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ABSTRACT. Although it was traditionally thought that self-reference is a

crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this

was not so by displaying an infinite series of sentences none of which is self-

referential but which, taken together, are paradoxical. Yablo’s paradox consists

of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each

s(i) says: For each k 9 i, s(k) is false (or equivalently: For no k 9 i is s(k) true).

We generalize Yablo’s results along two dimensions. First, we study the

behavior of generalized Yablo-series in which each sentence s(i) has the form:

For Q k 9 i, s(k) is true, where Q is a generalized quantifier (e.g., no, every,

infinitely many, etc). We show that under broad conditions all the sentences in

the series must have the same truth value, and we derive a characterization of

those values of Q for which the series is paradoxical. Second, we show that in

the Strong Kleene trivalent logic Yablo_s results are a special case of a more

general fact: under certain conditions, any semantic phenomenon that involves

self-reference can be emulated without self-reference. Various translation

procedures that eliminate self-reference from a non-quantificational language

are defined and characterized. An Appendix sketches an extension to

quantificational languages, as well as a new argument that Yablo’s paradox

and the translations we offer do not involve self-reference.
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It was traditionally thought that self-reference is a crucial ingredient of

semantic paradoxes. However Yablo (1993, 2004) showed that this was

not so by displaying an infinite series of sentences none of which is self-

referential but which, taken together, are paradoxical. Yablo_s paradox

consists of a countable series of linearly ordered sentences s(0), s(1),

s(2),... , where each s(i) says: For each k 9 i, s(k) is false (or equi-

valently: For no k 9 i is s(k) true). The present paper has two goals. First,

we study the behavior of generalized Yablo-series in which each

sentence s(i) has the form: For Q k 9 i, s(k) is true, where Q is a

generalized quantifier (for instance no, every, infinitely many, all but

finitely many, etc). We show that under broad conditions all the

sentences in the series must have the same truth value, and we derive

Journal of Philosophical Logic (2007) 36: 251Y307

DOI: 10.1007/s10992-006-9035-x

# Springer 2007



from this FUniformity Property_ a characterization of those values of Q

for which the series is paradoxical. Second, we show that in the Strong

Kleene trivalent logic Yablo_s result is a special case of a much more

general fact: under certain conditions, any semantic phenomenon that

involves self-reference can be emulated without self-reference (this can

be seen as a generalization of Cook 2004). Specifically, we provide a

translation procedure that associates to each sentence s of a non-

quantificational language an infinite series of quantificational sentences

h0(s), h1(s), ..., where each hi(s) has the form: For Q k 9 i, [s]k (with [s]k

a certain modification of s). The procedure at work in Yablo_s paradox

can thus be extended to yield a general elimination of self-reference.

Importantly, however, the elimination procedure only works in full

generality for certain values of Q Y in essence, the quantifiers infinitely

many and all but finitely many.
The article is organized as follows. In Section 1, we review various

versions of Yablo_s paradox and prove a Fduality lemma_ by which new

versions of the paradox can be obtained out of old ones. In Section 2, we

study the behavior of generalized Yablo-Series, and we provide a

characterization of those generalized quantifiers that make the series

paradoxical. In Section 3, we give a translation procedure that eliminates

self-reference from a simple non-quantificational language. Various

refinements are studied in Section 4, which includes a characterization

of those generalized quantifiers that can be used in the translation.

Section 5 outlines some perspectives for future research. Finally,

Appendix I sketches an extension of the elimination procedure to

quantificational languages, and Appendix II gives a new argument that

Yablo_s sentences and our translations do not involve any self-reference.

1. SIMPLE AND INFINITE LIARS

1.1. Semantic Effects of Self-Reference

Natural language includes various means to express self-referential

statements. These may be entirely innocuous, as is the case of (1) and

(2), which are uncontroversially true and false respectively:

(1) This very sentence contains six words.

(2) This very sentence contains ten words.

In other cases, however, self-reference leads to interesting logical

monstrosities such as the Liar and the Truth-Teller, illustrated in (3)

and (4) respectively:

(3) This very sentence is false.

(4) This very sentence is true.
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The Liar is paradoxical because it cannot coherently be assigned the

value true or the value false. The Truth-Teller is pathological because it

can be assigned either the value true or the value false, but in a way that

appears to be utterly arbitrary. As shown by Kripke (1975), some

statements may or may not be Liar-like or Truth-Teller-like depending

on some empirical facts. Thus (5) as uttered by Smith is paradoxical if it

is the only statement made by Smith on a particular day. But it is simply

false if Smith utters on that same day another sentence which is true, for

instance The earth is round:

(5) Every sentence I will have uttered today will turn out to be false.

Tarski (e.g., Tarski 1944) observed that a bivalent framework is

incapable of providing an adequate theory of truth for a language that

includes (1) means of self-reference, (2) a negation and (3) its own truth

predicate. He concluded that the (bivalent) languages he studied in logic

could not contain their own truth predicates. As an account of natural

language semantics, however, this falls short. Human languages do

generally contain a truth predicate, and speakers have relatively clear

intuitions about its meaning. For this reason, Kripke (1975) suggested

that bivalence should be sacrificed, and he showed how an adequate

trivalent semantics can be given for a language that contains its own

truth predicate and means of self-reference. This move away from

bivalence would seem to be linguistically motivated, since speakers

often want to classify the Liar as being neither true nor false. We will

assume that this is the correct move, and we will say that a sentence is

Findeterminate_ or Fhas the value #_ if it is neither true nor false.
Once a trivalent framework is adopted, Tarski_s FConvention T_ must be

reformulated to require that the truth predicate Tr be (1) true of all the true

sentences, (2) false of all the false sentences, and (3) neither true nor false

of the sentences that are indeterminate. If we design the syntax in such a

way that Tr can only take as arguments terms that denote sentences, the

revised version of Convention T for a language L can be expressed as

follows (the domain of objects is D, and we assume that L � D, which

means that the sentences of the language belong to the domain of objects):

(6) I 0+(Tr) = {d Z D: d Z L $ I 0(d) = 1}

I 0j(Tr) = {d Z D : d Z L $ I 0(d) = 0}

An interpretation that satisfies these conditions is henceforth called a

Ffixed point_, following Kripke_s own terminology.1 Kripke, 1975 gives

a procedure (which will be generalized below) to show that some fixed

points can indeed be constructed.
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1.2. Yablo_s Paradox

Once this framework is in place, one would like to understand what are the

essential ingredients needed to obtain the interesting semantic phenomena

we started out with (logical and empirical Liars and Truth-Tellers).

Granted, a truth predicate and some devices of self-reference are sufficient

to generate these phenomena. But are they necessary? Some researchers

have been concerned with paradoxes that can be generated without a

truth predicate (see for instance Egré, 2005 for a recent presentation). In

this article, we will only be concerned with paradoxes of truth. With this

restriction, two results can be established.

a) Yablo (1993, 2004) has shown that logical paradoxes can be obtained

without self-reference if quantification over infinite series of

sentences is allowed. His conclusion is strengthened by Cook, 2004,

who studies a very simple system in which every Liar (or Truth-

Teller) involving self-reference can be Funwinded_ to yield an infinite

Liar (or Truth-Teller) without self-reference.2

b) On the negative side, it can be shown that a Yabloesque construction

does not yield paradoxes when effected in a first-order language with

a truth predicate and sentence names but no quantifiers.3

To see an example of Yablo_s construction, let us start from a

classical interpretation I for a language L that includes some simple

arithmetic vocabulary (i.e., variables ranging over natural numbers, a

name i for each natural number i, and the relation 9). We will assume

throughout that the arithmetic vocabulary is based on the standard

interpretation of the integers. We add to L a list of sentence names,

which in the present case will be functional, and which are interpreted by

a denotation relation N* (thus s(k) will be a term designating various

sentences for various values of k). L together with the sentence-denoting

terms and the truth predicate Tr yields a language L*. We will often

write {G s (k), Fk 9 : k Q 0} if we study a set of formulas Fk (k Q 0), and

if N* specifies that for each natural number k, s(k) denotes Fk. To make

the discussion tractable, we will often import the sentence names into the

meta-language by underlining them, thus using s(k) as our name for Fk.
With these assumptions, it can be shown that the following system,

which we call the O-Liar, is paradoxical: no fixed point may assign to

every sentence a Fclassical value_ (i.e., 0 or 1).

(7) L8 :¼ G s ið Þ; 8k k > i ) :Tr s kð Þð Þð Þ >: i Q 0f g
a) Suppose that for each i Q 0, s(i) is false. This leads to a contradiction:

s(0) is true iff for each k 9 0, s(k) is false, which by hypothesis is

indeed the case. So s(0) should be true, contrary to hypothesis.
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b) Suppose that for some i Q 0, s(i) is true. Then for each k 9 i, s(k) is

false. In particular, for each k 9 i + 1, s(k) is false. Hence s(i + 1) is

true, which contradicts the fact that for each k 9 i, s(k) is false.

As noted by Ketland, 2005 (and Hardy, 1995), L8 only yields a

paradox if it is interpreted in a model in which the arithmetic vocabulary is

given its standard interpretation. For it is in fact possible to find a non-

standard model for L8. Let a be a non-standard number, which is thus

greater than all the standard ones, and let s be the interpretation of s.

Suppose that s(a) is a sentence which is true, but which does not belong

to L8. Then all the members of L8 can coherently be assigned the value

0: each s(i) is false because s(a), which has a higher index (since a is

non-standard), is true, contrary to what s(i) claims. And there are no

further requirements on s(a), since it does not belong to L8 (see Ketland,

2005 for further considerations on this issue). We will thus systematically

restrict attention to models in which the arithmetic vocabulary is given its

standard interpretation Y and in which Yablo_s series is thus paradoxical.4

It should be noted that quite a bit of ink has been spilled to determine

whether Yablo_s sentences are not subtly self-referential in some indirect

fashion (see for instance Priest 1997, Sorensen 1998, Leitgeb 2002). We

give in Appendix II an argument to the effect that they aren_t, but in the rest

of the paper we simply assume that Yablo_s claim is correct. The skeptic can

take our claims to be conditional, and to be prefixed with: If Yablo_s
sentences do not involve self-reference, then ______.

While Yablo_s paradox is normally stated in a setting in which the

relevant sentences are linearly ordered (as is the case with the

denotation relation N* we just introduced), much less is necessary to

obtain the paradox (Cook, 2004, Ketland, 2005). In fact, all that is

needed is that the sentences be ordered according to a relation R which

(1) is non-empty, (2) is transitive, and (3) has no end points. Instead of

quantifying over natural numbers, we consider sentences that quantify

directly over other sentences, and we define in this way a generalized

version of Yablo_s paradox (s is a variable ranging over sentences, and

we say in the meta-language that x sees y just in case G x,y9 is in the

extension of R):

(8) LR : = {G si, Os (siRs Á K Tr(s)) 9: i Q 0}, where R is interpreted a

set of pairs of sentences of LR.

a) Suppose for each i Q 0, si is false. Then for all i Q 0 the content of si

should be true (for by assumption si sees some sentences, which must

be false). Contradiction.
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b) Suppose that for some i Q 0, si is true. Since R has no endpoints, si

sees some sentence si*, which must be false. si* itself sees some

sentence or sentences, which by the transitivity of R must be seen by

si as well, and hence be false. But this should suffice to make si* true,

contrary to what we just showed. Contradiction.

1.3. Other Versions of Yablo_s Paradox

Even when one restricts attention to (countable) sets of linearly ordered

sentences, Yablo_s paradox comes in several varieties. We have already

shown that L8, repeated in (9)a, is paradoxical. Yablo, 2004 shows that

L9 and L98 as defined below are equally paradoxical, and we will see

shortly that L89 is as well.

(9) a. L8: = {G s(i), Ok (k 9 i Á KTr(s (k)))9: i Q 0}

b. L9: = {G s(i), Mk (k 9 i $ KTr(s (k)))9: i Q 0}

c. L98: = {Gs(i), Mk (k 9 i $ Ok 0(k 0 9 k Á KTr (s (k 0))))9: i Q 0}

d. L89: = {G s(i), Ok (k 9 i Á M k 0(k 0 9 k $ KTr (s (k 0))))9: i Q 0}

Before discussing too many special cases, it is worth noting that new

paradoxical series can be obtained out of old ones by a kind of duality

principle. We will take a series to be paradoxical (given a classical

interpretation I and a denotation function N for the sentence terms) just

in case no fixed point can be found which assigns to all of its members

classical truth values. With this definition, the Duality Lemma stated

below yields a recipe to obtain new paradoxes out of old ones.

DEFINITION If F is a formula, let F* be the formula obtained by

replacing every occurrence of the form Tr (.) in F with K Tr (.).
(Note that F** is equivalent to F, and that [K F]* is identical to K F*)

DUALITY LEMMA If {G sk, Fk9 : k Q 0} is paradoxical, so is {G sk, K Fk*

9 : k Q 0}.
(Note that {G sk, Fk9 : k Q 0} and {Gsk, K Fk* 9 : k Q 0} fully describe the

intended denotation functions for sentence terms; in each case sk could

be any sentence-denoting term, be it a constant or a functional element).

Proof. Suppose that {G sk, Fk 9 : k Q 0} is paradoxical but that {G sk, K
Fk*9 : k Q 0} is not. This means that there is some fixed point I* which

yields a bivalent valuation for {Gsk, K Fk*9 : k Q 0}. We claim that this

suffices to find a fixed point I 0 which assigns classical values to the
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sentences in {G sk, Fk9 : k Q 0}, contra hypothesis. We take I 0 to be

identical to I*, except that:

(1) I 0(s) = F iff I*(s) = K F*

(2) I 0+(Tr) = {F Z L 0 : K F* Z I*j(Tr)} and I 0j(Tr) = {F Z L 0 : K F*

Z I*+ (Tr)}.
We start by observing that:

(3) for each formula F, I 0(F) = I*(F*)

This is because it follows from (1) and (2) that if s is sentence-

denoting and if I 0(s) = F,

I 0ðTrðsÞÞ ¼ 1 iff F 2 I 0þðTrÞ ½by trivalent semantics�
iff :F* 2 I*�ðTrÞ ½by ð2Þ�
iff I*ðsÞ 2 I*�ðTrÞ ½by ð1Þ�
iff I*ðTrðsÞÞ ¼ 0 ½by trivalent semantics�
iff I*ð:TrðsÞÞ ¼ 1

(The case I 0(Tr(s)) = 0 is symmetric). Since F* is identical to F except

that every occurrence of Tr(.) is replaced by KTr(.), we obtain the desired

result.
Let us now assume that I* is a fixed point, and let us show that I 0 as

defined is a fixed point as well.

F 2 I 0þðTrÞ iff :F* 2 I*�ðTrÞ ½by ð2Þ�
iff I*ð:F*Þ ¼ 0 ½since I* is a fixed point�
iff I 0ð:FÞ ¼ 0 ½by ð3Þ�
iff I 0ðFÞ ¼ 1

The case F Z I 0j (Tr) is symmetric: F Z I 0j(Tr) iff I 0(F) = 0. Thus

if I 0 is a fixed point, so is I*, and furthermore for any formula F, I 0(F) =

I*(F*). It immediately follows that if I* is a fixed point that assigns

classical values to all the sentences in {G sk, K Fk* 9 : k Q 0}, this is also

the case of I 0 with respect to the sentences of {G sk, Fk 9 : k Q 0}, which

shows that the latter system is not paradoxical.
From the Duality Lemma and our earlier observations about the O-

Liar, it follows that its dual, namely {G si, K Ok (k 9 i Á KK Tr(sk)) 9 : i Q

0}, is also paradoxical. But the latter is immediately equivalent to the M-

Liar {G si, Mk (k 9 i $ K Tr (sk))9 : i Q 0}.
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Let us now turn to the MO-Liar (discussed in Yablo 2004). We may

reason as follows:

(10) L98 : = {G s (i), M k (k 9 i $ Ok 0 (k 0 9 k Á KTr (s (k 0))))9 : i Q 0}

a) Suppose that for some i Q 0, s(i) is true. Let k 9 i be such that

Ok 0 (k 0 9 k Á KTr(s(k 0))). In particular, s(k +1) must be false. How-

ever the condition Ok 0 (k 0 9 k Á KTr (s(k 0))) suffices to make s(k +1)

true. Contradiction.

b) Suppose now that for each i Q 0, s(i) is false. Then in particular what

s(0) says is true. Contradiction.

It follows from the Duality Lemma that the series {G s(i), K Mk (k 9 i $

Ok 0 (k 0 9 k Á K K Tr(s(k 0)))) 9 : i Q 0} is also paradoxical. Since the latter

is equivalent to {G s(i), Ok (k 9 i Á Mk 0(k 0 9 k $ K Tr(s(k 0))))9 : i Q 0}, we

derive the result that the OM-Liar is paradoxical as well, as was announced.

(We may also note for completeness that the same results would have held if

the sentences had been ordered according to a transitive relation without

endpoints rather than a linear ordering).
It will prove important to observe that there is an interesting

conceptual difference between the O- and M-Liars on the one hand and

the MO- and OM-Liars on the other. If L8 is evaluated in an interpretation

that is not a fixed point, its members need not all have the same truth

value. For instance, if I 0+(Tr) = {s(1)} and I 0j(Tr) = {s(i) : i Q 2}, it will

follow that I 0(s(0)) = 0 and for all i Q 1, I 0(s(i)) = 1. A similar argument

applies to L9. By contrast, all members of L98 and L89 have the same

value in any interpretation (not just in fixed points) because they all have

the same semantic content. Any sentence s(i) of L98 asserts, in effect,

that all but finitely many members of the series beyond rank i are true.

But the modifier beyond rank i turns out to be semantically idle: the

claim is utterly insensitive to what happens in any given initial segment

of the series, and for this reason all the sentences make the very same

claim, namely that all but finitely many members of the series are true

(this argument will be fleshed out below). Similarly, any sentence s(i) of
L89 asserts that infinitely many members of the series beyond rank i are

true. But here too the modifier beyond rank i is eliminable, and thus all

the members of the series make the same claim. This conceptual

difference will have important repercussions when we provide a

translation procedure to eliminate self-reference systematically (it will

make use of a generalization of the constructions at work in the MO- and

OM-Liars, and we will show in Section 4.2 that a similar generalization

of the O- and M-Liars fails in the general case).
It can be shown that the Truth-Teller has a variety of self-reference-

free versions, which parallel the corresponding constructions for the Liar.
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Thus the systems defined in (11) have the property that (1) in any fixed

point I 0, all the sentences in the series have the same truth value according

to I 0; and (2) this value can be arbitrarily chosen to be 0, 1, or #:5

(11) a. T8 : = {Gs(i), Ok (k 9 i Á Tr(s(k)))9 : i Q 0}

b. T9 : = {Gs(i), Mk (k 9 i $ Tr(s(k))) 9 : i Q 0}

c. T98 : = {Gs(i), Mk (k 9 i $ O k 0 (k 0 9 k Á Tr(s(k 0)))) 9 : i Q 0}

d. T89 : = {Gs(i), Ok (k 9 i Á M k 0 (k 0 9 k $ Tr(s (k 0)))) 9 : i Q 0}

It should be pointed out that even with respect to the various versions

of Yablo_s paradox, we haven_t quite finished the semantic job. At least

two questions must be addressed. (1) First, we have shown that in each

case at least one member of the series must have a non-classical value.

But do all the members of the series have the value #? In the case of L98
and L89 this result of uniformity follows from our earlier observation that

all the members of the series make the very same claim. But what about

the other cases? We will soon see that a more general result, the

Uniformity Property, guarantees that in series of this sort (whether

paradoxical or not), all the sentences have the same value in any given

fixed point. (2) Second, we would like to have a characterization of those

series of the Yablo type which are indeed paradoxical. The Uniformity

Property will make the characterization straightforward.

2. GENERALIZED YABLO-SERIES

2.1. Yablo-Series in a General Setting

We turn to a generalization of the results discussed up to this point. The

theory of generalized quantifiers turns out to offer a versatile tool to

study the more general form of the problem.

2.1.1. Yablo Series with Generalized Quantifiers
2.1.1.1. The Series. We will provide a simple characterization of the

behavior of series of sentences of the form {G s(i), [Qk : k 9 i] Tr(s(k))) 9 :

i Q 0}, where Q is a binary generalized quantifier (e.g., some, no, all, an

odd number of, infinitely many, etc.) which satisfies Permutation

Invariance, Extension and Conservativity, three properties that are

believed to hold of natural language determiners (Keenan, 1996; cf.

the definition below). To see that this is indeed a generalization of the

cases we have considered so far, we may observe that for special values
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of Q we obtain different versions of the Infinite Liar and of the Infinite

Truth-Teller:

(12) SQ = {G s(i), [Qk : k 9 i] Tr(sk))9 : i Q 0}.
a. For Q = All, SQ is equivalent to T8.
b. For Q = Some, SQ is equivalent to T9.
c. For Q = All but a finite number of, SQ is equivalent to T98.
d. For Q = Infinitely many, SQ is equivalent to T89.
a 0. For Q = No, SQ is equivalent to L8.
b 0. For Q = Not all, SQ is equivalent to L9.
c 0. For Q = At most a finite number of, SQ is equivalent to L98.
d 0. For Q = Finitely many, SQ is equivalent to L89.

Permutation Invariance, Extension and Conservativity are defined as

follows (Keenan, 1996):

(13) Let R be a (parametrized) function which, for every universe D,

has domain P(D) � P(D) and co-domain {0, 1}. R satisfies:

a. Permutation Invariance just in case for each universe D, for any

permutation : of D, for all X, Y � D, RD(X, Y) = RD(: (X), : (Y))

b. Extension just in case for any X, Y, D, D 0, if X, Y � D and X, Y � D 0,
then RD(X, Y) = RD0 X ;Yð Þ

c. Conservativity iff for all X, Y, D : if X, Y � D, RD(X, Y) = RD(X,

X 7 Y)

What is important for our purposes is that, taken together, these properties

ensure that the truth value of, say, Most students passed, only depends on

two numbers: the number a of individuals that are students and did not

pass, and the number b of individuals that are students and passed (for the

determiner most, the condition is that b 9 a). A generalized quantifier Q

that satisfies the conditions in (13) is thus defined by its Ftree of numbers_
Q, which is a function from pairs of numbers (including V) to {0, 1} such

that: for any formulas F, F 0 with extensions F and F 0, [Qx F]F 0 is true (in a

bivalent system) iff Q(G|F j F 0|, |F 7 F 0|9) = 1 (van Benthem 1986). To

see some examples, we may note that No (Gn, n 09) = 1 iff n 0 = 0; and

Infinitely many (Gn, n 09) = 1 iff n 0 = V.

2.1.1.2. Generalization of the Tree of Numbers. Since we are

interested in systems of sentences that might be paradoxical, we must

develop the analysis in a logic that is at least trivalent. The case we

consider is quite special, however, because the first argument of Q is a

classical formula, which (given any assignment function) has either the

value true or the value false. Let us call an n-valued logic reasonable if it
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has the following property, which can be seen as a generalization of the

Ftree of numbers_ found in the bivalent case:

(14) Reasonableness

An n-valent logic with truth values in E is reasonable just in case: if

for any assignment function F has a classical value, then for any

generalized quantifier Q, the value of a formula [Qk: F] F 0 under an

assignment function s and an interpretation I only depends on

d 2 D : Is k!d½ �
���� Fð Þ ¼ 1g \ d 2 D : Is k!d½ � F 0ð Þ ¼ e

� �jÞ
e2E
:

EXAMPLES

(1) In the bivalent case, Reasonableness is just the requirement that the

quantifiers should be definable in terms of the tree of numbers. In

other words, Is ([Qk : F] F 0) only depends on d 2 D : Is k!d½ � Fð Þ ¼ 1
� �

\
��

d 2 D : Is k!d½ � F 0ð Þ ¼ 1
� �

; d 2 D : Is k!d½ � Fð Þ ¼ 1
� �

\ d 2 D :f
���� Is k!d½ � F0ð Þ ¼ 0gj:

(2) In the trivalent case, Reasonableness requires that Is ([Q k : F] F 0) only

depend on the numbers: d 2 D : Is k!d½ � Fð Þ ¼ 1
� �

\ d 2 D : Is k!d½ � F 0ð Þ ¼ 1
� ��� ��;

d 2D : I s k!d½ � Fð Þ¼1
� �

\ d 2 D : I s k!d½ � F 0ð Þ¼ 0
� ��� ��; d 2 D : Is k!d½ � Fð Þ ¼

���
1g \ d 2 D : Is k!d½ � F 0ð Þ ¼ #

� � j.

In the formula [Qk : F] F 0, F is called the restrictor of Q and F 0 is

called its nuclear scope. Throughout our discussion, we will only

consider formulas in which every generalized quantifier takes a

classical formula as its restrictor, so that Reasonableness will have

some Fbite_. We will also restrict attention to countable domains. With

these restrictions, the semantics of a formula [Qk : F] F 0 in an n-valent

logic which is reasonable and has truth values in E is determined by a

Fgeneralized Tree of Numbers_ which can be seen as a function from
d 2 D : Is k!d½ � Fð Þ ¼ 1
� �

\
��� d 2 D : Is k!d½ � F 0ð Þ ¼ e

�� ��Þe2E to E. We can assim-

ilate d 2 D : Is k!d½ � Fð Þ ¼ 1
� �

\ d 2 D : Is k!d½ � F 0ð Þ ¼ e
� ��� ��� �

e2E
to a function

from E to N?{V}: a number is associated to each possible truth value

in E. We will thus adopt the following convention:

CONVENTION 1 If Q is a generalized quantifier, we call Qn the function

from E Y N?{V} to E which defines its n-valent semantics on

countable domains.

For perspicuity, we will sometimes make use a further convention:

CONVENTION 2 If f is a function in E Y N?{V}, we will sometimes

write Qn
e : f eð Þð Þe2E instead of Qn( f ). We also write Qn(e: a, je : b) for

Qn( f ) where f (e) = a and f (e 0) = b for all e 0 m e.
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2.1.2. The Uniformity Property
It might be helpful to start by considering a special case of the

Uniformity Property. We will thus restrict attention to the series SQ :=

{Gs(i), [Qk : k 9 i] Tr(s(k))) 9 : i Q 0}, and we will prove the following

result:

(15) Uniformity Property (Special Case)
For any fixed point I for a language that includes SQ, for each m,

n Q 0, I(s(m)) = I(s(n)).

Given a valuation for SQ, the truth value of each sentence s(i) in SQ is

determined by three numbers ji, +i and #i, which are the numbers of

integers k 9 i that make the nuclear scope Tr(s(k)) false, true and

indeterminate, respectively. We further define /i/ = Gji, +i, #i9; the

value of s(i) is thus equal to Q3(/i/) (i.e., to Q3(Gji, +i, #i9)). With these

conventions, we can give an easy proof of the Property (this argument

was greatly simplified by Denis Bonnay):6

Proof. Consider any sentence s(i) of SQ. The restrictor of s(i) holds true

of an infinite number of natural numbers (because there are infinitely

many numbers that are greater than i). Therefore at least one of ji, +i, or

#i is infinite. Suppose for instance that ji = V. Consider any i 0 Q 0 for

which I(s(i0 + 1)) = 0. Since I(s(i0 + 1)) = 0, Q3 G�i0þ1;þi0þ1;#i0þ19ð Þ = 0.

Since �i0þ1= V, we have (with slight abuses of notation):
/i 0/ = G1þ 1;þi0þ1;#i0þ19 (because s(i 0) is followed by the same

sentences as s(i0 + 1), plus s(i0) itself, which is false). Thus /i 0/ =
G1;þi0þ1;#i0þ19 = G�i0þ1;þi0þ1;#i0þ19 = /i 0 + 1/, and Q3 (/i0/) = Q3 (/i0 +
1/) = 0. By iterating this reasoning, we see that for all i 00 e i 0, I(s (i00)) = 0.

Since there are infinitely many false sentences in the series, we can show

that all sentences in the series are false. By similar reasoning, we can

show that if +i = V all sentences are true, and that if #i = V all sentences are

indeterminate. Ì
It may be observed that the above argument did not depend on the

precise semantics of the quantifier Q (except for the fact that it is defined

in terms of the generalized Tree of Numbers), nor even on the precise

number of truth values in the logic. This suggests that a more general

result can be proven, which is indeed the case:

(16) Uniformity Property (General Case)

Let E be a finite set of truth values and let f a propositional formula

that denotes a Boolean function f from E1 to E, i.e., f : E1 Y E. Let
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Q be a binary generalized quantifier of a reasonable logic with values in

E. Let S be defined by: S ¼ Gs ið Þ; Qk : k9 i½ � f s k0ð Þð Þk0 � k

� �
>: i� 0

� �

(with a slight abuse of notation, we take f s k0ð Þð Þk0Q k

� �
to be a

Boolean formula Y possibly an infinitely long one Y which contains

terms that are among s(k 0), s(k 0 + 1), s(k 0 + 2), ... ; note that
f s k0ð Þð Þk0Q k

� �
does not depend on i). Then if I is a fixed point, for all

i, i 0 Q 0, I (s(i)) = I(s (i0)).

Proof. For each i Q 0 and for each e Z E, let us call:

a) fi 2 I(f [s(k 0))k 0Qi])

b) ei 2 |{k > i: fk = e}|

To illustrate, if E = {0, 1}, we have: 0i = |{k 9 i : fk = 0}| (this is the

number of objects that satisfy the restrictor but make false the nuclear

scope of the statement s(i)). 1i = |{k>i: fk = 1}| (this is the number of

objects that satisfy the restrictor and the nuclear scope of the statement

s(i))

(1) Because the logic is reasonable, I(s(i)) only depends on eið Þe2E

(2) Since E is a finite set of truth values, there is a non-negative integer

i* such that for each i 9 i*, if fi = e, then there are infinitely many

natural numbers i 0 such that fi0 ¼ e.
(Note that this condition would not necessarily hold if E were not finite.)
Specifically, we define Ef := {e Z E : only finitely many k_s are such

that fk = e}. Define i* as: i* := Max {k Q 0: M e Z Ef fk = e}. Ef is finite

and only finitely many sentences have values in Ef, hence i* is well-

defined.

(3) For all i > i*, if e Z Ef, ei = 0; if e u Ef, ei = V

(4) By (1) and (3), for all i, i 0 9 i*, I(s(i)) = I(s(i0)). So E j Ef is a

singleton. Let us call e* its only member. The situation can be pictured

as follows, where the right-hand column represents the value of fi for

various values of i.

Value of i Value of fi

. . . . . .

i*þ 3 e*

i*þ 2 e*

i*þ 1 e*

i*

. . . . . .

0
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Let us define s* :¼ Qn n eð Þð Þe2E

� �
where for each e m e* n (e) = 0 and

n (e*) = V. We can now complete the above picture:

Value of i Value of fi Value of IðsðiÞÞ
. . . . . . . . .

i*þ 3 e* s*

i*þ 2 e� s*

i*þ 1 e* s*

i*

. . . . . . . . .

0

(5) Let us now compute the truth value of s(i*).
For all e Z E, ei* =|{k > i* : fk = e}|. Given (4), if e = e*, ei* = V; and if

e m e*, ei* = 0. Thus e
i*

� �
e 2 E

¼ e
i*þ1

	 


e2E
, and by (1) I(s(i*)) = I(s(i* + 1)) =

s*.
f
i* ¼ Ið f ½ðsðk0ÞÞ

k0�i*�Þ ¼ Iðf ½ðsðk0ÞÞ
k0� i*þ1

�Þ ¼ fi�þ1 ¼ e*

By iterating the reasoning, we see that for each i Q 0, I(s(i)) = s*. This

shows that in any fixed point I, all the sentences in the series have the

same truth value ei. Furthermore, the argument shows that ei must satisfy

the following equation:

(17) Qn f eið Þ1½ �:1;�f eið Þ1½ �:0
	 


¼ ei

Conversely, any truth value ei which satisfies this equation yields a

coherent valuation for the entire series (it follows from a result to be

discussed in Section 2.2 that this valuation can then be extended to a

fixed point for the entire language).7

2.1.3. Behavior of Infinite Series in a Trivalent System

Let us now consider a trivalent system which is an extension of a clas-

sical logic with generalized quantifiers, in the sense that for each quan-

tifier Q, for any numbers (including V) a, b,

(18) Q3(0: a, 1: b, #: 0) = Q2 (0: a, 1: b)

With these assumptions, we study the case of Yablo-series of the form:

SQ = {G s(i), [Qk : k 9 i] Tr(s(k)) 9 : i Q 0}.
Applied to the present case, the equation in (17) gives a necessary and

sufficient condition for e to be a possible value of (all) the sentences in SQ:

(19) Q3 (e: V, je: 0) = e
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If e is classical, Q3 (e :V,je : 0) = Q2 (e :V,je : 0) (by (18)). In other words:
Y The sentences in SQ can be coherently assigned the value 1 iff Q2 (0: 0,

1: V) = 1
Y The sentences in SQ can be coherently assigned the value 0 iff Q2 (0: V,

1: 0) = 0

The results we have obtained so far can be summarized as follows:

(20) Let Q be a binary generalized quantifiers satisfying Permutation

Invariance, Extension and Conservativity. Then:

a. A binary valuation can be found in which SQ uniformly has the

value true iff Q2 (0: 0, 1: V) = 1

b. A binary valuation can be found in which SQ uniformly has the

value false, iff Q2 (0: V, 1: 0) = 0

c. SQ is paradoxical iff no binary valuation can be found in which SQ

uniformly has the value true and no binary valuation can be found

in which SQ has the value false, iff Q2 (0: 0, 1: V) = 0 and Q2 (0:

V, 1: 0) = 1.

This result allows us to determine without further reasoning whether a

Yablo-series is paradoxical or not.

EXAMPLES

(i) No 2 (0: 0, 1: V) = 0 and No 2 (0: V, 1: 0) = 1 and therefore SNo, i.e.,

the Universal Liar, is indeed paradoxical.

(ii) Some 2 (0: 0, 1: V) = 1 and Some 2 (0: V, 1: 0) = 0 and therefore SM is

an infinite Truth-Teller.

(iii) All 2 (0: 0, 1: V) = 1 and All 2 (0: V, 1: 0) = 0 and therefore SO is an

infinite Truth-Teller.

(iv) All but a finite number of 2 (0: 0, 1: V) = 1 and All but a finite

number of 2 (0: V, 1: 0) = 0 and therefore S9 8 is an infinite Truth-

Teller.

2.1.4. Failure of the Uniformity Property When the Sentences

Are Not Linearly Ordered
We already observed (following Cook 2004 and Ketland 2005) that a

version of Yablo_s paradox can be produced with much less than a linear

ordering of sentences: a transitive relation without endpoints is suf-

ficient. Interestingly, the Uniformity Property fails in some cases of this

sort. Let us consider the following series, which is a modifiedO-Truth-

Teller (y is a variable ranging over sentences, and for each i Q 0 si is a

sentence-denoting constant):

(21) T
R�8 := {Gsi, Os (siRs Á Tr(s))9: i Q 0}
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It is possible to interpret R as a transitive relation R without

endpoints, and yet to find a valuation for T
R�8 which does not assign

the same value to all the sentences. Here is an example:

(22) For convenience we index sentences with natural numbers written

in binary notation, i.e., as strings of 0_s and 1_s. We stipulate that

siRsk iff k written in binary notation is i concatenated with 0 or 1.

We consider the valuation that assigns the value 1 to sentences

whose index starts with 11, and the value 0 to all other sentences. It

is a coherent valuation for the series {G si,j, Os(si,jRs Á Tr(s)) 9 : i,

j Q 0}.

In fact, the valuation also yields a counter-example to the Uniformity

Property when applied to the modified OM-Truth-Teller:

(23) {Gsi, Os(siRs Á (Ms 0(sRs 0 $ Tr(s 0)))9 : i Q 0}

By permuting the semantic values 0 and 1 in the valuation, we also

obtain a counter-example for the modified M- and MO-Truth-Tellers:

(24) a. {Gsi, Ms (siRs $ Tr(s))9 : i Q 0}

b. {Gsi, Ms (siRs $ Os 0(sRs 0 Á Tr(s 0))9: i Q 0}
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2.2. Extending Local Fixed Points to Global Fixed Points

We have been proceeding throughout as if we could interchangeably talk

about the existence of a valuation for a Yablo-series and the existence of

a fixed point for it. The first perspective is local: it only requires that the

truth predicate Tr be coherently interpreted when we restrict attention to

the sentences in the series. The second perspective is global, and requires

that we find a fixed point for the entire language. There is indeed an

equivalence between the two notions, but only because the series we have

considered are Fsemantically autonomous_, in the sense that all the

sentences whose semantic status could potentially affect their truth value

are themselves included in the series. Let us now prove this result.
It is clear that a global fixed point will yield a valuation for the series.

To show the converse, we will proceed in two steps.

Y First, we start from a trivalent valuation V for the Yablo-series S. We

then define a trivalent interpretation I 0 by: I 0+(Tr) = {s Z S : V(s 0) =

1}; I 0j(Tr) = {sZS: V(s 0) = 0}. This will yield a Flocal fixed point_
for the series itself, in the sense that when one restricts attention to

sentences in S, Tr is true of those sentences that are in fact true, and

Tr is false of those sentences that are false. This is defined formally

in (25):

(25) Local fixed point
Let I 0 be a trivalent interpretation. I 0 is a local fixed point for a set S

of sentences just in case: Os Z S [(I 0(s) = 1 6 s Z I 0+(Tr)) $ (I 0(s) =

0 6 s Z I 0j(Tr))]
Y Second, an Extension Lemma will show how this local fixed point can

be extended to a global fixed point for the entire language. The

argument is a modification of the proof that Kripke (1975) offered to

show that some fixed point always exists for certain evaluation

schemes. As in Kripke_s construction, the crucial assumption is that the

trivalent logic is monotonic: when we start from an interpretation I 0

based on an extension E and anti-extension A for the truth predicate,

if we Fadd_ sentences to E or to A we will only have to revise the

value of sentences that heretofore had the value # (that is, the

classical values 0 and 1 won_t have to be revised when we resolve

some of the indeterminates as being true or false). This condition is

stated more precisely in (26).

(26) Monotonicity
An evaluation scheme is monotonic if for each language L and for

all interpretations I1 and I2 of L the following holds:
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if for each predicate P of L , I 1
+(P) � I 2

+(P) and I1
j(P) � I 2

j(P)

then {sZL: I1(s) = 1}� {s Z L : I2(s) = 1} and {s Z L : I1(s) = 0}� {s

Z L : I2(s) = 0}
The key observation is that the series we study only Ftalk about_ other

sentences in the series. These series are thus semantically autonomous, in

the following sense:

(27) Semantic Autonomy
Let I be a classical interpretation. S is semantically autonomous in I just

in case: for all trivalent interpretations I 0, I 00 that extend I (by assigning an

extension and anti-extension to the truth predicate), if Os Z S [(s Z

I 0+(Tr) 6 s Z I 00+(Tr) $ (s Z I 0j(Tr) 6 s Z I 00j(Tr)], then Os Z S

I 0(s) = I 00(s).8

We could prove in greater detail that Yablo-Series are semantically

autonomous in any interpretation compatible with the denotation relation

that they specify, but for brevity we will accept that this is indeed so.9

We turn directly to the main Lemma:

(28) Extension Lemma
Consider a monotonic evaluation scheme. Let I 0 be a local fixed point for

a set S of sentences of L which is semantically autonomous in I 0. Then

there is a global fixed point for L which agrees with I 0 on S.

Proof. The proof extends Kripke_s technique to the case at hand. We

define a series of interpretations I 0i (for ordinal i) each of which is fully

determined by the pair GEi, Ai9 of the extension and anti-extension of the

truth predicate (note that the I 0i
0s need not be fixed points). If I 0i is

determined by GEi, Ai9, we further define:

f (GEi, Ai9) := G{d Z L : I 0i(d ) = 1}, {d Z L : I 0i(d ) = 0)}9

( f is essentially the Fjump_ operator of Kripke 1975. Note that we still

assume that the truth predicate Tr only takes sentence-denoting terms as

arguments; without this assumption we would have to give a slightly

more complicated definition for f ).
To define the interpretations I 0i, it suffices to define the pairs GEi, Ai9.

We do so by the following induction:

(1) GE0, A09 := GI 0+(Tr) 7 S, I 0j(Tr) 7 S 9
(2) If i is a successor ordinal k + 1, we set: GEi, Ai9 := f (GEk, Ak9)

(3) If i is a limit ordinal, we set: GEi, Ai9 := G?k G i Ek, ?k G i Ak9

We immediately note that:
(*) (a) GE0, A09 � GE1, A19 and (b) GE0, A09 = GE0 7 S, A0 7 S9 =

GE1 7 S, A1 7 S9
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Since I 0 is a local fixed point over S, for any member s of S, I 0(s) = 1

iff s Z I 0+(Tr) 7 S and I 0(s) = 0 iff s Z I 0j(Tr) 7 S, and therefore GE0,

A09 = GE1 7 S, A0 7 S9. This immediately proves (a) and (b).
We now prove by induction that the property :(i) holds of all

ordinals i:
:(i) : for all i 0, i 00 for which i 00 e i 0 e i, (a) GEiµ;Aiµ9 � GEi0 ;Ai09 and

(b) GEi 00 7 S, Ai 00 7 S9 = GE0, A09.

(1) :(0) is trivially true.

(2) Suppose that i is a successor ordinal k + 1. Then GEi, Ai9 = f(GEk,

Ak9). By the Induction Hypothesis, for each k 0 e k, GEk0 ;Ak0 9 �
GEk, Ak9. By the monotonicity of f, it follows that for each k 0 e k,

f GEk0 ;Ak0 9ð Þ � f(GEk, Ak9), i.e., that GEk0þ1;Ak0þ19�GEkþ1;Akþ19.

If k = 0, observation (a) in (*) states that GEk, Ak > � GEkþ1;Akþ19.

If k is a successor ordinal k 0 + 1, k 0 e k and thus GEk0þ1;Ak0þ19 �
GEk + 1, Ak + 19, hence GEk, Ak9 � GEk + 1, Ak + 19. If k is a limit

ordinal, GEk ;Ak9 ¼ [k0G kGEk0 ;Ak09. Clearly, for each k0 G k, GEk0 ;Ak09
� GEk, Ak9, and thus GEk0þ1;Ak0þ19 � GEk + 1, Ak + 19. But this

entails that GEk ;Ak9 ¼ [k0 G kGEk0 ;Ak09 � [k0 G k GEk0þ1;Ak0þ19 �
GEk + 1, Ak + 19. In all cases, then, GEk, Ak9 � GEk + 1, Ak + 19, which

together with the Induction Hypothesis yields part (a) of :(i).
To prove part (b), we observe that since S is semantically autonomous

the value of any member of S is fixed by the restriction of the

interpretation of Tr to S. From the Induction Hypothesis it follows that

GEk 7 S, Ak 7 S9 = GE0, A09, and therefore GEk + 1 7 S, Ak + 1 7 S9 =

GE1 7 S, A1 7 S9. But by part (b) of (*), GE1 7 S, A1 7 S9 = GE0, A09.

With the Induction Hypothesis, this proves part (b) of :(i).

(3) Suppose that i is a limit ordinal. Then GEi;Ai >¼ [k G i GEk;Ak9,

which given the Induction Hypothesis immediately yields :(i).

The series GEi, Ai9 is increasing on the ordinals and thus it must have

a fixed point GEi*, Ai*9, which determines the desired interpretation. Ì

3. ELIMINATION OF SELF-REFERENCE FOR A LANGUAGE WITHOUT

QUANTIFIERS I: BASIC CASE

As was mentioned earlier, there is an important conceptual difference

between the MO- and the OM-Liars on the one hand and the O- and

M-Liars on the other. In this section we will show that the mechanism at

work in the former can be generalized to eliminate self-reference from a

non-quantificational language. Specifically, we provide a procedure by

which a language L 0 can be translated into a self-reference-free fragment

of a language L* which includes quantifiers over natural numbers and
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functional names of sentences. In Section 4 we will show that our

construction fails if we try to generalize the procedure at work in the O-

and M-Liars, and we will provide a characterization of those Generalized

Quantifiers that can be used successfully in the translation. For

simplicity we assume throughout the next two sections that the initial

language has no quantifiers (an extension of the translation procedure for

a quantificational language is sketched in Appendix I).

3.1. Preliminaries

3.1.1. Languages
We start from a classical language L, to which we add sentence-denoting

constants and a truth predicate Tr to obtain an enriched language L 0. We

stipulate in the syntax of L 0 that Tr can only take sentence-denoting

constants as arguments.

(29) Syntax of the base language L

� Object-denoting Terms : o :¼ ci the ci
0s are constants½ �

� Object-denoting Predicates : P :¼ Pn
i

� Formulas : F :¼ Pn
i ðo1; . . . ; onÞj:F jðF ^ FÞjðF _ FÞ

(30) Syntax of the enriched language L 0

� Object-denoting Terms : o :¼ ci ½the c
i
0 s are constants�

� Sentence-denoting terms : s :¼ si ½the si
0 s are constant�

� Object-denoting Predicates : P :¼ Pn
i

� Sentence-denoting Predicate : Tr ½Tr is the Truth predicate�
� Formulas : F :¼ Pn

i ðo1; . . . ; onÞjTrðsÞj:FjðF ^ FÞjðF _ FÞ

The translation language L* is richer. Besides the truth predicate Tr, it

extends L with (1) some simple arithmetic vocabulary, and (2) function

symbols, which take as arguments number-denoting terms to yield

sentence-denoting terms. Concretely, whenever si is a sentence-denoting

constant in L 0, si(n) is a sentence-denoting functional term in L*. We

also include in the definition of L* number-denoting variables, as well as

sentence-denoting variables and quantifiers (the latter two won_t be used

except in Appendix II).
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(31) Syntax of the target language L*

� Object-denoting terms: o :¼ ci ½the ci
0s are constants�

� Number-denoting terms: n :¼ ki j0 jSn ½the ki
0s are variables�

We abbreviate Snð0Þ as n:
� Sentence-denoting functions: � :¼ si ½if n is number-denoting;

siðnÞ will denote a sentence�
� Sentence-denoting terms: s :¼ �ðnÞjxi ½the xi

0s are variables�
� Object-denoting Predicates: P :¼ Pn

i

� Truth Predicate: Tr

� Number-denoting predicate: G

� Formulas: F :¼ Pn
i ðo1; . . . ; onÞjTrðsÞj:F jðF ^ FÞj
ðF _ FÞj9kiF j8kiF j9xiF j8xiF

The semantics is defined in the usual way given the specification of

(1) an evaluation scheme, (2) a base interpretation I for L, (3) a

denotation function for the sentence-denoting terms, and (4) an extension

and an anti-extension for the truth predicate.

3.1.2. Goal
Unless otherwise noted, we work with the Strong Kleene evaluation

scheme, whose main clauses are given in (32) (s is an assignment

function; other connectives and quantifiers can be defined from those in

a Y c):

(32) a. Is(KF) = 1 iff Is(F) = 0; = 0 iff Is(F) = 1

b. Is(F $ G) = 1 iff Is(F) = Is(G) = 1; = 0 iff Is(F) = 0 or Is(G) = 0

c. Is(Ox F) = 1 iff for each d in the domain, Is x ! d½ � Fð Þ¼1; = 0 iff

for some d in the domain, Is x ! d½ � Fð Þ¼0.

The Strong Kleene scheme is not usually defined for generalized

quantifiers. But there is a natural way to extend it to the cases we will be

concerned with. The guiding intuition behind the Strong Kleene scheme

is that the value # represents Flack of knowledge_, which could be

resolved as 0 or 1 upon consideration of further information. The rules

are designed in such a way that a formula is true in the trivalent system if

it can be guaranteed to be true in classical logic no matter how the #_s
are resolved. If we now consider a generalized quantifier Q whose
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restrictor is classical, we have already posited (under FReasonableness_
in (14)) that its semantics should be determined by three numbers: the

number a of elements that satisfy the restrictor and of which the nuclear

scope is false; the number b of elements that satisfy the restrictor and of

which the nuclear scope is true; and the number c of elements that satisfy

the restrictor and of which the nuclear scope is neither true nor false. To

extend the Strong Kleene scheme, it is natural to ask whether no matter

how the members of the last group (corresponding to c) are redistributed

among the first two, we do or do not obtain the same classical truth

value. If we do, the formula must have the value in question (0 or 1); if

we don_t, the formula should have the value #. This recipe is made

precise in (33):

(33) Q3(0: a, 1: b, #: c) = # iff for some a 0, a 00, b 0, b 00 satisfying a 0 + b 0 =

a 00 + b 00 = c, Q2(0: a + a 0, 1: b + b 0) m Q2(0 : a + a 00, 1 : b + b 00). If m #,

Q3(0: a, 1: b, #: c) = Q2(0: a + a 0, 1: b + b 0 ), where a 0 + b 0 = c

The translation procedure will keep constant the interpretation I of the

classical language L. But it will simultaneously (1) assign to each

sentence of the extended language L 0 a translation in the quantificational

language L*, and (2) replace the (old) denotation function N 0 for

sentence names of L 0 with a new denotation function N* for the

sentence-denoting terms of L*. For simplicity, we will call interpreta-

tions of L 0 and L* admissible if they extend I and are compatible with N 0

and N*, respectively. We will assign to each sentence F of L 0 an infinite

series of translations hk(F) (k Q 0), and we will call h(L 0 ) the set of all

translations of all sentences of L 0. The procedure will be shown to satisfy

two conditions:
The Uniformity Condition will guarantee that in any admissible

fixed point I* of L*, all the translations of a given sentence F of L 0 have

the same value according to I* (in other words, for every sentence F of

L 0, for all k, k 0 Q 0, I*(hk (F)) = I*(hk 0(F)). This condition is important to

ensure that any translation of a given sentence F, or alternatively the

equivalence class of all its translations, can be taken as Fthe_ translation

of F. As its name indicates, the Uniformity Condition can be seen as a

generalization of the Uniformity Property which holds of any Yablo-

series (Section 2.1.2). Specifically, the various Yablo-series we dis-

cussed in Section 2 will turn out to be the set of translations of the simple

Truth-Teller for various choices of the quantifier Q in our translation

scheme. The Uniformity Property only requires that the translations of

the Truth-Teller have a uniform value; the Uniformity Condition, by
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contrast, requires that the translations of all sentences receive a uniform

truth value in any fixed point.
The Isomorphism Condition, which is a bit more cumbersome to

state, will guarantee that there is a kind of isomorphism j between the

fixed points of L 0 and those of L*, and that for any sentence F of L 0, F

has the same value in a fixed point I 0 as hi(F) does in j(I 0). This property

is important to guarantee that the semantic behavior of L 0 is indeed

reflected in the translation. However, because only part of L* serves to

translate L 0, we will have to treat as equivalent those fixed points of L*

that agree on the translation of L 0 (i.e., on h(L 0)). As a result, the

isomorphism must be defined between the set of fixed points of L 0 and

the set of equivalence classes of fixed points of L*. The relevant notions

are defined in greater detail below.

3.2. Translation and Examples

We start by defining the translation procedure and by illustrating it with

some examples.

3.2.1. Translation
As before, we call I 0 the interpretation of the initial language L 0, which

comprises: (1) a classical interpretation I, (2) a denotation function N 0 for

the sentence-denoting names of L 0, and (3) a specification of the

extension and anti-extension of the truth predicate Tr. An interpretation

I* for the target language L* will be defined by (1 0) the same classical

interpretation I, (2_a) a denotation relation function N* for the

(functional) sentence-denoting terms of L*, (2_b) a standard interpreta-

tion of the arithmetic vocabulary of L*, and (3_) a specification of the

extension and anti-extension of Tr. We will build simultaneously a

translation and a specification of N* from N 0, and we will show that this

suffices to force the translations to mirror perfectly the behavior of the

originals. For the moment we use [Qk 0 : k 0 9 k] F as an abbreviation of

Mk 00(k 00 9 k $ Ok 0(k 0 Q k 00Y F)), though in Section 4 we will study other

conceivable choices of Q when Q is a Generalized Quantifier.

(34) a. Translation: For each positive integer i, hi(F) = [Qk 0 : k 0 9 i]

F½ �k0 , where k and k 0 are Ffresh_ number-denoting variables, and

where F½ �k0 is obtained from F by replacing every atomic

formula of the form Tr(c) with Tr(c(k 0)).
b. Denotation: s denotes F according to N 0 iff s(i) denotes hi(F)

according to N*.
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As before, we write Gs, F9 for a pair of a formula F denoted by a

sentence-denoting term s, and we write the set of translations-cum-

denotation relation as h(Gs, F9) = {Gs(i), hi(F)9 : i Q 0}.
As was observed earlier, our choice of Q guarantees that all of the

sentences of the form [Qk 0: k 0 > i] F½ �k0 for various values of i have

exactly the same semantic content and hence the same truth value in any

fixed point. This will be essential to guarantee that the Uniformity

Condition is satisfied.

3.2.2. Examples
Before we study the general properties of the translation procedure, let us

illustrate some of its effects.

1. First, we check that the translation is adequate for sentences that do

not contain the truth predicate, say It is raining, symbolized as R, and

named by a constant r (we henceforth call a sentence Tr-free if it does

not contain the truth predicate). Since R contains no occurrence of the

truth predicate, the translation procedure yields a sentence with

vacuous quantification, as follows:

(35) h(Gr, R9) = {Gr(i), [Qk 0: k 09 i] R)) 9 : i Q 0}

Given the semantics of Q (Fall but finitely many_), it is immediate that

in any interpretation all the translations are equivalent to R, as is desired.

2. Second, we observe that a sentence that Ftalks about_ a Tr-free

sentence is correctly translated. Let us consider a sentence (named by

a constant r 0) which says that r is true, yielding a pair Gr 0, Tr(r)9. The

translation procedure yields:

(36) h(Gr 0, Tr(r)9) = {Gr 0(i), [Qk 0: k 0 9 i] Tr(r(k 0))))9 : i Q 0}

We have already established that all the sentences r(i) (for i Q 0) are

equivalent to r. It follows that in any fixed point all the sentences r 0(i)
are also equivalent to R, and hence to Tr(r), as is desired.

3. Third, we consider the Liar. We have no new work to do, since we

already discussed its translation when we introduced the MO-Liar. As

is desired, the Liar Gs, KTr(s)9 gets translated as a Yablo-like series

which is itself paradoxical, namely {Gs(i), [Qk 0: k 0 9 i] KTr(s(k 0))9 : i

Q 0}. Since this series has a uniform value, we immediately obtain the

result that in any fixed point each sentence in the series should be

neither true nor false.

4. Fourth, we should consider the Truth-Teller Gt, Tr(t)9. It is translated

as {Gt(i), [Qk 0: k 09 i] Tr(t(k 0))))9 : i Q 0}. As before, the form of the
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translations guarantees that in any interpretation they all share the

same value. It is then easy to see that there are fixed points in which

these sentences are all true, others in which they are all false, and yet

others in which they are all indeterminate.

5. Fifth, let us reconsider our empirical versions of the Liar and of the

Truth-Teller, which we gave respectively as Ge, R $ K Tr(e)9 and

Ge 0, R $ Tr(e 0)9. They get translated as {Ge(i), [Qk 0: k 09 i] (R $ KTr

(e(k 0))9 : i Q 0} and as {Ge 0(i), [Qk 0: k 09 i] (R $KTr(e 0(k 0))9 : i Q 0}.

Reasoning by cases, we see that if R is false we simply obtain two

series of false sentences; and if R is true, we obtain an infinite Liar and

infinite Truth-Teller, as we wished.

3.3. Properties of the Construction

We now study the main properties of this translation. We start by

observing that h(L 0) is semantically autonomous in any interpretation of

L* which is compatible with N*. The proof would rely on the

observation that all the translations can be seen as instances of restricted

quantifications of the form [Qs: R(s)] ___, where s ranges over sentences

and where R(s) is a classical formula that holds true solely of other

members of h(L 0). As a result, all interpretations that agree on the

restriction of the extension and anti-extension of Tr to h(L 0) must also

agree on the values they assign to the members of h(L 0). This is just to

say that h(L 0) is semantically autonomous (related ideas are implemented

in greater detail in Appendix II).

DEFINITION. I 0 is an admissible fixed point for L 0 just in case I 0 is a

fixed point for L 0 based on (1) the base interpretation I and (2) the

denotation function N 0 for sentence-names. I* is an admissible fixed

point for L* just in case I* is a fixed point for L* based on (1 0) the base

interpretation I, (2_a) the denotation function N* for functional sentence

names, and (2_b) the standard interpretation of the arithmetic vocabulary.

Uniformity Condition: For every sentence F of L 0, for all k, k 0 Q 0,

I*(hk(F)) = I*(hk
0 (F)).

Proof Sketch. In the Strong Kleene Scheme, it can be checked that for

all k Q 0,
I*(hk(F)) = 1 iff F½ �

k0 is true of all but a finite number of the non-

negative integers.
I*(hk(F)) = 0 iff F½ �

k 0 is false of an infinite number of non-negative

integers.
I* (hk(F)) = # iff I* (hk(F)) m 1 and I*(hk(F)) m 0
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The right-hand sides make no reference to k, and therefore for all k,

k 0 Q 0, I* (hk(F)) = I* hk0 Fð Þð Þ.10 Ì

In order to state the Isomorphism Condition, we must define an

equivalence relation over admissible fixed points of L*, and an ordering

over them:

DEFINITIONS. (1) If I*
1 and I*

2 are admissible fixed points of L*, I*
1 � I*

2

iff I *
1 and I *

2 agree on h(L 0). We write [I*1] for the

equivalence class of I *
1.

(2) For any set of sentences S, we define a partial

order on interpretations by stipulating that ieS j

just in case every sentence of S that has a classical

truth value in i has the same value in j.

Isomorphism Condition: There is an isomorphism j between the set of

admissible fixed points of L 0 ordered by 	L0 and the set of equivalence

classes of admissible fixed points of L* ordered by 	h L0ð Þ, and j

guarantees that for every sentence F of L 0, for every fixed point I 0 of

L 0, I 0(F) = j(I 0)(hi(F)).
We note for future reference that the only properties of the quantifier

Q which matter in the proof are that (Q1) Q satisfies the Uniformity

Condition, and that (Q2) when F contains no bound variables, [Qk 0: k 0 9 i]

F has the same value as F (I will underline passages that make reference

to these properties; this will become relevant when we discuss alternative

choices of the quantifier Q in Section 4).

Proof. We write that J(I 0, [I*]) just in case I 0 and I* are admissible

fixed points for L 0 and L*, respectively, and I*+(Tr) 7 h(L 0) = {hk(s): k Q 0

and s Z I 0+(Tr)}, I*j(Tr) 7 h(L 0) = {hk(s) : k Q 0 and s Z I 0j(Tr)}.

1) Let I 0 be an admissible fixed point for L 0. We show that there is

exactly one equivalence class of admissible fixed points [I*] for L*

satisfying J(I 0, [I*]).
Y FAt most one_: given N* and I, the truth value of any member of h(L 0)

is fixed by the restriction of the interpretation of Tr to h(L 0)
(because h(L 0) is semantically autonomous). As a result, once

I*+(Tr) 7 h(L 0) and I*j(Tr) 7 h(L 0) are fixed, so is the value of

each of the members of h(L 0).
Y FAt least one_: we show how to construct an admissible fixed point I*

for L* which satisfies J(I 0, [I*]). We start by defining an

THE ELIMINATION OF SELF-REFERENCES276



interpretation I*0 which is a local fixed point for h(L 0), and we

extend it to a global fixed point for L* thanks to the Extension

Lemma.

(1) I*0 is defined by:

I *
0
+(Tr) = {hk(F ) : k Q 0 and F Z I 0+(Tr)}

I *
0
j(Tr) = {hk(F ) : k Q 0 and F Z I 0j(Tr)}

I *
0 can be shown to be a fixed point of h(L 0 ) because for each sentence

F of L 0,

hi(F) Z I*0
+(Tr) (resp. I*j(Tr))

iff F Z I 0+(Tr) (resp. I 0j (Tr)) [by the definition of I*0]

iff I 0(F) = 1 (resp. = 0) [because I 0 is a fixed point]

iff for every k Q 0, I*0([F]k) = 1 (resp. =0), where [F]k is obtained

from F by replacing each occurrence of the form Tr(c) with

Tr(c(k)) [this follows because given the definition of

I*0, I 0(Tr(c)) = I*0(Tr(c(k)) for arbitrary k Q 0]

iff I*0([Qk 0: k 0 > i] F½ �k0) = 1 (resp. = 0) [this follows because

(1) Q satisfies property (Q2): when F contains no bound variables,

[Qk 0: k 0 9 i] F has the same value as F, and (2) for all k 0, k 00 Q 0,

I *
0 F½ �k0
� �

= I *
0 F½ �kµ
� �

iff I *
0(hi(F )) = 1 (resp. = 0)

(2) By the Extension Lemma, this local fixed point can be extended to a

global fixed point.

2) Let I* be an admissible fixed point for L*. We show that there is

exactly one admissible fixed point I 0 for L 0 satisfying J(I 0, [I*]).
FAt most one_: If I 01 m I 02, it must be that GI 01

+(Tr), I 01
j(Tr)9 m GI 02

+(Tr),

I 02
j(Tr)9. But (a) each hk is 1 j 1 and (b) for m m n, the co-domains of

hm and hn are disjoint (because members of the co-domain of hm start

with [Qk 0 : k 0 9 m], while members of the co-domain of hn start with

[Qk 0 : k 0 9 n]). As a result, it must be that G{hk(s): k Q 0 and s Z

I 01
+(Tr)}, {hk(s): k Q 0 and s Z I 01

j (Tr)}9 m G{hk(s) : k Q 0 and s Z

I 02
+(Tr)}, {hk(s): k Q 0 and s Z I 02

j (Tr)}9. But this entails (contra

hypothesis) that at least one i Z {1, 2} must violate the condition

I*+(Tr) 7 h(L 0) = {hk(s) : k Q 0 and s Z I 0i
+(Tr)}, I*j(Tr) 7 h(L 0) =

{hk(s) : k Q 0 and s Z I 0i
j(Tr)}.
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FAt least one_: Given the Uniformity Condition, for all k, k 0 Q 0,

I*(hk(s)) = I* hk0 sð Þð Þ. Given I and N 0, we can thus define an

interpretation I 0 by I 0+(Tr) = {s: for some k Q 0, hk(s) Z I*+} and

I 0j(Tr) = {s: for some k Q 0, hk(s) Z I*j}. It is then immediate that

I*+(Tr) 7 h(L 0) = {hk(s): k Q 0 and s Z I 0+(Tr)}, I*j(Tr) 7 h(L 0) =

{hk(s) : k Q 0 and s Z I 0j(Tr)}. All that remains to be shown is that I 0 is

a fixed point.

2a. From the Uniformity Condition, it follows that for any formula F of

L 0, I*(hi(F)) = I* =hi Fð Þ
�

0=k0
� �

, where =hi Fð Þ
�

0=k0 is obtained from

hi(F) by replacing every atomic formula of the form Tr(c(k 0)) with

Tr(c(0)). Therefore for all i Q 0, I*(hi(F)) = I* Qk0 : k0 >½ð k� F½ �k0 Þ))
= I* Qk0 : k0 > k½ �= F½ �k0

�
0=k0

� �
)

= I*([F]0) [because (1) quantification is vacuous, and (2) Q satisfies

property (Q2)]

= I 0(F) [because by construction for any c, I*(Tr(c(0)) = I 0(Tr(c))]

2b. We can now reason as follows:

F 2 I 0þðTrÞðresp: I 0�ðTrÞÞ
iff for each i � 0; hiðFÞ 2 I*þðTrÞðresp: I*�ðTrÞÞ
iff for each i � 0; I*ðhiðFÞÞ ¼ 1ðresp: ¼ 0Þ

½because I* is a fixed point�
iff I 0ðFÞ ¼ 1 ðresp: ¼ 0Þ ½from 2a�:

Taken together 1) and 2) show that J is a 1 j 1, onto function from

the admissible fixed points of L 0 to the equivalence classes of admissible

fixed points of L*. We henceforth write [I*] = j(I 0) for J(I 0, [I*]). It is

immediate from the meaning of J that I 01 eL 0 I 02 iff j(I 01) e h L0ð Þj I 02
� �

. Ì

4. ELIMINATION OF SELF-REFERENCE IN A LANGUAGE WITHOUT

QUANTIFIERS II: REFINEMENTS

4.1. Other Evaluation Schemes

The construction given above does not work for all monotonic evaluation

schemes. Consider a logic in which Q3 is defined as follows (as before, we

restrict attention to Generalized Quantifiers whose restrictor is classical):

(37) Q3(0: a, 1: b, #: c) = # iff c m 0. If c = 0, Q3(0: a, 1: b, #: c)

= Q2(0: a, 1: b)11
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This procedure is monotonic because once a classical value is obtained,

it never has to be modified when indeterminate values are resolved as true

or false. Still, we can construct a series of sentences of L 0 each of which

has translations in L* that fail the Uniformity Condition. Consider the

series: {Gsi, Tr (si + 1) 9 : i Q 0}. Given our translation procedure, h(Gsi,

Tr(si + 1) 9) = {Gsi(k), [Qk 0: k 0 9 k] Tr(si + 1(k 0))9 : k Q 0}
Let us define the following valuation:
I*(si(k)) = # if k e i. Otherwise, I*(si(k)) = 1. This gives rise to the

following table:

s0(.) s1(.) s2(.) ...

# # # ...

1 # # ...

1 1 # ...

1 1 1 ...

... ... ... ...

Each column represents the values of the translations si(0), si(1), si(2),

... of a given sentence si of the original language (for instance, the left-

most column indicates that s0(0) has the value #, that s0(1) has the value

1, that s0(2) has the value 1, etc). And each cell represents the value of a

sentence s that Ftalks about_ the truth values of the sentences that come

Funder it_ in the column immediately to its right. Let us call these

sentences the Ffollowers_ of s. It can be checked that this valuation is

indeed coherent (i.e., that it defines a local fixed point). For instance,

s0(0) must indeed have the value # because it has a follower, namely s1(1),

which has the value #. More precisely, s0(0) is the formula [Qk 0: k 0 9 0]

Tr(s1(k 0)). But there is an element (namely 1) that satisfies its restrictor,

and for which the nuclear scope has the value #. Hence by (37) s0(0)

must have the value #. Although it is coherent, this valuation clearly

violates the Uniformity Condition, since in each column we find both the

value # and the value 1.12

4.2. Other Generalized Quantifiers

Let us now restrict attention to the Strong Kleene evaluation scheme,

extended to Generalized Quantifiers in accordance with the following

rule, already discussed above:

(38) Q3(0: a, 1: b, #: c) = # iff for some a 0, a 00, b 0, b 00 satisfying a 0 + b 0 =

a 00 + b 00 = c, Q2(0: a + a 0, 1: b + b 0) m Q2 (0: a + a 00 1: b + b 00). If m

#, Q3(0: a, 1: b, #: c) = Q2(0: a + a 0, 1: b + b 0 ), where a 0+ b 0 = c
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In our construction Q ended up having the meaning of Fall but finitely

many_ (because of our assumption that the sentences were denumerable

and linearly ordered, this turned out to be expressible in first-order

logic). Could we have used other Generalized Quantifiers? We will now

give a characterization of those quantifiers that can be used in the

construction, by proceeding in two steps:

1. We revisit the translation scheme given above, treating Q as a

parameter rather than as the abbreviation of a particular string of first-

order quantifiers. We find necessary and sufficient conditions that Q

must meet if the translation is to satisfy the Uniformity Condition.

2. We then isolate those values of Q for which the translation procedure

delivers the desired results.

4.2.1. Necessary and Sufficient Conditions for Uniformity13

We claim that in the Strong Kleene evaluation scheme, the Uniformity

Condition is satisfied by a very narrow class of Generalized Quantifiers,

which satisfy a condition of Finite Insensitivity:

(39) The following conditions are equivalent:
Uniformity Condition: For any sentence F of L 0, in every admissible

fixed point I* of L*, for all k, k 0 Q 0, for all s Z L 0, I*(hk(F)) =

I* hk0 Fð Þð Þ.
Finite Insensitivity: For all finite f, f 0 Q 0, Q2(V, f) = Q2(V, f 0) and

Q2(f, V) = Q2(f 0, V)

1) Uniformity Condition Á Finite Insensitivity
Suppose that Finite Insensitivity fails, for instance because there are i, i 0 Q 0

such that Q2(V, i) m Q2(V, i 0) (the case in which there are i, i 0 Q 0 such

that Q2(i, V) m Q2(i 0, V) is treated in the same way by duality, i.e., by

permuting 1 and 0 in the reasoning below).

Case 1. Q2(V, 0) = 0
Let i* be the least i such that Q2(V, i) = 1. Thus we have: for each i e

i* j 1, Q2(V, i) = 0; Q2(V, i*) = 1.
Now consider the series {Gsi, Tr(si + 1) 9 : i Q 0} (this is a series in L 0,

and thus the si are constants, not functional terms). For each i Q 0, h(Gsi,

Tr(si + 1)9) = {Gsi(k), [Qk 0: k 0 9 0] Tr(si + 1(k 0)) 9 : k Q 0}. It can be seen
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that the following distribution of truth values yields a coherent valuation

for the set of translations.

s0(.) s1(.) s2(.) ... sn(.) ...

# # # ... # ...

0 # # ... # ...

... ... ... ... ... ...

0 # (i*+1 times) # ... #

...

0 0 # ... # ...

... ... ... ... ... ..

0 0 # (2i* + 1 times) ... # ...

0 0 0 ... # ...

0 0 0 ... ... ...

0 0 0 ... # (ni*+1 times) ...

0 0 0 ... 0 ...

... ... ... ... ... ...

As in the table in Section 4.1, each cell represents the value of a

sentence s that Ftalks about_ the truth values of its followers (i.e., of the

sentences that come under it in the column immediately to its right). We

do not have a full specification of the semantics of Q, but we know

enough to determine that each sentence s is:

Y true if s has infinitely many followers with the value 0 and exactly i*

followers with the value 1,
Y false if s has infinitely many followers with the value 0 and at most

i*j1 followers with the value 1.

Furthermore, our Strong Kleene semantics entails that s has the value # if

there are two ways to resolve its indeterminate followers as classical, one

of which makes s true and the other one of which makes s false.
In each column, it can be checked that each indeterminate sentence s

has infinitely many false followers and at least i* indeterminate followers.

If i* of the indeterminate followers are resolved as true while the others

are resolved as false, s will be true; but if all indeterminate followers are

resolved as false, s will be false. This disagreement shows that s should

indeed be indeterminate. By contrast, each false sentence s in the table has

infinitely many false followers and at most i* j 1 indeterminate followers.

No matter how the latter are resolved, s should indeed be false, as is desired.
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Case 2. Q2(V, 0) = 1
Let i* be the least i such that Q2(V, i) = 0. Thus:
for each i e i* j 1, Q2(V, i) = 1; Q2(V, i*) = 0.

Consider the series {Gsi, KTr(si + 1) 9 : i Q 0}. Its translation is the set

{Gsi(k), [Qk 0: k 0 9 k KTr(si + 1(k 0)) 9 : i Q 0, k Q 0}. It can be checked

that the following valuation is coherent:

s0(.) s1(.) s2(.) ... sn(.) ...

# # # ... # ...

1 # # ... # ...

... ... ... ... ... ...

1 # (i* + 1 times) # ... # ...

1 1 # ... # ...

... ... ... ... ... ...

1 1 # (2i* + 1 times) ... # ...

1 1 1 ... # ...

1 1 1 ... ... ...

1 1 1 ... # (ni* + 1 times) ...

1 1 1 ... 1 ...

... ... ... ... ... ...

Consider the first column. s0(0) is the formula [Qk 0: k 0 9 0] KTr(s1 (k 0)).
s0(0) has i* indeterminate followers and infinitely many true followers.

Depending on how the indeterminates are resolved, [Qk 0: k 0 9 0] KTr

(s1(k 0)) may be resolved as false (in case all the indeterminate followers are

resolved as false, which means that their negations are resolved as true) or

as true (otherwise). Thus s0(0) should indeed have the value #. By contrast,

s0(1) has i* j 1 indeterminate followers and infinitely many true followers.

No matter how the indeterminates are resolved, [Qk 0: k 0 9 1]KTr(s1(k 0))
will be true. Thus s0(1) should indeed have the value 1. More generally, the

sentences with the value # have at least i* indeterminate followers and

infinitely many true followers, as is required by their semantic content. By

contrast, the sentences with the value 1 have fewer than i* indeterminate

followers, as their content also requires.

2) Finite Insensitivity Á Uniformity Condition
We show something stronger, namely that for any admissible interpre-

tation for L* (not just fixed points) and for any series s½ �k0
� �

k0�0
(not just

those obtained through our definition of s½ �k0) the entailment holds.
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Let I* be any interpretation of L*. Let us define hk(s) := [Qk 0: k 0 Q k] s½ �k0
Let f be an assignment function. Let us define:

0s := |{K 0 Q 0 : I*
f k0!K0½ � s½ �k0

� �
= 0}|

1s := |{K 0 Q 0 : I*
f k0!K0½ � s½ �k0

� �
= 1}|

#s := |{K 0 Q 0 : I*
f k0!K0½ � s½ �k0

� �
= #}|

Case 1. #s is finite

1a) If 0s = 1s = V, it immediately follows that for all k Q 0, I*(hk(s)) =

Q2(V,V), and the Uniformity Condition is satisfied.

1b) Otherwise, exactly one of 0s, 1s is V. Suppose it is 0s. It follows from

Finite Insensitivity that for all k Q 0, I*(hk(s)) = Q2(V, f) for arbitrary

finite f, and hence the Uniformity Condition is satisfied. The

reasoning is parallel if 1s = V.

Case 2. #s = V

2a) If 0s = 1s = V, the Uniformity Condition follows as in Case 1a).

2b) Suppose 0s and 1s are both finite.
Y If for some i, i 0 Q 0 (including V) Q2(V, i) m Q2(i 0, V), then all the

sentences in the series have the value #, and the Uniformity

Condition follows.
Y If for all i, i 0 Q 0 (including V) Q2(V, i) = Q2(i 0, V) = a, the

Uniformity Condition follows (all sentences have the value a).

2c) Suppose that exactly one of 0s, 1s is V Y say, that 0k = V and that

1s m V (the opposite case is parallel).

Y If for finite f Q2(V, f) = Q2(V,V) = a, the Uniformity Condition

follows (all sentences have the value a)
Y If Q2(V, f ) m Q2(V,V), all sentences in the series have the value #,

and the Uniformity Condition follows again.

4.2.2. Characterization of the Generalized Quantifiers That Can Be

Used in the Translation
Clearly, a necessary condition for the translation to be successful is that

Q should satisfy the Uniformity Condition, and thus Finite Insensitivity.

In addition, we may observe that even if the Uniformity Condition is

satisfied, the translation will fail in case for finite f Q2(V, f ) = 1 or

Q2( f, V) = 0. To see this, let us consider the translation of the Truth-
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Teller Gs, Tr(s)9. Given our translation scheme, we have that h(Gs,

Tr(s)9) = {Gs(k), [Qk 0: k 0 9 k] Tr(s(k 0)) 9 : k Q 0}. However, if Q2(V, f )

= 1, the translations cannot be assigned the value 0, while if Q2( f, V) = 0,

the translations of cannot be assigned the value 1. This means that the

translation will fail, since the Truth-Teller can equally coherently be

assigned the values 0 and 1.
Conversely, if for finite f Q2(V, f ) = 0 and Q2( f, V) = 1 and Q

satisfies the Uniformity Condition/Finite Insensitivity, the translation

will work as desired. The reasoning is as follows:

1. The Uniformity Condition is satisfied by assumption.

2. The Isomorphism Condition is proved as in Section 3.3, where it was

noted that the only properties of Q that matter is that (Q1) Q satisfies

the Uniformity Condition, and (Q2) when F contains no bound

variables, [Qk 0: k 0 9 i] F has the same value as F. (Q2) is guaranteed

to hold by the requirement that Q2(V, 0) = 0 and Q2(0, V) = 1, and

thus the proof of Section 3.3 can be reproduced.

The results we have obtained can finally be summarized as an

Adequacy Condition on the generalized quantifiers that can be used in

the translation:

(40) Adequacy Condition

A Generalized Quantifier Q can be used in the translation scheme

defined earlier if and only if: for all finite f Q 0, Q2(V, f ) = 0 and

Q2( f, V) = 1

If we are only interested in the behavior of the quantifier over infinite

domains, there are just two cases to consider:

Case 1. Q2(V, f ) = Q2(V,V) = 0 and Q2( f, V) = 1
This defines a quantifier that behaves like all but finitely many on

infinite domains.

Case 2. Q2(V, f ) = 0 and Q2( f, V) = Q2(V,V) = 1
This defines a quantifier that behaves like infinitely many on infinite

domains.

4.2.3. Comparison between the Uniformity Property and the Uniformity

Condition
In Section 2 we asked in which cases a Yablo-series of the form SQ =

{Gs(i), [Qk: k 9 i] Tr(s(k))9} satisfies the Uniformity Condition, which

requires that for any fixed point I 0, all the members of SQ have the same

THE ELIMINATION OF SELF-REFERENCES284



value according to I 0. As was mentioned earlier, SQ is simply the

translation of the Truth-Teller obtained when the generalized quantifier

is Q. Comparing the general case to this special case, we see that

Y if we only require that the translations of the Truth-Teller have a

uniform truth value, any quantifier can be used in the translation

(in some cases this won_t give an adequate translation, for instance

if the quantifier is No, which incorrectly translates the Truth-Teller

as an M-Liar; still, Uniformity is satisfied by this incorrect

translation).
Y by contrast, when we wish to obtain translations that have a uniform

truth value for any sentence of the original language, we can only

use for Q quantifiers that satisfy Finite Insensitivity, i.e., Q2(V, f ) =

Q2(V, f 0) and Q2( f, V) = Q2( f, V) for all finite f, f 0.
Y It follows in particular that the quantifiers some and every, which are

used in the most common versions of Yablo_s paradox, cannot be

used in the translation procedure.

We have seen, then, that any quantifier that is adequate for the

translation must guarantee that any two sentences in the series will have

exactly the same semantic content, in the sense that even in interpreta-

tions that are not fixed points the Uniformity Condition will be satisfied.

This is because our proof of the entailment from Finite Insensitivity to

the Uniformity Condition did not rely on the assumption that the

interpretation was a fixed point. Since all the translations of a given

sentence have exactly the same semantic content, we might be tempted

to claim that our translation procedure yields sentences that are self-

referential in a broader sense: they refer to other sentences that have

exactly the same semantic content as them. It would certainly be

interesting to define in precise terms the broader notion of self-reference

that underlies this criticism. But I believe that this objection would

eventually fail if we considered a minor variant of our translation. To see

this, suppose that we had opted for a slightly more sophisticated

translation scheme, defined as follows:

(41) a. Translation: For each positive integer i, hi(F) = [Qk 0: k 0 9 i]

F½ �k0 $ (Tr(ti) 6 (i = i))

b. Denotation: (i) s denotes F according to N 0 iff s(i) denotes hi(F)

according toN*. (ii) N 0 specifies that ti denotes the formula (i = i).

It is clear that in every fixed point for L* the additional conjunct

(Tr(ti) 6 (i = i)) is true (since (i = i) is classical), and hence innocuous.

But in interpretations that are not fixed points, this need not be the case. In

this sense this modified translation procedure does not give the same
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semantic content to all the translations of a given sentence of L 0. We could

easily add different Fempirical_ conjuncts to hi(F) (different for various

values of i) to further ensure that the various translations of a given

sentence F are not equivalent to each other (but still turn out to have the

same value in any given fixed point).

4.2.4. Source of the Restriction to the Quantifiers FInfinitely Many_
and FAll but Finitely Many_

It is worth asking why only the quantifiers infinitely many and all but

finitely many can be used in the translation.14 All our counter-examples

were based on a failure of the Uniformity Condition, and they all

involved infinite reference paths in the language L 0, in the sense that a

sentence s1 referred to a sentence s2, which referred to a sentence s3, etc.

As it turns out, however, if we prohibit infinite reference paths, the

Uniformity Condition will be satisfied in any fixed point. (How infinite

reference paths can be blocked naturally is another story; we may either

put syntactic constraints on the fragment of the language that we

consider, or we may restrict attention to interpretations in which infinite

reference paths do not occur).
Let us briefly sketch the argument, which is closely related to the proof

we gave in Section 2.1.2 to show that all Yablo-series satisfy the Uni-

formity Property. Consider a sentence s, together with all the sentences

that it refers to, together with all the sentences that these refer to, etc. We

obtain in this way a finite set T with members t1, ..., tn (T is finite

because otherwise there would be an infinite reference path, contrary to

our assumption). By construction, T is semantically autonomous. Thus

for each tk, there is a Boolean function fk such that in each fixed point,

the value tk of tk is fk(t), where t is the n-tuple of values of t1, ..., tn. Now

call the translations of level i of these sentences t1i, ..., tni, respectively.

We do not make any assumptions about the generalized quantifier that

appears in the translation, except that its semantics is defined by a

generalized Tree of Numbers.

(1) By the definition of the translation procedure, each tki makes a claim

about the series of the truth values of t1
i þ 1; . . . ; tn

i þ 1;
� 


; t1
i þ 2; . . . ;
�

tn
i þ 2i; . . . : Let us write these tuples of truth values as ti + 1, ti + 2,

etc. Thus in any fixed point, the truth value of tk
i is determined by

the number of members of the series that make fk true / false /

indeterminate.

(2) But there are only 3n distinct n-tuples of trivalent values. So one of

the tuples Y call it t* Y must recur infinitely many times in the series
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ti + 1, ti + 2, ... . . Let us assume that t* occurs in particular in position

i + k* + 1 (thus ti + k* + 1 = t*). tk

i þ k*þ 1
, which makes a claim about

the series ti + k* + 2, ti + k* + 3, ..., has a certain value t*k, which by

assumption is the kth coordinate of t*.

(3) Now we claim that tk

i þ k*
must have the very same value t*k as

tk

i þ k*þ 1
. This is because the truth value of tk

i þ k*
is determined by the

number of members of the series ti + k* + 1, ti + k* + 2, ..., which make

fk true / false / indeterminate. But this series is identical to ti + k* + 2,

ti + k* + 3, ..., except that we have added one additional occurrence of

t* (since ti + k* + 1 = t*). But there were already infinitely many

occurrences of t* in ti + k* + 2, ti + k* + 3, ..., so we certainly haven_t
changed the number of members of the series that make fk true / false /

indeterminate.

(4) Since this reasoning can be repeated for each k, we see that ti + k* =

ti + k* + 1 (= t*). By iterating the reasoning, we observe that

whenever t* occurs in the series, it occurs in all the preceding

positions as well. But since t* appears infinitely many times, this

shows that t* must occupy the entire series. Therefore the

Uniformity Condition is satisfied for all the sentences in T Y and

hence in particular for s.

Finally, let us note that our earlier proofs of the adequacy of a

quantifier Q for the translation procedure only hinged on the requirement

that (Q1) Q satisfies the Uniformity Condition, and (Q2) when F

contains no bound variables, [Qk 0: k 0 9i] F has the same value as F. It

follows that when we block infinite reference paths, any quantifier

satisfying (Q2) will in fact be adequate for the translation. It is easy to

check that the acceptable quantifiers are all those for which Q2(V, 0) = 0

and Q2(0, V) = 1. Thus when infinite reference paths are blocked, some

and every can successfully be used in the translation...

4.3. Another Translation Procedure

The translation scheme we adopted was particularly simple, but it might

be interesting to explore some alternatives. It appears that the same

generalized quantifiers that could be used in the procedure outlined

above can also be used in a different translation scheme, which is

defined as follows:

(42) a. Translation: For each positive integer i, gi(F) = {F}i, as defined

below.

b. Denotation: s denotes F according to N 0 iff s(i) denotes hi(F)

according to N*.
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The translation procedure {.}k0 is defined recursively as:

(43) a. fPn
i o1; :::; onð Þg

k0 ¼ Pn
i o1;:::; on

� �

b. Tr sð Þf gk0 ¼ Qk0 : k0 > k½ �Tr s k0ð Þð Þ
c. :Ff gk0 ¼ : Ff gk0

d. F1 ^ F2ð Þf gk0 ¼ F1f gk0 ^ F2f gk0
� �

e. ðF1 _ F2Þf gk0 ¼ F1f gk0 _ F2f gk0
� �

If F is a sentence, we will write gk(F) instead of {F}k. And as before,

we write the set of translations-cum-denotation relation as g(Gs, F9) =

{Gs(i), gi(F) 9 : i Q 0}.

4.3.1. Examples
To get a feel for the translation, let us look at a few simple examples.

(44) Translation of Tr-free formulas

g(Gc1, P0
19) = {Gc1(k), P0

19 : k Q 0}. This translation is obviously

adequate.

(45) Translation of sentences that Ftalk about_ Tr-free formulas
With c1 as in (44), we consider:

g(Gc2, Tr(c1) 9) = {Gc2(k), [Qk 0 : k 0 9 k] Tr(c1(k 0)) 9 : k Q 0}. This

is precisely the result we obtained according to the Fold_
translation scheme h: g(Gc2, Tr(c1) 9 = h(Gc2, Tr(c1)9

(46) Translation of the Liar

g(Gc3, KTr(c3) 9) = {Gc3(k), K[Qk 0 : k 0> k] Tr(c3(k 0)) 9 : k Q 0}.

{Gc3, KTr(c3)9} is the simple Liar. {Gc3(k), K [Qk 0 : k 0 9 k]

Tr(c3(k 0)) 9 : k Q 0} is an infinite Liar. From the semantics of Q, the

members of {[Qk 0: k 0 9 k] Tr(c3(k 0)): k � 0} must have a constant

value. Therefore all the sentences in the series have the same value,

and it follows that this value can only be #.

(47) Translation of the Truth-Teller

g(Gc4, Tr(c4)9) = {Gc4(k), [Qk 0 : k 09 k] Tr(c4(k 0)) 9 : k Q 0}. This is

exactly the same result we obtained in the Fold_ translation scheme:

g(Gc4, Tr(c4)9) = h(Gc4, Tr(c4)9)

4.3.2. Necessary and Sufficient Conditions for Uniformity
This Fnew_ translation has essentially the same properties as the Fold_
one: the same quantifiers satisfy the Uniformity Condition, and the same

quantifiers can be used in the translation.
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1) Uniformity Condition ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Finite Insensitivity

Suppose Finite Insensitivity fails, for instance because there are i, i 0 Q 0

such that Q2 (V, i 9) m Q2 (V, i 0) (the case in which there are i, i 0 Q 0

such that Q2 (i, V) m Q2 (i 0, V) is treated in the same way by duality, i.e.,

by permuting 1 and 0 in the reasoning below).

Case 1. Q2(V, i) = 0. Let i* be the least i such that Q2(V, i) = 1.

The non-uniform valuation that was defined earlier for the translation of

the series {Gsi, Tr(si + 1) 9 : i Q 0} will work just as well in the present

context, since the Fold_ and the Fnew_ translations agree on sentences of

the form Tr(c).

Case 2. Q2(V, 0) = 1. Let i* be the least i such that Q2(V, i) = 0. Thus:

for each i e i* j 1, Q2(V, i) = 1; Q2(V, i*) = 0.

Consider the series {Gsi, KTr(si + 1) 9 : i Q 0}. Its translation is the set

{Gsi(k), K[Qk 0: k 0 9 k] Tr(si + 1(k 0)) 9 : i Q 0, k Q 0}. It can be checked

that the following valuation is coherent:

s0(.) s1(.) s2(.) . . . sn(.) . . .

# # # ... # ...

0 # # ... # ...

... ... ... ... ... ...

0 # (i* + 1 times) # ... # ...

0 0 # ... # ...

... ... ... ... ... ...

0 0 # (2i* + 1 times) # ...

0 0 0 ... # ...

0 0 0 ... ... ...

0 0 0 ... # (ni* + 1 times) ...

0 0 0 ... 0 ...

... ... ... ... ... ...

Consider the first column. s0(0) is the formula K[Qk 0: k 0 9 0] Tr(s1(k 0)).
s0(0) has i* indeterminate followers and infinitely many false followers.

Depending on how the indeterminates are resolved, [Qk 0: k 090] Tr(s1(k 0))
may be resolved as false (in case all indeterminates are resolved as true,

since Q2(V, i*) = 0) or as true (otherwise). Thus s0(0) should indeed have

the value #. By contrast, s0(1) has i*j1 indeterminate followers and

infinitely many false followers. No matter how the indeterminates are

resolved, [Qk 0: k 0 9 1] Tr(s1(k 0)) will be true, and hence s0(1) will be
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false. Thus s0(1) should indeed have the value 0. More generally, any

sentence with value # has at least i* indeterminate followers and

infinitely many false followers; this guarantees that it should have the

value #. By contrast, any sentences with value 0 has at most i*j1

indeterminate followers, which guarantees that it should be false.

2) Finite Insensitivity Á Uniformity Condition

In brief, we give a proof by induction on the construction of formulas of

L 0 which shows that for each subformula G of a formula gk(F) of g(L 0),
for any assignment function f, for any interpretation (and a fortiori for

any fixed point) I* of L*, for all k, k 0 Q 0, I*f (gk(G)) = I*f gk0 Gð Þð Þ.
The key clause in the induction proof is the translation of subfor-

mulas of the form Tr(c), which get translated as [Qk 0: k 0 9 k] Tr(c(k 0)).
Crucially, because of the choice of the quantifier Q, the value of

[Qk 0:k 0 9 k] Tr(c(k 0)) does not depend on k, hence the desired result.
The proof is by induction on the construction of formulas of L 0.

Y If F is atomic and does not contain the predicate Tr, for each k Q 0,

gk(F) = F, hence the desired result.
Y If F = Tr(c), for each k Q 0, gk(F) = [Qk 0: k 0 > k] Tr(c(k 0)).

Uniformity follows from our proof of Finite Insensitivity Á

Uniformity Condition for the Fold_ translation scheme.
Y If F = (F1 $ F2) and Uniformity holds of F1 and F2, it holds of F as

well.
Y If F = K F 0 and Uniformity holds of F 0, it holds of F as well.

It can be checked that the Adequacy Condition holds of the new

translation without any modifications: Q can be used in the translation

just in case for all finite i Q 0, Q2(V, i) = 0 and Q2( i, V) = 1.

5. PERSPECTIVES

The main results of this investigation can be summarized as follows.

(I) Yablo-Series satisfy the Uniformity Property no matter which

Generalized Quantifier is used. (II) Self-reference can be eliminated

from every sentence of a non-quantificational language by generaliz-

ing the procedure at work in Yablo-Series. The latter come out as the

translations of the Truth-Teller for various values of the Generalized

Quantifier Q used in the translation. However, the procedure can work

in the general case only if Q can guarantee that in any interpretation

(not just fixed points), all the translations of a given sentence F share
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the same truth value. Over infinite domains, Q should be one of two

quantifiers: all but finitely many or infinitely many. However, when

infinite reference paths are blocked in the original language, more

quantifiers become available for the translation.
We hope that the present paper will have convinced the reader that it

might be fruitful to study general results about the elimination of self-

reference rather than to attempt Y piecemeal, so to speak Y to replicate

Yablo_s results on a variety of semantic phenomena.
We conclude by listing some topics for future research.

1. We have only shown that self-reference can be eliminated from a

non-quantificational language. Can the procedure be extended to

quantificational languages as well? In Appendix I we sketch a

procedure for a full first-order language.

2. We have almost entirely restricted attention to the Strong Kleene

evaluation scheme. But for theories of truth a supervaluationist

scheme is in certain respects a better candidate. The elimination of

self-reference should be extended to this case as well.

3. We have assumed that our semantic vocabulary is limited to the truth

predicate Tr. What happens when other semantic predicates are

included? Uzquiano 2004 discusses a Yabloesque version of a

paradox of denotation (specifically, of Berry_s paradox). Through

this example, he shows that there are paradoxes of denotation that do

not involve self-reference (at least if Yablo_s paradox doesn_t). But

ideally Uzquiano_s result should follow from an extension of our

elimination procedure. It is likely, however, that the extension will

either be cumbersome or partial. For suppose that we include in the

initial language a predicate denote, with a fixed point requirement

according to which denote(s, c) is true just in case the interpretation

of s is a sentence that denotes the interpretation of c (on some

reasonable criterion of denotation). Now consider the pair Gc, denote

(c, c)9. Clearly, c should be taken to be true. But what about its

putative translations? By construction none of them should be self-

referential, and hence either (1) the translation of denote(c, c) will

have to be somewhat counter-intuitive, or (2) the translation

procedure will fail in this case.

4. To analyze our translation procedure, we heavily relied on the notion

of Fadmissible fixed points_ i.e., fixed points that interpret the

linguistic vocabulary (apart from the truth predicate) in a specified

way. This was crucial to ensure that, say, the functional terms of the

translations really did denote the sentences they were intended to. An

alternative solution would have been to consider from the start
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languages that contain enough arithmetic to code their own syntax,

and to use the Diagonalization Lemma to obtain self-reference in the

initial language (or to obtain the desired translations in the target

language). This alternative route might simplify the statement of

some of our results.

5. We could ask whether self-reference is essential to semantic results

obtained outside truth theories, for instance in the Fparadoxes of

knowledge_ discussed most recently in Egré 2005.
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APPENDIX I

Elimination of Self-Reference in a Language with Quantifiers

So far we have assumed that our base language is non-quantificational.

But we might well want to eliminate Self-Reference from a language that

contains quantifiers. We will briefly sketch a strategy to do so in the case

of a First-Order Language.
We assume that the base language contains sorted variables x1, ..., and

y1, ..., ranging over objects and sentences respectively. Similarly there

are quantifiers M and O, which can bind object- or sentence-denoting

variables, as the case may be. For simplicity we assume that predicate

symbols are sorted, in the sense that in any given argument position they

take either object-denoting or sentence-denoting terms, but not both (i.e.,

a given predicate may take both object-denoting and sentence-denoting

terms, but not in the same argument positions). The target language is
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identical to the initial language, except that (1) it contains arithmetic

vocabulary (as was the case in our earlier examples), (2) any sentence-

denoting constant c of the initial language is a function symbol in the

target language (it takes a number-denoting term as argument to form a

sentence-denoting term), and (3) it includes a rank predicate rk, which

takes as arguments a number-denoting term and a sentence-denoting

term. The rank predicate will be used in the translations to ensure that

quantification over sentences never involves self-reference; in essence, a

translation with rank i will only involve quantification over sentences

with rank higher than i.
Let us now turn to a tentative translation scheme. In our earlier

examples, the elimination procedure involved both a translation in the

narrow sense and a specification of the denotation of the sentence-

denoting terms of the target language. This will also be the case here, but

in addition we will have to modify the interpretation of predicates that

take sentence-denoting terms as arguments. Why? Suppose we consider

in the original language a sentence that says that some beautiful sentence

is true [= My1 (B(y1) $ Tr(y1))]. Of course the interpretation will have to

specify which sentences of the original language are indeed beautiful. In

fact, that very sentence might well be the only beautiful one, which

should clearly make the sentence self-referential. But what about the

translation? If we do not adapt the interpretation of beautiful, we will be

faced with two problems: (1) The translations may fail to be (in a slightly

extended sense) Fsemantically autonomous_; in other words, we might

have to Flook_ at properties of sentences that are not found in the set of

translations to determine what the truth values of some of the translations

are. (2) We may also fail to find an adequate translation. The problem is

that if the sentence mentioned above is the only beautiful one, and if all

we can do in our translation procedure is provide a guarantee about the

translations, it will fail to be the case that one of the translations is also

beautiful (since by assumption the only beautiful sentence is the one we

mentioned above, which does not have the right form to be a translation

of anything).
The solution is to give the translation a bit more leeway. As was the

case in our earlier endeavors, we will keep the interpretation of the

Fnon-linguistic_ vocabulary constant, but we will allow ourselves to

modify the interpretation of the Flinguistic_ vocabulary. In our earlier

constructions, the only linguistic vocabulary we had apart from the

Truth predicate was a set of sentence-denoting constants, which was

duly transformed into a set of a sentence-denoting functional terms of

the target language. But in the case at hand the initial language also

includes predicates which may take sentence-denoting terms as arguments
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(be they constants or variables). What shall we do with these predicates?

We will modify their interpretations by stipulating that a formula F lies in

the extension of a predicate P according to I 0 just in case its translations

h0(F), h1(F), ... lie in the extension of P according to I*. We will then

restrict attention to admissible interpretations of L*, which will have to

be built on this modification of the initial classical interpretation I, and

satisfy the conditions stated below on the interpretation of the rank

predicate rk and of the sentence-denoting terms.
With these conditions in place, we give an example of a translation

procedure that appears to deliver the desired results.

(48) a. Translation: For each positive integer i, hi(F) = [Qk 0: k 0 9 i]

F½ �k0 , where k and k 0 are Ffresh_ number-denoting variables and

where F½ �k0 is the result of replacing: 1) each occurrence of the

form Tr(s) [where s is a constant] with Tr(s(k 0 )) 2) each

subformula of the form Myi __ and Oyi __ with [Myi: rk(yi, k 0 )] __

and [Oyi: rk(yi, k 0)] __ (or an unrestricted quantificational version

of these, i.e., Myi(rk(yi, k 0) $ __) and Oyi (rk( yi, k 0 ) Y __),

respectively).
b. Denotation: If s is a sentence-denoting constant of the initial

language L 0, s denotes F according to N 0 iff s(i) denotes hi(F)

according to N*.
c. Rank: GF*, i9 is in the extension of rk according to N* iff for

some natural number i, for some formula F of L 0, F* = hi(F).
d. Interpretation of predicates that take sentence-denoting terms as

arguments: If P is a predicate of L, if F0 ... Fk are formulas of L 0,
and if d0, ..., di0

, ..., dik + 1
are objects, Gd0, ..., di0

, F0, di0 + 1
, ..., di1

,

F1, di1 + 1, ..., di2
, ..., Fk, dik + 1, ..., dik + 1

9 Z I 0(P) if and only if

for all i Q 0, Gd0, ..., di0
, hi(F0), di0+1, ..., di1

, hi(F1) di1 + 1
, ..., di2

, ...,

hi(Fk), dik + 1, ..., dik +1
9 Z I*(P)

e. Admissible interpretations
An admissible interpretation of L 0 is one that extends I and is

compatible with N 0.
An admissible interpretation of L* is one that extends the

modification of I defined by d. and is compatible with b. and c.

For future reference we note that:

(a) for every i Q 0, the function hi is 1 j 1: if F and F 0 are distinct

formulas, hi(F) m hi(F 0) (intuitively, this is because from hi(F ) we

can mechanically recover the formula F: we strip the quantificational

prefix, get rid of the rank predicate, etc.).
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(b) for m m n, the co-domains of hm and hn are disjoint. This is because

the members of the co-domain of hm start with [Qk 0: k 0 9 m], while

the members of the co-domain of hn start with [Qk 0: k 0 9 n].

Let us immediately turn to some examples.

(49) FSome sentence is true_

h(Gs1, My1 Tr(y1)9) = {Gs1(i), [Qk 0: k 09 i] [My1: rk(y1, k 0)] Tr(y1)9 :

i Q 0}. It is clear that both the original and its translation are true in

any admissible interpretations.

(50) FSome beautiful sentence is true_

h(Gs1, My1 (B(y1) $ Tr(y1))9) = {Gs1(i), [Qk 0: k 0 9 i] [My1: rk(y1, k 0)]
(B(y1) $ Tr(y1)) 9 : i Q 0}

If I 0(B) = {s1}, I*(B) = {s1(i): i Q 0}, and both the original and its

translations are true. More generally, I*(B) = {hi(s): s Z I 0(B) $ i Q 0},

which guarantees that the original and its translations have the same

value (which turns out to be the same in all admissible interpretations).

Can we ascertain that this translation scheme satisfies both the

Uniformity Condition and the Isomorphism Condition? A full proof is

left for future research, but here is a brief sketch of a positive argument.

1. The Uniformity Condition is satisfied because all the translations of a

sentence F are of the form hi(F) = [Qk 0: k 0 9 i] F½ �k0 , where Q is in

effect the quantifier Fall but finitely many_.
2. To study the Isomorphism Condition, we use the same notations as in

Section 3.3, with the difference that the admissible fixed points of L* are

defined as extensions of a modification of the initial interpretation I.

Proof Sketch. We write that J(I 0, [I*]) = just in case I 0 and I* are

admissible fixed points for L 0 and L*, respectively, and I*+(Tr) 7 h(L 0) =

{hk(s): k Q 0 and s Z I 0+(Tr)}, I*j(Tr) 7 h(L 0) = {hk(s): k Q 0 and s Z

I 0j(Tr)}.

1) Let I 0 be an admissible fixed point for L 0

We show that there is exactly one equivalence class of admissible fixed

points [I*] for L* satisfying J(I 0, [I*]).
Y FAt most one_: given N* and I, the truth value of any member of h(L 0)

is fixed by the restriction of the interpretation of Tr to h(L 0). As a

result, once I*+(Tr) 7 h(L 0) and I*j(Tr) 7 h(L 0) are fixed, so is the

value of each of the members of h(L 0).
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Y FAt least one_: we show how to construct an admissible fixed point I*

for L* which satisfies J(I 0, [I*]).

(1) I *
0 is defined by:

I *
0
+(Tr) = {hk(F): k Q 0 and F Z I 0+(Tr)}

I *
0
j(Tr) = {hk(F): k Q 0 and F Z I 0j(Tr)}

I *
0 can be shown to be a fixed point of h(L 0) because for each sentence

F of L 0,

hi(F) Z I *
0
+(Tr) (resp. I*j(Tr))

iff F Z I 0+(Tr) (resp. I 0j(Tr))

iff I 0(F) = 1 (resp. = 0) [because I 0 is a fixed point]

iff for each k Q 0, I *
0([F]k) = 1 (resp. = 0), where [F]k is obtained

from F by replacing (a) each occurrence of the form Tr(c) with Tr(c(k)),

and (b) each formula of the form Myi __ and Oyi __ with [Myi: rk(yi, k)] __

and [Oyi: rk(yi, k)] __.
The latter equivalence is proven by induction on the construction of

formulas of L 0. Specifically, we show that for all k Q 0, I 0s(F ) = I*0 s* ([F]k),

where for all i s*(yi) = hk(s(yi)).
The crucial induction step is that for which F = MyiG (a similar

argument can be made for F = OyiG, or alternatively we can take the

second case to be an abbreviation of F = K Oyi K G). We then have that

[F]k = [Myi: rk(yi, k)] [G] k, and

I 00 sðFÞ ¼ 1 iff for some sentence d of L0; I 00 s½yi!d�ðGÞ ¼ 1

iff for some sentence d of L0; I*
0 ðs½yi!d�Þ* ½G�k ¼ 1

½induction hypothesis�
iff for some sentence d of L0; I*

0 s*½yi!hkðdÞ�ð½G�kÞ ¼ 1

iff I*
0 s*ð½9yi: rkðyi; kÞ� ½G�kÞ ¼ 1

iff I*
0 s*ð½F�kÞ ¼ 1

I 00 sðFÞ ¼ 0 iff for some every sentence d of L0; I 0s½yi!d�ðGÞ ¼ 0

iff for every sentence d of L0; I*
0 ðs½yi!d�Þ* ½G�k ¼ 0

½induction hypothesis�
iff for every sentence d of L0; I*

0 s*½yi!hkðdÞ�ð½G�kÞ¼ 0

iff I*
0 s*ð½9yi : rkðyi; kÞ� ½G�kÞ ¼ 0

iff I*
0 s*ð½F�kÞ ¼ 0
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In the special case of sentences, we have that I 00(F) = I*0([F]k), as

desired. We can finish the proof:

hi(F) Z I *
0
+(Tr) (resp. I*j(Tr))

iff for each k Q 0, I *
0([F]k) = 1 (resp. = 0),

iff I*0 ([Qk 0: k 0 > i] F½ �k0) = 1 (resp. = 0) [this follows because (i)

for all k 0, k 00 Q 0, I*0( F½ �k0) = I*0 F½ �kµ
� ��

, and (ii) Q is Fpositive_, i.e.,

Q satisfies property (Q2)]

iff I*0(hi(F)) = 1 (resp. = 0)

(2) By the Extension Lemma, this local fixed point can be extended to

a global fixed point.

2) Let I* be an admissible fixed point for L*.
We show that there is exactly one admissible fixed point I 0 for L 0

satisfying J(I 0, [I*]).
Y FAt most one_: If I 01 m I 02, it must be that GI 01

+(Tr), I 01
j(Tr)9 m

GI 02
+(Tr), I 02

j(Tr)9. But as we observed immediately after the

definition of the translation in (48), (a) each hk is 1j1 and (b) for

m m n, the co-domains of hm and hn are disjoint. As a result, it must

be that G{hk(s): k Q 0 and s Z I 01
+(Tr)}, {hk(s): k Q 0 and s Z I 01

j

(Tr)}9 m G{hk(s): k Q 0 and s Z I 02
+(Tr)}, {hk(s): k Q 0 and s Z

I 02
j(Tr)}9. But this entails (contra hypothesis) that at least one i Z

{1, 2} must violate the condition I*+(Tr) 7 h(L 0) = {hk(s): k Q 0 and

s Z I 0i
+(Tr)}, I*j(Tr) 7 h(L 0) = {hk(s): k Q 0 and s Z I 0i

j(Tr)}.
Y FAt least one_: Given the Uniformity Condition, for all k, k 0 Q 0,

I*(hk(s)) = I* hk0 sð Þð Þ. Given I and N 0, we can thus define an

interpretation I 0 by I 0+(Tr) = {s: for some k Q 0, hk(s) Z I*+} and

I 0j(Tr) = {s: for some k Q 0, hk(s) Z I*j}. It is then immediate that

I*+(Tr) 7 h(L 0) = {hk(s): k Q 0 and s Z I 0+(Tr)}, I*j(Tr) 7 h(L 0) =

{hk(s) : k Q 0 and s Z I 0j(Tr)}. All that remains to be shown is that

I 0 is a fixed point.

2a. From the Uniformity Condition and the definition of an admissible

interpretation for L*, it follows that for any formula F of L 0,
I*(hi(F)) = I* =hi Fð Þ

�
0=k0

� �
, where =hi Fð Þ

�
0=k0 is obtained from hi(F)

by replacing:

every formula of the form Tr(c(k 0)) with Tr(c(0))
every formula of the form [Myi: rk(yi, k 0)] __ with [Myi: rk(yi, 0)] __
every formula of the form [Oyi: rk(yi, k 0)] __ with [Oyi: rk(yi, 0)] __
Therefore for all i Q 0, I*(hi(F)) = I* Qk0 : k0 > k½ �

�
F½ �k0
�
0=k0

� �
)
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= I*([F]0) [because quantification is vacuous, and Q satisfies Property

(Q2)]
= I 0(F) [this could be shown in a proof by induction].

2b. We can now reason as follows:

F 2 I 0þðTrÞ ðresp: I 0�ðTrÞÞ
iff for each i � 0; hiðFÞ 2 I*þðTrÞ ðresp: I*�ðTrÞÞ
iff for each i � 0; I*ðhiðFÞÞ ¼ 1 ðresp: ¼ 0Þ

½because I* is a fixed point�
iff I 0ðFÞ ¼ 1 ðresp: ¼ 0Þ ½from 2a�:

Taken together 1) and 2) show that J is a 1 j 1, onto function from

the admissible fixed points of L 0 to the equivalence classes of admissible

fixed points of L*. We can write [I*] = j(I 0) for J(I 0, [I*]), and it is

immediate from the meaning of J that I 01 e I 02 iff j(I 01) e
h L

0ð Þj I 02
� �

.

APPENDIX II

A Sufficient Condition of Non-Self-Reference

Basic ideas

It has sometimes been argued that Yablo_s Paradox is in fact Fcovertly_
self-referential (see the debate in Priest, 1997, Sorensen, 1998, Leitgeb,

2002, 2005). A large part of the difficulty is that there is no accepted

criterion of what it means for a quantificational sentence to Frefer_ to

anything. We will not solve the problem in full generality, but we will

develop a plausible criterion of non-self-reference which is strong

enough to show that Yablo_s Paradoxes (as well as the various sentences

produced by our translation schemes) do not involve self-reference. Our

conclusions agree with those of Leitgeb, 2005, who offers a necessary

and sufficient condition of self-reference.

Reference of Quantified Sentences To start with the simplest idea, we

could determine that an unrestricted quantifier Frefers_ to all objects in

its range. But this would not be a particularly helpful analysis, since

it would entail that any statement that contains any quantifier Frefers_
to every object in the domain. However, we can develop a more

discriminating analysis by taking a hint from natural language, which

includes the device of restricted quantification. Every student is sick is

understood to Frefer_ in a broad sense to the students, but certainly not to
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anyone else. And similarly for Some student is sick. There is a logical

reason behind this intuition: natural language quantifiers have two

properties, called Fextension_ and Fconservativity_, which ensure that

in evaluating any sentence of the form Q student is sick we can safely

disregard those individuals that are neither sick nor students (this is a

consequence of Fextension_), and that furthermore among those we may

restrict attention to the students, disregarding the sick people who are not

students (this is guaranteed by Fconservativity_).
Let us say that a sentence s is in Restricted Quantifier Notation if:

(1) every quantifier Q appears with a restrictor, and thus has the form

[Qxi: F ] F 0; in addition no other occurrence of a quantifier

introduces the variable xi in F.

(2) no function symbol (including constants) appears except in sub-

formulas of the form x = c that occur in a restrictor, and

(3) all restrictors are classical, i.e., they do not contain the predicate Tr.

To give a simple example, Mx(P(x) $ Q(x)) is equivalent to several

formulas that are in restricted quantifier notation: [Mx : P(x)] Q(x),

[Mx : Q(x)] P(x), [Mx : x = x] (P(x) $ Q(x)) (the list is not exhaustive).

Similarly, Ox(P(x) Á Q(x)) is equivalent to the formula in restricted

quantifier notation [Ox : P(x)] Q(x). And by the same token P(c) is

equivalent to [Mx : x = c] P(x) or to [Ox : x = c] P(x), which are both in

restricted quantifier notation.
Obviously the restricted quantifier notation is particularly well-

adapted for the Fbinary generalized quantifiers_ that are found in natural

language, such as most in Most students passed the exam, or for that

matter infinitely many as in Infinitely many numbers are prime. As we

observed earlier, the MO-Liar can be rewritten as the set {G s(i), [Qk 0: k 0 9
i ] KTr (s(k 0))9 : i Q 0}, where Q is a binary generalized quantifier

meaning Fall but finitely many_.
As a first approximation, we will say that a closed formula F is

guaranteed not to refer (directly) to an object d if (1) F is equivalent to a

formula F 0 in restricted quantifier notation, and (2) d does not satisfy any

restrictor of F 0. (This notion will be defined more precisely below, since

we have to take into account the possibility that restrictors may contain

several variables, which makes the notion of Fsatisfaction_ somewhat

trickier. The precise notion we develop below is called FPrimary

Reference_, or PR for short).

Transitive Reference The notion of Fdirect reference_ will not be suf-

ficient, however. Even in the simplest cases, which involve constants and

no quantifiers, we need some notion of Freferential closure_. Consider for
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instance the following set: {Gc1, Tr(c2)9, Gc2, Tr(c1)9}. Intuitively, c1

doesn_t directly refer to itself, but it is still indirectly self-referential

because it refers to c2, which in turn refers to c1 (Leitgeb 2005 calls this

phenomenon Fcircularity_, reserving the term Fself-reference_ for what we

call Fdirect self-reference_). In order to develop an adequate notion of

reference, then, we will need to look at the transitive closure of the notion

refers directly to. In this way we obtain the general notion of direct or

indirect reference, which is of interest for the paradoxes. Clearly, it would

be of no particular import to show that Yablo_s paradox does not involve

any direct self-reference, since much simpler constructions that share this

property are known to generate Liar-like phenomena. This is in particular

the case of the Circular Liar: {Gc1, Tr(c2)9, Gc2, KTr(c1)9}.
The rest of this Appendix is organized as follows. We define a notion

of Primary Reference set of a formula, intended to include all the objects

that the formula may refer to directly. We then define the Transitive

Reference set of a formula, intended to include all the objects that the

formula refers to directly or indirectly. Finally, we define conditions

under which a closed formula

(1) is guaranteed not to be (directly or indirectly) self-referential (in case

it does not belong to its own Transitive Reference set), and

(2) is guaranteed not to involve self-reference (in case no member of its

Transitive Reference set belongs to that very same set).
We assume throughout that all the relevant formulas are in restricted

quantifier notation Y an assumption which makes our criterion much less

general than Leitgeb_s characterization of self-reference in Leitgeb 2005.

We will conclude the Appendix with an application of our criterion to

Yablo_s Paradox.

Definitions and Examples

Primary Reference We start with the definition of direct reference for a

formula in which all quantifiers appear in restricted quantifier notation.

The definitions we give are supposed to be very liberal, in the sense that

an element d will be Freferred to_ if there is some chance that d might

affect the value of the formula. Since we are after a criterion of non-

reference (specifically: of non-self-reference), it is of course judicious to

make the criterion as liberal as we possibly can.
The definitions we give hold for formulas in restricted quantifier

notation in a trivalent logic satisfying Reasonableness (defined formally

in (14)), which can be seen as a trivalent generalization of the Tree of

Numbers. We start with the definition of the Reference Set of a formula
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F relative to a set S of assignment functions. Intuitively it can be seen as

the set of all assignment functions which will be Faccessed_ in the

evaluation of F relative to a member of F. We write e for the null

assignment function. As usual, s[xik
Y d] is the assignment function

which is identical to s with the possible exception that it assigns d to xik

(note in particular that e[xik
Y d ] is simply the partial function that

assigns d to xik
, which we also write as [xik

Y d ]).

(51) Reference Set of F relative to S

a. If F is atomic, R(F, S) = S

b. If F = K F 0, R(F, S) = R(F 0, S)

c. If F = (F 0 $ F 00) or F = (F 0 ¦ F 00), R(F, S) = R(F 0, S) ? R(F 00, S)

d. IfF = [Qxi: F 0] F 00, R(F, S) = R(F 00, {s[xi Y d]: s Z S $ d Z D $

I xi!d½ � (F 0) = 1})

If F is a closed formula, we define its Primary Reference, PR(F), to be:

(52) PR(F) = [s 2 R F; ef gð Þ rng(s)

In other words, PR(F) is the set of all objects that are in the range of

assignment functions that are in the Reference Set of F relative to {e}.

EXAMPLES.

(53) F 2 [Ox1: P(x1)]Q(x1)

R(F, {e}) = R(Q(x1), {[x1 Y d]: d Z D $ I[x1Yd ](P(x1))=1})

= R(Q(x1), {[x1 Y d]: d Z D $ d Z I+(P)})

= {[x1 Y d]: d Z D $ d Z I+(P)}

PR(F ) = ?sZR(F, {e}) rng(s) = {d Z D: d Z I+(P)}

(54) F 0 2 [Ox1: P(x1)][Ox2: P 0(x2)]Q(x1)

R(F 0,{e})=R([Ox2:P 0(x2)]

Q(x1),{[x1Yd]:dZD$I[x1Yd ] (P(x1))=1})

= R([Ox2: P 0(x2)]Q(x1), {[x1 Y d]: d Z D $ d Z I+(P)})

= R(Q(x1),{[x1 Y d][x2 Y d 0]: dZD$d 0ZD$dZ

I+(P)$d 0ZI+(P 0)})

={[x1Yd][x2Yd 0]:dZD$d 0ZD$dZI+(P)$d 0ZI+(P 0)}
PR(F 0)=?sZR(F 0),{e}rng(s)={dZD:dZI+(P 0 )}

Transitive Reference
We are now in a position to define the Reference Set of Level k and then

simply the Reference Set of a formula. These notions are intended to apply

to a fragment whose sentences are all in Restricted Quantifier Notation.
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(55) We define the Reference Set of Level k and the Reference Set of F

as follows:

a. Reference Set of Level k
Ref1(F) = PR(F)
Refk + 1(F) = ? {PR(d): d Z Refk(F) $ d is a closed formula}

b. Reference Set
Ref(F) = [k � 1 Refk (F)

EXAMPLES.

(56) F := [Ox1: P(x1)] Q(x1)
Suppose that I+(P) = {d, F}, where d is not a sentence. As shown in (53),

PR(F) = {d Z D: d Z I+(P)}. Hence Ref1(F) = PR(F) = {d Z D: d Z

I+(P)} = {d, F}. Ref2(F) = ?{PR(d): d Z Ref1(F) $ d is a closed

formula}= ?{PR(F)}={d, F}. Ref(F) = [k � 1 Refk (F) = {d, F}. F is

clearly self-referential, since it is contained in its own Reference Set.

(57) F 0 := [Ox1: P 0(x1)]Q(x1)

Suppose that I(P) = {d 0, F}, where d 0 is not a formula and F is as in (56).

Replacing P with P 0 in (56), we obtain: PR(F 0) = {d 0, F}. Ref1(F 0) =

PR(F 0) = {d 0, F}. Ref2(F 0) = ? {PR(d): d Z Ref1(F 0) $ d is a closed

formula}= ? {PR(F)}={d, F}.

It is clear that Ref(F) = {d 0, d, F}. F 0 is not self-referential, since it is

not contained in its own Reference Set. However it involves self-

reference, in the sense that it refers to a formula, namely F, which is

itself self-referential.

We can finally state (1) a condition that guarantees that a formula is

not self-referential, and Y more interestingly Y (2) a condition that

guarantees that a formula does not involve self-reference, in the sense

that it does not refer to any formula that is self-referential. (Note that the

second condition entails the first. If F is self-referential, it refers to F,

and hence it refers to a formula that is self-referential. Failure of the first

condition entails failure of the second, and so by contraposition the

second condition entails the first).

(58) Sufficient Conditions of Non-Self-Reference

a. F is guaranteed not to be self-referential if F u Ref(F)

b. F is guaranteed not to involve self-reference if Od ((d is a sentence $

d Z Ref(F)) Y d u Ref(d))
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Note: If F refers (directly or indirectly) to a formula F 0 which is not in

Restricted Quantifier Notation, the criterion for determining what F 0 refers

to will not work (since our criterion is not even defined in that case). Still,

by inspecting Ref(F) we will be in a position to tell that our criterion of

reference is not reliable, since we will find a formula, namely F 0, which is

in Ref(F) and which does not have the right syntactic form. This limitation

will not have any consequence in what follows, since all the formulas we

will be considering will only include in their Reference Set formulas that

are in Restricted Quantifier Notation.

Application to Yablo_s Paradox

We now apply the notions we defined to Yablo_s paradox. It will be seen

that each of Yablo_s sentences satisfies our Sufficient Conditions of

Non-Self-Reference, and does not involve self-reference. For simplicity

we only consider the Universal Liar, which we put in Restricted

Quantifier Notation. The language in which it is stated is the target

language of our translation schemes; it is sorted, with variables ki

ranging over non-negative integers and variables xi ranging over objects.

We assume that S8 is evaluated with respect to an interpretation I which

is compatible with the denotation function that S8 specifies.

(59) S8 := {Gs(k), [Ok1: k1 9 k][Ox2: x2 = s(k1)] KTr(x2)9: i Q 0}

For each k Q 0,
R(s(k), {e}) = {[k1 Y n][x2 Y d]: n Z N $ d Z D $ n > k $ d =

(I(s))(n)}
PR(s(k)) = {n: n 9 k} ? {s(n): n9k}
We note that for each k Q 0, PR(s(k + 1)) � PR(s(k)) (*)
We show by induction that for all i Q 1, Refi(s(k))�{n: n9k}?{s(n):

n 9 k}
a. Ref1(s(k)) = PR(s(k)) = {n: n > k} ? {s(n): n 9 k}
b. Refi+1(s(k)) = ?{PR(d): d Z Refi(s(k)) $ d is a closed formula}
� ? {PR(s(n)): n9k}
� PR(s(k + 1)) (by (*))
� PR(s(k))

� {n: n 9 k}?{s(n): n9k}
In the end Ref(s(k)) = {n: n 9 k}?{s(n): n 9 k}. We see that for no k 0 Q k is

s(k 0) a member of Ref(s(k 0)). Thus s(k) does not involve self-reference.

The same methods can be used to show that none of the translations

we have used in this article involves self-reference either.
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NOTES

1 A few words might be in order to justify this terminology. Kripke starts from a classical

interpretation I, to which the Truth predicate Tr (which is itself trivalent) is added. A new

(trivalent) interpretation I 0 is determined by the combination of I and a specification of a

pair GI 0+(Tr), I 0j(Tr)9 of an extension and an anti-extension for Tr. If we define

f (GI 0+(Tr), I 0j(Tr)9) = Gtrue sentences according to I 0, false sentences according to I 09,

we see that a fixed point in Kripke_s sense satisfies f (GI 0+(Tr), I 0j(Tr)9) = GI 0+(Tr),

I 0j(Tr)9.

When the truth predicate can take as arguments terms that denote non-sentences,

some decision must be made as to how these should be classified. Kripke puts them in

the anti-extension of the Truth predicate, which can then be paraphrased as: is a true

sentence (rather than: is true). The revised Convention T must then take the following

form:(1) I 0+(Tr) = {d Z D: d Z L $ I 0 (d) = 1}; I 0j(Tr) = {d Z D: d u L ¦ (d Z L $

I 0 (d) = 0)}.
2 See also Leitgeb 2001. Cook_s construction departed from Yablo_s in relying on

infinite conjunction rather than on quantification over sentences. We will not be

concerned with this distinction in the present paper.
3 The argument, which was pointed out to me by Tony Martin, goes as follows.

Consider a series of sentences of the form {Gck, fk (ck + 1, ..., ck + nk
)9: k Q 0}, where

for each k Q 0 fk is a Boolean function. We show that for any such series there exists a

bivalent valuation. Let us say that an assignment of truth-values to c0, ..., cn is acceptable

just in case for each i e n, (1) or (2) holds:

(1) for some k such that ck is an argument of fi, k 9 n

(2) (1) fails, and the truth value assigned to ci is as required by the value of fi.

For each n, there is an acceptable assignment of bivalent values to c0, ..., cn.

We can simply start with an arbitrary value for cn and any other sentence which

has at least an argument cm for m 9 n. We then compute the values of the other

sentences as the fk_s dictate. Thus the binary tree of all acceptable assignments has

arbitrary long branches. By Koenig_s Lemma, it has an infinite branch, which is the

desired valuation.

Albert Visser (p.c.) suggests an alternative argument. Consider the theory Th := {ck 6
fk (ck + 1, ..., ck + nk

): k Q 0}, where the ck_s are construed as propositional letters rather

than as sentence names. Each finite subset of Th has a model (as in the preceding

argument, we assign an arbitrary value to the Flast_ ck_s, and compute the value of the

Fearlier_ ck_s as the fk_s require to make the equivalences true). By the Compactness

Theorem for propositional logic, Th itself has a model, which provides the desired

valuation.
4 Thanks to an anonymous referee for suggesting that this point be clarified.
5 To put it more rigorously: for each value v Z {0, 1, #}, there is a fixed point in which

all the sentences in the series have the value v.
6 A prior version considered many more cases than was necessary.
7 To see an application of the Uniformity Property, let us consider the following

series:

(1) V = {Gs(i), [Ok : k 9 i] (K Tr(s(k + 2) ¦ Tr(s(k + 1))9}
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By the Uniformity Property (General Case), if I is a fixed point compatible with V,

all the sentences in V have the same value according to I.

Case 1. All sentences have the value 0. This is immediately absurd: for each i 9 0, s(i)

asserts something true, since for each k 9 0, s(k + 2) is false, and hence K Tr(s(k + 2)) is

true, as is (KTr(s(k + 2)) ¦ Tr(s(k + 1))).

Case 2. All sentences have the value 1. No contradiction follows: for each i 9 0, for each

k 9 i, s(k + 1) is true, and hence so is (KTr(s(k + 2)) ¦ Tr(s(k + 1))).

Thus we see that all the sentences in V have the value true in any fixed point in which

they have a classical value; and by construction, none of these sentences involves self-

reference.
8 Note that the requirement holds of all interpretations, not just fixed points. Semantic

autonomy could be stated in terms of Leitgeb_s notion of dependence (Leitgeb 2005),

properly extended to apply to the trivalent case: S is semantically autonomous iff every

member of S is dependent on S.

We give in (1) below Leitgeb_s original definition, and in (2) the modification we

need for the trivalent case (using the notation we adopt in the text).

(1) Leitgeb_s definition of Dependence (Leitgeb 2005, Definition 1 p. 161, slightly

rephrased)

Let LTr be the expansion with a truth predicate of a classical language L. A formula

F of LTr depends on a set of formulas S of LTr iff for all sets G, G 0 of LTr: if S 7 G =

S 7 G 0, ValG(F) = ValG_(F), where ValG(F) is the truth value of F in the expan-

sion of the standard model of first-order arithmetic obtained by giving Tr the

extension S.

(2) Modification of Leitgeb_s definition for a trivalent framework

F is dependent on S iff for all trivalent interpretations I 0, I 00 that extend I (by

assigning an extension and anti-extension to the truth predicate), if Os Z S [(s Z

I 0+(Tr)) 6 s Z I 00+(Tr)) $ (s Z I 0j(Tr)) 6 s Z I 00j(Tr))], then I 0(F) = I 00(F).

Given (2) [in this footnote] and (27) [in the text], S is semantically autonomous iff

every member of S is dependent on S.
9 In a nutshell, the argument is that all the sentences we have considered can be

expressed in terms of a special form of restricted quantification, with each quantifier

being of the form [Ox : F]__ or [Mx : F 0]__ for some classical formulas F, F 0 (henceforth

called restrictors). Conservativity implies that only the objects satisfying the restrictors

F, F 0 need to be taken into account when evaluating the truth of these formulas. If the

restrictors only hold true of other sentences in the series, Semantic Autonomy is

guaranteed. A development of this idea is used in the Appendix to find a sufficient

condition of non-self-reference.
10 Here is a more complete argument. Suppose that k denotes an integer K. Then for any

formula F with one free variable k 0,

1) I* (Mk 00 (k 00 9 k $ Ok 0(k 0Q k 00 Y F[k 0]))) = 1 iff for some K 00 9 K, I*(Ok 0(k 09 K 00 Y
F[k 0])) = 1, iff for some K 00 9 K, for each K 0Q K 00, I*(F[K 0]) = 1. If this condition is

interpreted in a standard model of the integers, it is equivalent to: F is true of all but

a finite number of the integers.

2) I*(Mk 00 (k 00 9 k $ Ok 0(k 0 Q k 00 Y F[k 0]))) = 0 iff for all K 00, I*(K 00 9 k $ Ok 0(k 0 9
k 00 Y F[k 0])) = 0, iff for all K 00 9 K, I*(Ok 0(k 0 9 K 00 Y F[k 0])) = 0, iff for all K 00 9
K, for some K 0 Q K 00, I*(F[K 0]) = 0. If this condition is interpreted in a standard

model of the integers, it is equivalent to: F is false of an infinite number of

integers.
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11 This logic can be seen as one of the possible extensions to Generalized Quantifiers of

the FWeak Kleene Logic_, whose connectives are defined by the following rules:

(1) a. Is(KF) = 1 iff Is(F) = 0; = 0 iff Is(F) = 1

b. Is(F $ G) = 1 iff Is(F) = Is(G) = 1; = 0 iff (Is(F) m # and Is(G) m #) and (Is(F) = 0

or Is(G) = 0)

(37) is by no means the only natural choice to extend the Weak Kleene Logic to (some)

generalized quantifiers, in particular in view of the Weak Kleene rule for existential

quantifiers:

(2) Is(Mx F) = 1 iff for each d in the domain, Is x!d½ � Fð Þ m # and for some d in the

domain, Is x!d½ � Fð Þ ¼ 1;

Is(Mx F) = 0 iff for each d in the domain, Is x!d½ � Fð Þ ¼ 0

Suppose that we wanted to define [Some x: F]G as Mx(F ¦ G). In case for any element

d in the domain Is x!d½ � Gð Þ ¼ # , we would have that Is x!d½ � F ^ Gð Þ ¼ # and hence

that Is(Mx(F $ G))=#. But if we apply the definition in (37), it may still be that Is([Some

x: F]G)m# (this will be guaranteed in case each d in the domain that satisfies

Is x!d½ � Fð Þ ¼ 1 also satisfies Is x!d½ � Gð Þ ¼ #Þ:
12 Due to the simplicity of the series {Gsi, Tr(si + 1) 9 : i Q 0}, it is hard to see how any

translation could avoid this difficulty. But it would be interesting to settle this question in

full generality, something that we do not attempt here.
13 Thanks to Denis Bonnay for pointing out one error and one omission in an earlier

version of this paragraph.
14 Many thanks to an anonymous referee of Schlenker 2006 for urging that this question

be addressed (the present discussion borrows from a footnote added to Schlenker 2006

after the referee_s query).
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