ¢. F
has a special symmetry, namely I'aba = I'bab. Hence, F is clearly not
permutation-based. It is straightforward to verify that F is pattern-based
with Patterns consisting of all pairs (o, o) with o € (2 x P)*, and all

pairs
( pPr p2 P3 pP1 P2 P3 )
9 @ q1)’ \2 a1 9
with g1,q2 € 2 X P. 4

The next theorem is of metaphysical interest since it implies that the
positional structure Er of a substitution-respecting frame of finite degree
is determined by a finite subset of £x. Also from an epistemological point
of view this is of interest, since it means that in principle we can learn the
positional structure of such frames by a finite number of substitutions.

THEOREM 5.8. A positional frame is pattern-based iff it respects
substitution.

Proof. Let F = (S, 0, P,T') be a positional frame with positional structure
Er. Assume that F is pattern-based. Further, assume that f £+ g. Then for
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some (0,0’) € Patternz and some 4 we have f = hooand g = hod'. So
for every 6: O — O:

bof =bohoo Ef Sohoo =6og.

So, F respects substitution.
Conversely, assume that F respects substitution. Obviously

Er D {(hoo,hod')|h € O & (0,0') € Patterng}.

To prove the reverse inclusion, assume that fEr g. We have an
injection j: imf Uimg — 2 x P. Choose a function 4: 2 x P — O such
that 4 oj is the identical embedding emb of imf Uimg in O. Define
o=jof and o’ =jog. Then

hoo=hojof =embof =f.

Similarly, hoo’ =g. So, it is sufficient to show that (o,0’) €
Pattern . But this follows from the fact that for every #': 2 x P — O:

Woo=Hhojof Er Wojog=Hhod.
_|

Note that the permutation-based frames also respect substitution. Thus,
it follows from the theorem and Example 5.7 that the class of permutation-
based frames is a proper subclass of the pattern-based frames.

We are not going to discuss operations on frames and models, but I
like to mention that a nice property of the class of pattern-based models is
that they are closed under operations like identification of positions,
conjunction, and disjunction. For more details about operations on models
and relations, see [3].

6. METAPHYSICAL INTERPRETATIONS

In this section, we first look at metaphysical principles for relations. Then
we translate technical results of the previous sections to metaphysical
claims. In particular, we consider justification for positional representa-
tions and epistemological aspects of relations.

6.1. Metaphysical Principles For Relations

Let me start by formulating a number of metaphysical principles
concerning states of relations. We postulate three sorts of entities: states,
objects, and substitutions.
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Constituents Principle:

CP-1 Every state of a relation has exactly one set of objects.

Substitution Principles:

SP-1 The objects of any state can simultaneously be substituted by other
objects.

SP-2 Any substitution of objects in any state yields exactly one state of
the same relation.

SP-3 An object a belongs to a state iff for some substitution it makes a
difference for the resulting state which object is substituted for a.

SP-4 Substitution is a monoidal action on states, i.e.

(a) for any state s, the identity substitution yields the same state, i.e.

SUbStid(S) =39,
(b) the following diagram commutes:

Subst
States el States

Substg/
Substgros

States

with Substs representing a substitution of objects.

Factuality Principle:

FP-1 Every state either obtains or does not obtain.

What supporting arguments can be given for these principles? It seems
hard to give any conclusive arguments, since I have not given any clear
definition of what relations are. Nevertheless, for several views on
relations these principles might be acceptable. Let me briefly comment on
each principle separately.

The constituents principle by itself does not say much. Therefore I
consider it in combination with the other principles. The first substitution
principle is perhaps too restrictive. It might be argued that within the
context of a relation a state can have two kinds of objects: those that can
be substituted by other objects, and those that fulfill a kind of background
role for the state. For example, for the relation 3 in which Rab is the state
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that there is a flight from a to » via Amsterdam, Amsterdam could be
regarded as a fixed object for the states of this relation.

We might ask whether the second substitution principle is perhaps not too
strong and that it would be better to replace it with a weaker principle, namely:

SP-2" Any substitution of objects in any state yields no more than one
state of the same relation.

This weaker principle might be a better choice if you consider the states of a
relation as possible states of affairs. That Bin Laden loves Bush is possible,
but that 1 = 2 is clearly not possible. What is also impossible, I think, is that
I am identical to Mo, my daughter. Such examples make clear that not every
substitution yields a possible state of affairs. However, if you regard states of
relations as propositions or if you are willing to accept impossible states of
affairs, then the stronger principle seems preferable.

To a certain extent it is a matter of definition whether you accept
substitution principle SP-3. One might entertain the view that constituents
of constituents are constituents of the same state. So, on that view, for the
state of Gitte’s loving Mo the heart of Gitte is also a constituent of this
state. A way to effectively deal with this view would be to refine the
constituents principle and to enrich our models with a dependency
ordering on O, the set of objects.

I think that our intuitive understanding of the identity substitution and
of composing substitutions is fully in accordance with the fourth
substitution principle.

Note that in the principles we only talk about substituting objects and
not about substituting individual occurrences of an object by possibly
different objects. The reason for not considering a more refined
substitution mechanism is that otherwise we would have to make clear
what exactly occurrences are. It might perhaps be possible to do this, but
it would be an extra complication.

Another point is that we can ask ourselves if there is not a more
primitive operation in which substitution could be expressed. Fine [2,
p. 27] discusses the question whether substitution should be understood in
terms of a structural operation. However, he considers the notion of
substitution of a lower logical type. But even if Fine would be wrong in
this respect, this would not make the substitution principles less credible.

With respect to the factuality principle, note that the principle does not say
that there are states that do not obtain. So, it is also true for hard actualists,
who hold that the only states of affairs that exist are those that obtain.

The considerations above make it plausible that any relation can be
modeled by a substitution model. However, this does not mean that such
models are always completely satisfactory. In some cases the model
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might leave out essential aspects of the relation, like the (relative) order of
relata in biased relations. Or consider the variadic relation standing in a
line, where we allow an object to have multiple occurrences. Then how
could we get from a line of length n to a line of length n — 1?7 The state
transition graph (S, E) with S the states of the relation, and E the set of
pairs (s,s’) such that s’ can be obtained from s by substitution contains
isolated islands of states. To get a more satisfactory model, we perhaps
need to consider subtraction of objects from a state as a complementary
basic operation. This will be a topic for further inquiry.

6.2. Justifying Positional Representations

I do not claim to have obtained a complete understanding of the essence
of relations. I cannot even give a satisfactory definition. In this section,
we limit ourselves to simple relations:

DEFINITION 6.1. We call a relation R a simple relation if

1. R satisfies the constituents principle, the substitution principles, and
the factuality principle;

2. R has an initial state, i.e. a state from which any state of the relation
can be obtained by substitution.

We define the degree of ;i as the maximum number of objects per state.

Claim 1. Any simple relation can be modeled by a unique simple
substitution model.

Note that we do not claim that the substitution model models all
aspects of the relation.

DEFINITION 6.2. Given a simple relation . Then we call a positional
model M a natural model for R if M corresponds to the substitution
model for K.

By Theorem 4.3 we have the following result:

Claim 2. Any simple relation of finite degree has a natural positional
model of the same degree that is unique, modulo positional variants.

The last claim gives a justification for using positional representations for
a large class of relations. I consider this claim as a main result of this
paper. It is a modest result, but it is also very fundamental. Perhaps it
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looks completely trivial, but I do not think it is. The fact that we
continually use positional representations for relations is in itself no
evidence for their validity.

What is also worth noting is that for a simple relation of finite degree,
a natural positional model (modulo positional variants) of the same degree
has exactly the same information content as its substitution model.

I do not claim that the positional model for a simple relation is unique
in an absolute sense. The model is defined in terms of our definition of
correspondence between substitution models and positional models. Other
definitions of correspondence might give other positional models. But the
given definition strikes me as the most natural one. It seems plausible that
if a relation can adequately be modeled by a substitution model and a
positional model, then these models correspond.

For simple relations, substitution of objects in any state yields by
definition exactly one state of the same relation. For the class of relations
satisfying the weaker substitution principle that says that any substitution
of objects in any state yields no more than one state of the same relation,
another kind of models might be more appropriate, namely substitution
models with a partial function £ and positional models with a partial
function I'. For these kind of models, a theory very similar to the one
given in this paper could be developed. In particular, we would get results
similar to Claims 1 and 2.

Claim 2 says nothing about the ontological status of positions. But can
we say something about the ontology of positions? Can we deny them a
place in the “fundamental furniture of the universe”? I think we have no
reason to grant them such an honorable place, but I also don't think that
we have as yet a decisive argument why they cannot belong to this
furniture. As long as you do not consider positions as things occupied by
objects within the states, their fundamental existence seems hard to
disprove. It is perhaps also not contradictory to claim that objects occupy
a kind of internal positions within the states. For example, you could
argue that the states of the adjacency relation have two internal positions,
but that these positions have no determinate identity. The indeterminacy
of the positions could be compared with the quantum-theoretic ontic
indeterminacy of the electrons of a He atom (cf. [4]). For a cyclic relation
the internal positions might be argued to be partially indiscernible like the
unlabeled vertices of a regular mathematical polygon are (see Figure 3).
Perhaps for arbitrary positional structures a similar defense can be given
for a kind of internal (super)positions. But we do well to realize that the
adequacy of positional models does not imply that the constituents of a
state really need to occupy some kind of position. I think we can be
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o O
o O

Figure 3. Could states have internal positions without identity?

perfectly happy with assigning to positions nothing more than the status
of an innocent mental construction, unless we have reason to assume that
there is a “real” relation that can only be adequately modeled by a
positional model that does not respect substitution. Then we still have
something to explain.

Although the two claims in this section are about relations, they could
be generalized to any entity that satisfies the principles of the previous
section. For an extreme nominalist who does not believe in relations,
substitution might also still be a notion that makes sense, and he might
find positional models useful. Substitution definitely has a wider scope of
application than just states of affairs. I see no objection for applying
substitution also to situations and propositions, and for using positional
representations for them.

6.3. Epistemological Aspects of Relations:

Substitution models seem to be more primitive than positional models. So
why would we use positional models? I think there are good reasons for
this. The strength of positional models (and of directional models) is that
they provide us a well-organized framework for all states, and the
possibility to refer efficiently to each individual state. Natural languages
like English obviously take advantage of this kind of representation. As
far as [ can see, almost any linguistic relational statement in English
makes explicitly or implicitly use of positions.

With respect to determining the structure of simple relations we have
the following result:

Claim 3. For any natural positional model of finite degree, the
positional structure can in principle be determined by a finite
number of substitutions.

The claim is a direct consequence of Theorem 4.6, Theorem 5.8, and the
presupposition that in principle one can determine for any pair of
substitutions whether they result in the same state. I don't know if this is
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true in practice. Also, I do not know to what extent it is needed for a
practical understanding of a relation to know explicitly or tacitly its
positional structure.

How do we “learn” relations? I have as yet no answer to this question.
I have not investigated what kind of empirical research has been done on
this subject, but it would be very interesting to find answers to the
following questions:

Do we learn relations by substitution, by abstraction, by positional
representations or via processes with a completely different logic? Do we
learn complex relations by applying operations like conjunction to simple
relations? In processing perception, do we use neutral rather than biased
relations? How do small children learn relations, and how animals and
other organisms? What is the role of language in learning relations? Do
all natural languages use directional and positional representations of
relations?

Answers to these questions might deepen our insight in fundamental
aspects of the way we understand and represent the world. In addition,
they might suggest new learning programs or new ways for learning
Artificial Intelligence systems to “discover” and handle relations. For
example, if we can implement a general notion of substitution in an Al
system, then it might perhaps be possible to learn the system a variety of
relations by examples.

7. CONCLUSIONS

My aim in this paper was to develop models for relations that would give
a better understanding of the essence of relations. To what extent did we
accomplish this goal? Let me recapitulate the main results. We developed
mathematical models for the views on relations that Fine described in his
paper “Neutral Relations”. We proved that the simple substitution frames
correspond in a natural way with the simple positional frames, and that if
the frames have the same finite degree, then the correspondence is one-
to-one, modulo positional variants. Further, I argued that the simple
substitution models adequately model a large class of relations, which we
called the simple relations.

The results can be interpreted in two directions. They provide support for
the antipositionalist view. They show—with the proviso that adequate
substitution models and adequate positional models for a relation
correspond—that for simple relations of finite degree the primitive notion
of substitution has the same expressive power as the use of positions,
modulo positional variants. On the other hand, the positionalist can claim
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for the same class of relations that the results show that his use of positions
is innocent.

One of the objections Fine raised against the positionalist view was that it
could not handle strictly symmetric relations. But, as I argued in Section 2.4,
this is only an argument against a positionalist who would claim that objects
occupy positions in relational states. If a positionalist only claims a mediating
role for positions, then this argument of Fine does not apply.

Do we have arguments to prefer one view over the other? A strong
argument for the antipositionalist view is that it is based on the very
general notion of substitution, a primitive kind of operation. I don't think
that for a positional approach a similar claim can be made. The
positionalist could point out that there are positional models that do not
correspond to substitution models, but the converse is also true.
Moreover, for positional models that do not correspond to substitution
models it seems highly unlikely that they could adequately model “real”
relations. These models probably have no metaphysical significance at all
for relations. In defense of a positional approach, it may be claimed that
positional representations are very natural and practical. But that does not
mean that they are very basic. In fact it is not an argument for a
positionalist view, but only for the use of a certain representation. I
conclude that the results of this paper give extra support to the
antipositionalist view, but that they also give a justification for the use
of positional representations for relations.

The models and theory developed in this paper can have more use than
their contribution in reaching the conclusion I drew in the previous
paragraph. The models can be useful tools for analyzing relations, and
also for empirical research on how we “learn” relations. With respect to
learnability, I showed in Section 6.3 that the positional structure of simple
relations of finite degree can in principle be learned by a finite number of
substitutions. Also further theoretical study of substitution models might
be helpful to deepen our understanding of the structure of relations. We
already mentioned a promising approach to defining objects of states in
substitution models in terms of ultrafilters.

I want to conclude with a remark about the research approach I have
taken in this paper. I started with questions about the structure of “real”
relations. To find answers, I developed mathematical models that highlighted
certain aspects of relations. By playing with the models and studying
properties of them, ideas for new models emerged and connections between
them became clear. Subsequently, these insights could be translated back to
characteristic properties of “real” relations. I think that this type of approach
might be fruitful also for other areas of metaphysics. Unfortunately, in
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metaphysics there is still hardly any consensus about almost anything. I
would say that ontological claims about our world have value only if they
are accompanied by very strong arguments.

Developing and analyzing mathematical models or axiomatic systems
might provide the right level of certainty in this respect. Doing physics
without mathematics is hardly thinkable, but strangely enough, many
seem to think that metaphysics can largely do without it. A reason to
refrain from using rigorous mathematical methods for metaphysics might
be that such methods are considered too difficult to handle for this
discipline. This might be true in some cases, but if we want to take
metaphysics seriously, I see no other way.
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NOTES

! We say that f =y g if f1X = gl X, i.e. f restricted to X is equal to g restricted to X.
Zand = (A—A4") U (4'—A4), the symmetric difference of 4 and 4'.

For a better appreciation of the definition of substitution frames it might be useful to
look at [3, pp. 23-25], where more frames are presented that reflect ideas of the
antipositionalist view.

This approach to define the objects of a state corresponds to a remark Fine made in [2,
p- 26, note 15].
> As suggested by Albert Visser, it might be possible to give a general definition of the
objects of s as the ultrafilters extending the collection of object-domains of 5. The details
of this approach are under development.
6f[X] = {f(x) | x € X}, the image of X under /.

4 fla— b] denotes the function defined by f[a— b](x) = b if x = a; f(x) otherwise.

® We use T'abe as an abbreviation for I ((p ]a IZ f 3 ) ).
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