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ABSTRACT. In Belnap’s useful 4-valued logic, the set 2 = {T , F } of classical truth
values is generalized to the set 4 = P (2) = {∅, {T }, {F }, {T , F }}. In the present paper,
we argue in favor of extending this process to the set 16 = P (4) (and beyond). It turns
out that this generalization is well-motivated and leads from the bilattice FOUR2 with
an information and a truth-and-falsity ordering to another algebraic structure, namely the
trilattice SIXTEEN3 with an information ordering together with a truth ordering and a
(distinct) falsity ordering. Interestingly, the logics generated separately by the algebraic
operations under the truth order and under the falsity order in SIXTEEN3 coincide with
the logic of FOUR2, namely first degree entailment. This observation may be taken as
a further indication of the significance of first degree entailment. In the present setting,
however, it becomes rather natural to consider also logical systems in the language ob-
tained by combining the vocabulary of the logic of the truth order and the falsity order.
We semantically define the logics of the two orderings in the extended language and
in both cases axiomatize a certain fragment comprising three unary operations: a nega-
tion, an involution, and their combination. We also suggest two other definitions of logics
in the full language, including a bi-consequence system. In other words, in addition to
presenting first degree entailment as a useful 16-valued logic, we define further useful
16-valued logics for reasoning about truth and (non-)falsity. We expect these logics to
be an interesting and useful instrument in information processing, especially when we
deal with a net of hierarchically interconnected computers. We also briefly discuss Arieli’s
and Avron’s notion of a logical bilattice and state a number of open problems for future
research.

KEY WORDS: 4-valued logic, 16-valued logic, bi-consequence logic, first degree entail-
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1. INTRODUCTION: GENERALIZED VALUATIONS, FOUR-VALUED

LOGIC, AND BILATTICES

According to a strategy of semantic analysis elaborated by J. Michael
Dunn, a sentence can be rationally considered to be not just true or just
false, but also neither true nor false as well as both true and false.1 This
can be made explicit by developing a suitable valuation procedure that
generalizes the notion of an ordinary, classical truth value function2 by
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allowing “under-determined” and “over-determined” valuations. Let U be
a “set of topics” such that X1 ⊆ U and X2 ⊆ U . In [14, pp. 121–
132], Dunn introduces so-called “aboutness valuations” that ascribe to
each sentence a “proposition surrogate”, namely a pair (X1, X2), where
X1 represents topics the sentence gives definite information about, and X2

represents topics the negation of the sentence gives definite information
about (cf. [18, p. 36]). A proposition surrogate need be neither disjoint
(X1 ∩ X2 = ∅) nor exhaustive (X1 ∪ X2 = U ), thus making “truth value
gaps” and “truth value gluts” possible.

The same idea is realized in [16] by interpreting a valuation not as a
function but just as a relation connecting sentences of the language in use
with elements from 2. Such a valuation relates to each sentence either
the value “true” (T ) or “false” (F ), or neither of these values (partial
function), or both of them (non-functional relation). Dunn provides the
non-standard valuations with an intuitive motivation in terms of abstract
(epistemic) “situations” that may well be incomplete or inconsistent (see
[16, pp. 155–157]).

An equivalent although somehow more “ontological” way of grasping
this point is considering a valuation still a function, however, not from
sentences to elements of the set 2, but from sentences to subsets of this set.
This latter interpretation can be found in [16] as well (cf. also [19, p. 7]). In
what follows we take this method of generalizing the notion of a classical
truth function as paradigmatic. We call a truth value function conceived in
this way a generalized truth value function.3

In [9, 10] (also reproduced in [3, §81]) Nuel D. Belnap takes Dunn’s
idea a step further by generalizing not just the notion of a truth value func-
tion but the very notion of a truth value itself. Namely, Belnap explicitly
regards the empty and the “overcomplete” subsets of the set {F, T } as
new truth values. Using a highly heuristic interpretation of a truth value
as information that “has been told to a computer” he arrives at a “useful
four-valued logic” of “how a computer should think” with the following
four generalized truth values:

N = {} – none (“told neither falsity nor truth”);

F = {F } – “plain” falsehood (“told only falsity”);

T = {T } – “plain” truth (“told only truth”);

B = {F, T } – both falsehood and truth (“told both falsity and truth”).

Belnap’s four-valued logic has found numerous applications in various
fields such as the theory of deductive databases, distributed logic pro-
gramming, and other areas. Inspired by applications of logic in computer
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Figure 1. Bilattice FOUR2.

science and AI, M. Ginsberg [31, 32] introduced the notion of a bilattice
and pointed out that Belnap’s four truth values form the smallest non-
trivial bilattice.4 Roughly speaking, a bilattice is a non-empty set with
two partial orderings, each constituting its own lattice on this set. The
bilattice based on the set 4 = {N, F, T, B}, which we will call FOUR2

(the subscript ‘2’ stands for ‘bi’), is presented by a double Hasse diagram
in Figure 1.

This diagram is placed into a two-dimensional coordinate plane, where
the horizontal axis stands for a truth order (≤t ) and the vertical axis stands
for an information order (≤i).5 These orderings represent an increase
in truth and information, respectively, i.e., x ≤t y means that y is
“at least as true” as x, and x ≤i y means that y is “at least as informative”
as x.

From a logical point of view, the truth ordering is most important. It is a
“logical order” that determines the properties of logical connectives as well
as the relation of entailment defined on FOUR2. Namely, the lattice oper-
ations of meet and join under this order are just logical conjunction and
disjunction. The inversion of ≤t represents a certain kind of negation. As to
entailment, it can be defined in the following way. Let v4 (a 4-valuation) be
a map from the set of propositional variables into 4, and let this valuation
be extended to compound formulas as usual, in accordance with the lattice
operations under ≤t (cf. Definition 3.8). Then we have:

DEFINITION 1.1. A �4 B iff ∀v4(v4(A) ≤t v4(B)).

This relation can be axiomatized by the consequence system Efde of
“tautological entailments” from [2, §15.2] (also called first degree entail-
ment).
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2. TAKING GENERALIZATION SERIOUSLY

There is an interesting question concerning Dunn’s and Belnap’s four-
valued semantics, namely: Why should we stop the “generalization pro-
cedure” just at the four-valued stage and not proceed further to considering,
say, combinations of T and B, N and B, etc.? If we can get a “useful four
valued logic” by taking the power-set of 2, why should one not consider a
sixteen-valued logic based on P (4), the power-set of the set of generalized
truth values obtained previously? Would such a logic be “useful”? This
question has been raised from time to time in research seminars and dur-
ing conference debates, but it remains still chiefly a kind of a “standard
question”:6 we are not aware of any comprehensive and systematic discus-
sion of this question in print.7 Yet, we believe that it is an interesting and
important question.

The “oral tradition” supplies the question with one typical reply, argu-
ing to the effect that any combination of Belnap’s four truth values would
be in a sense superfluous. The argument usually goes as follows. Consider,
e.g., the combination TB(= {{T }, {F, T }}) of T and B. This new truth
value would then mean “true and true-and-false”. But a repetition of truths
gives us no new information (is superfluous)! Thus, the meaning of TB, it
is claimed, collapses just into “true-and-false”, and in this way we simply
obtain B. An analogues argument reduces FB to B, and it is not difficult to
argue in a similar way that FT is, in fact, also B. Further, a combination of
N with any other truth value seems to be superfluous as well, for unifying
the empty set with any other set gives just this latter set. As a consequence
one might conclude that any attempt to continue generalizing truth values
beyond the four values introduced by Belnap should fail due to a collapse
of any new truth value into one of the initial four.

However, a more careful examination shows that such a conclusion is
not justified. First, recall that the proper interpretation of T is not simply
“true” but “true-only” (and analogously for falsehood). And the combi-
nation of “true-only” and “true-and-false”, which we get in the new truth
value TB, is not so trivial and, in any case, is not so easily reducible to
“true-and-false” as the above argument seems to suggest. Second, one may
notice that this argument works only under the implicit interpretation of
the comma between elements in new truth values as set-theoretical union
and the identification of a set x with the singleton {x}. Only then one
would be able to conduct the suggested manipulation: {{T }, {F, T }} =
{{T } ∪ {F, T }} = {T , F, T } = {F, T }, which is obviously incorrect.
{{T }, {F, T }} is, of course, distinct from B = {T } ∪ {F, T }, and therefore,
it would be more natural to consider the generalized truth value {{T },{F,T }}
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an independent value in its own right. Similarly, {∅, {F, T }} is not the
same as {F, T }, etc.

Thus, there are good reasons for taking the above mentioned general-
izing procedure seriously and considering a second-order generalization,
which results from taking the power-set of {N, F, T, B}.8 In this way we
obtain the following set 16 of sixteen generalized truth values (denotations
for most values are obvious, and A stands for “all”):

1. N = ∅

2. N = {∅}
3. F = {{F }}
4. T = {{T }}
5. B = {{F, T }}
6. NF = {∅, {F }}
7. NT = {∅, {T }}
8. NB = {∅, {F, T }}

9. FT = {{F }, {T }}
10. FB = {{F }, {F, T }}
11. TB = {{T }, {F, T }}
12. NFT = {∅, {F }, {T }}
13. NFB = {∅, {F }, {F, T }}
14. NTB = {∅, {T }, {F, T }}
15. FTB = {{F }, {T }, {F, T }}
16. A = {∅, {T }, {F }, {F, T }}.

That 16 makes perfect sense can also be shown by employing Belnap’s
interpretation of truth values as information that could be told to a com-
puter. One of the main motivations for Belnap’s interpretation is the ob-
vious observation that a computer can receive information from various
(maybe independent) sources. Now a situation is possible, when one source
informs a computer that a sentence is true-only, while another informant
supplies (perhaps without being aware of this) inconsistent data, namely
that the sentence is both true and false: a clear case for TB. And if
a computer has been simultaneously “told” that a sentence is true-only
(informant 1), false-only (informant 2), both-true-and-false (informant 3)
and neither-true-nor-false (informant 4), then A appears to be not a “mad-
ness” but just an adequate device for representing this situation. Dunn
and Hardegree [20, p. 277, our emphasis] seem to argue along the same
lines, when they remark that “there can be states of information that are
inconsistent, incomplete, or both”. Obviously, an information state that
is both inconsistent and incomplete cannot be represented by any single
value from 4, whereas 16 offers the value NB to account for this situation.

In fact, Belnap’s interpretation suits perfectly well when applied to a
single computer. In addition, it presupposes that this computer receives
information from classical sources, i.e., from sources which can operate
exclusively with classical truth values (T , F ). But what if the computer’s
informants behave nonclassically? Moreover, nowadays it is quite rare for
a computer to stay completely isolated and not being connected (even from
time to time) to other computers. And it appears that Belnap’s interpreta-
tion cannot adequately be applied when we deal not just with one com-
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Figure 2. A computer network.

puter but with several interconnected computers, i.e., a computer network
(conceived hierarchically).

Indeed, consider four Belnap computers9 (C1, C2, C3, C4) connected to
some central computer (C

′
1), a server, to which they are supposed to supply

information (Figure 2). It is fairly clear that the logic of the server itself (so,
the network as a whole) cannot remain four-valued any more, and to get
an adequate tool for handling this situation we have to involve 16. Inciden-
tally, it is interesting to observe that if we wish to extend our network and
connect our server to some “higher” computer (C

′′
1), then generalized truth

values of the third order (the set P (16)) come into question (and so on),
which motivates further generalization of the present construction (see the
last section of this paper).

Note that in 16, each of Belnap’s original four truth values from 4
underwent an important transformation by being promoted to the single
element of some “higher set”. We mark this by putting the corresponding
truth values in 16 into italics. Obviously, N ∈ N, F ∈ F, T ∈ T and B ∈ B.
It is also interesting to observe the difference between FT and Belnap’s B.
We will discuss this difference and generally an intuitive motivation for
“generalized truth values of higher order” in more detail later.

3. THE TRILATTICE SIXTEEN3

The rest of the paper is devoted to investigating 16 and elucidating some
of its logical and algebraic properties. To meet this goal, we introduce
one central notion that will be of great importance for the whole further
analysis.

DEFINITION 3.1. An n-dimensional multilattice (or simply n-lattice)
is a structure Mn = (S, ≤1, . . . , ≤n) such that S is a non-empty set and
≤1, . . . , ≤n are partial orders defined on S such that (S, ≤1), . . . , (S, ≤n)

are all distinct lattices.
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The notion of a multilattice10 (cf. [43]) is a generalization of the notion of
a bilattice along the lines proposed in [40], where a generalized truth value
space of constructive logics has been presented in the form of a trilattice.
The trilattice in [40]11 is a direct extension of a bilattice structure with a
third partial order (≤c), which represents there an increase in constructiv-
ity. However, elements of a truth value space may well incorporate some
other property (or properties), and then some additional partial orders may
be needed. Note that we do not require that ≤1, . . . , ≤n should be the only
(and all) partial orders that exist for the given set. That is, a basic set of
generalized truth values may give rise to a 2-lattice, 3-lattice, 4-lattice,
etc., depending on the purposes of the analysis and, of course, on how
many partial orders exist on it.

Following Fitting and others (see, e.g., [27]), we call an n-lattice com-
plete iff all the lattices that constitute this multilattice are complete, inter-
laced iff each pair of meet and join is monotone (i.e., order preserving)
with respect to each partial order of the multilattice, and distributive iff all
2(2n2 − n) distributive laws connecting its meets and joins hold.

Consider any two distinct ordering relations defined on some non-empty
set. We say that these relations are mutually independent with respect
to these definitions (or are defined mutually independently) iff they are
not inversions of each other and the only common terms that are used
in both definitions, except of metalogical connectives and quantifiers, are
the usual set theoretical terms (for the intuitive motivation for the idea of
“mutual independence” see [40, pp. 782–783]). The following definition
introduces an important class of multilattices allowing to reasonably re-
duce the amount of partial orders in a multilattice to relations that are in a
certain sense “non-trivial” (or “interesting”).

DEFINITION 3.2. A multilattice is called proper iff all its partial orders
can be defined mutually independently.

Let us return for a while to the bilattice FOUR2 and formally define its
ordering relations (≤i and ≤t ). The definition of ≤i is very simple: for any
x ∈ 4 we just put x ≤i y iff x ⊆ y.12 For ≤t the situation is more intricate.
For each element of 4 we first define its “truth part” and its “falsity part”
as follows:

xt := {z ∈ x | z = T }; xf := {z ∈ x | z = F }.
Then we have: x ≤t y iff xt ⊆ yt and yf ⊆ xf .13 This definition clearly

shows that within FOUR2, ≤t is in fact not just a truth order but rather
a “truth-and-falsity order”: by ordering the truth values we have to take
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into account not only the “truth-content” of each value but also its “falsity-
content”. An increase in truth-content automatically means here a decrease
in falsity content (cf. [26, p. 480]). In other words, ≤t in FOUR2 seems to
presuppose that falsehood by itself is less true than truth, and thus one
may suspect that truth and falsity in FOUR2 are not entirely autonomous
notions.

Now, when we turn to the algebraic structure of 16, it appears that it is
here possible to discriminate between an increase in truth and a decrease in
falsity and thus to define a truth order and a (non-)falsity order as distinct
and in effect mutually independent relations. To do so we have to redefine
the sets xt and xf , and to explicitly introduce their complements:

xt := {y ∈ x | T ∈ y}; x−t := {y ∈ x | T /∈ y};
and analogously for falsity:14

xf := {y ∈ x | F ∈ y}; x−f := {y ∈ x | F /∈ y}.
Then we define:

DEFINITION 3.3. For every x, y in 16:

(1) x ≤i y iff x ⊆ y;
(2) x ≤t y iff xt ⊆ yt and y−t ⊆ x−t ;
(3) x ≤f y iff xf ⊆ yf and y−f ⊆ x−f .

In this way the algebraic structure of 16 is that of a proper 3-lattice, a
trilattice with three mutually independent partial orders that represent in-
crease in information, truth and falsehood. This trilattice, which we for
obvious reason call SIXTEEN3, is presented by a triple Hasse diagram in
Figure 3 (cf. Figure 5 in [40]). One can clearly observe in this diagram all
three partial orderings. A and N are, respectively, the lattice top and bottom
relative to ≤i , TB and NF relative to ≤t , and FB and NT relative to ≤f .
In accordance with the underlying interpretation, A and N are then the most
and the least informative elements of 16, TB and NF are the most and the
least true of its elements, and FB and NT are the most and the least false
elements. Note that the f -axis in Figure 3 is drawn a bit approximately
and gives only a rough idea about the third “dimension” of SIXTEEN3. An-
other projection of SIXTEEN3 (on the plain t–f ) is represented in Figure 4
below.

It is interesting to observe that SIXTEEN3 has altogether exactly eight
distinct partial orders that are not inversions of each other. In addition to the
relations introduced in Definition 3.3 there are: a “truth-only” order (with
T and NFB as top and bottom); a “falsity-only” order (with F and NTB);
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Figure 3. Trilattice SIXTEEN3 (projection i–t).

Figure 4. Trilattice SIXTEEN3 (projection t–f ).

a “truth-only and-falsity-only” order (with FT and NB); a “both-only”
order (with B and NFT); a “none-only” order (with N and FTB). But these
five additional relations are all not independent and in fact “derivative” of
the truth order and falsity order from Definition 3.3 in the sense that any
of them can be defined through a certain combination of the functions (·)t ,
(·)−t , (·)f and (·)−f used in the definitions of ≤t and ≤f .
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One might consider the generalized truth values B, N, F, and T form
16 as analogues of the truth values B, N, F and T from 4.15 However,
some of these truth values from 16 and 4 behave quite differently under
one and the same ordering relations in SIXTEEN3 and in FOUR2. For ex-
ample, within FOUR2, B is more and N is less informative than F and T,
but in SIXTEEN3, we see that B, N, F, and T are situated on the same
informational level. This latter fact might seem to violate some basic intu-
itive motivations. Recall that according to Belnap’s interpretation B carries
more information than T, because B stands for “both true and false”,
whereas T stands for “only true” (and analogously for other truth values).

However, it turns out that the behavior of B, N, F, and T in SIXTEEN3

is much more natural than one might think on the face of it. First, note
again that analogous values from 4 and from 16 are not the same, e.g.,
T = {T } but T = {{T }}, etc. Moreover, we remark that under ≤i general-
ized truth values should be ordered exclusively by the amount of elements
in the corresponding sets: the more elements a set has, the more infor-
mative it is. But in 16 the truth values B, N, F, and T are all singletons
(in contrast to N, F, T and B in 4), and hence they all are equally infor-
mative, precisely as SIXTEEN3 suggests. Intuitively this means that – as
one may easily observe – any of Belnap’s initial truth values, and not only
B, may be viewed as saying (explicitly or implicitly) something both about
truth and falsehood, either in a positive or in a negative mode. To make this
point explicit, the elements of 4 need a slightly different reading. To justify
this reading, we remark that, e.g., T – “truth-only” – means actually noth-
ing more than “true and not false”. But from a purely quantitative point
of view a negative piece of information is exactly of the same cash value
as a positive one. In this way we arrive at the following reinterpretation
(or maybe more precise interpretation) of Belnap’s four truth values:

N – “a sentence is not false and not true”, [non-falsehood, non-truth];
F – “a sentence is false and not true”, [ falsehood, non-truth];
T – “a sentence is not false and true”, [non-falsehood, truth];
B – “a sentence is false and true”, [ falsehood, truth].

Let us emphasize that this reading for elements of 4 could be explicated
only within the higher-order construction 16. Generally speaking, the key
point of the semantic approach by Dunn and Belnap consists in taking the
power set of some basic set of truth values and thereby obtaining a new
set of generalized truth values, which in turn should provide information
concerning this basic set, more specifically, information about the assign-
ment of elements of the given base to a sentence. Thus, σ(x) := {x} may
naturally be viewed as an operation of “informatization”. It creates a “piece
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of information” that refers to some “reality of a (one-step) lower order”:
the truth value {x} is supposed to supply information just about x.16

It is now clearer what the difference between N and N consists in. The
only feature of N is that it presents no information at all (relative to the truth
values from the corresponding base). That is, in 4 the value N just gives
no information concerning the classical truth values and in 16 concerning
Belnap’s truth values. But N in 16 is more expressive. Namely, it provides
specific information saying that a sentence has been assigned Belnap’s
value N, which can be articulated by the metastatement that a sentence
is neither classically true nor classically false.

The reader may also observe the difference between FT and B. Recall
that Belnap’s B is often interpreted as representing the idea of paracon-
sistency, the view that nontrivial contradictions can well exist. However,
this interpretation makes sense only under some implicit linguistic con-
vention, namely the assumption that truth and falsehood are, in effect,
contradictory notions. But the real, logical contradiction to truth, that does
not depend on any assumption, is just non-truth, and a logical contradiction
to falsehood is non-falsehood. Thus, FT – saying “false and not-true as
well as not-false and true” – is not only more informative, but seems to
express the idea of a (nontrivial) contradictory truth value much better than
B does.

Moreover, it appears that the second-order value A is inconsistent in
an even stronger sense, stating that a sentence with this value is not only
true-and-false, but also true and not-false, false and not-true, and neither-
true-nor-false. Such a sentence takes all the values available at the level
of first-order values, and it becomes clear that this idea of strengthening
the notion of inconsistency can be extended to higher levels. If we define
P1(2) := P (2), and Pn(2) := P (Pn−1(2)) for n > 1, a sentence taking
the value {x | x ∈ Pn(2)} is the maximal inconsistency of order n + 1,
while B can be defined as the inconsistency of order 0.

It is also instructive to notice that N, F, T and B in FOUR2 and B, N,
F, and T in SIXTEEN3 are ordered differently under ≤t as well. Within
FOUR2, T is “more true” than B, and N is more true than F, whereas N
and B are of the same truth level. But in SIXTEEN3, B comes out more
true than N, while T and B as well as N and F are (pairwise) “equally
true”. This situation is entirely clear. As it was noted above, in SIXTEEN3

(but not in FOUR2) ≤t is a pure truth relation: it orders the truth values
by exclusively taking into account what they say about truth, leaving any
information about falsehood without attention.

Clearly, meets and joints exist in SIXTEEN3 for all three partial orders.
We will use � and 	 with the appropriate subscripts for these operations
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under the corresponding ordering relations. SIXTEEN3 emerges then as the
structure (16, �i , 	i , �t , 	t , �f , 	f ).

It was already mentioned above that in FOUR2 the partial order ≤t is
often called (and, in fact, identified with) a “logical order”, for it is sup-
posed to determine the properties of logical connectives and the entailment
relation. But as we have seen, within FOUR2 actually two ordering rela-
tions – one for truth and one for falsehood – are merged into one logical
order. However, when proceeding one step higher to SIXTEEN3, it turns
out that there an increase in truth does not necessarily mean a decrease in
falsehood (and vice versa) any more. Hence, within SIXTEEN3 the logical
order explicitly splits into two distinct relations: the truth order ≤t and the
falsity order ≤f . To display both orders in a precise way, we present in
Figure 4 another projection of SIXTEEN3 (namely the projection on the
plain t − f ). Here the falsity order is inverted, because for defining central
logical notions we will be interested in decreasing (rather than increasing)
falsehood.

Some important properties of �t and 	t , as well as �f and 	f are
summarized in the following, directly checkable proposition:

PROPOSITION 3.4. For any x, y in SIXTEEN3:

(1) T ∈ x �t y ⇔ T ∈ x and T ∈ y;
B ∈ x �t y ⇔ B ∈ x and B ∈ y;
F ∈ x �t y ⇔ F ∈ x or F ∈ y;
N ∈ x �t y ⇔ N ∈ x or N ∈ y;

(2) T ∈ x 	t y ⇔ T ∈ x or T ∈ y;
B ∈ x 	t y ⇔ B ∈ x or B ∈ y;
F ∈ x 	t y ⇔ F ∈ x and F ∈ y;
N ∈ x 	t y ⇔ N ∈ x and N ∈ y.

(3) T ∈ x 	f y ⇔ T ∈ x and T ∈ y;
N ∈ x 	f y ⇔ N ∈ x and N ∈ y;
F ∈ x 	f y ⇔ F ∈ x or F ∈ y;
B ∈ x 	f y ⇔ B ∈ x or B ∈ y;

(4) T ∈ x �f y ⇔ T ∈ x or T ∈ y;
N ∈ x �f y ⇔ N ∈ x or N ∈ y;
F ∈ x �f y ⇔ F ∈ x and F ∈ y;
B ∈ x �f y ⇔ B ∈ x and B ∈ y.

In bilattices, a logical negation is usually defined as an operation that in-
verts the truth order only, leaving the information order unchanged. Fitting
[22] considers also an operation of conflation that inverts ≤i , while ≤t

remains as it is. For trilattices this point has been generalized in [40], where
several unary operations have been introduced under the general label of
inversion. The idea is that an inversion can invert some partial orders in a
trilattice, possibly leaving the other(s) without change. We have then the
following definition:

DEFINITION 3.5. Let T be a trilattice. Then we can introduce the fol-
lowing unary operations on T with the following properties:
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(1) t-inversion(−t ):
(a) a ≤t b ⇒ −t b ≤t −t a;
(b) a ≤f b ⇒ −t a ≤f −t b;
(c) a ≤i b ⇒ −t a ≤i −t b;
(d) −t −t a = a.

(2) f -inversion(−f ):
(a) a ≤t b ⇒ −f a ≤t −f b;
(b) a ≤f b ⇒ −f b ≤f −f a;
(c) a ≤i b ⇒ −f a ≤i −f b;
(d) −f −f a = a.

(3) i-inversion(−i ):
(a) a ≤t b ⇒ −ia ≤t −ib;
(b) a ≤f b ⇒ −ia ≤f −ib;
(c) a ≤i b ⇒ −ib ≤i −ia;
(d) −i −i a = a.

(4) tf -inversion(−tf ):
(a) a ≤t b ⇒ −tf b ≤t −tf a;
(b) a ≤f b ⇒ −tf b ≤f −tf a;
(c) a ≤i b ⇒ −tf a ≤i −tf b;
(d) −tf −tf a = a.

(5) ti-inversion(−t i ):
(a) a ≤t b ⇒ −t ib ≤t −t ia;
(b) a ≤f b ⇒ −t ia ≤f −t ib;
(c) a ≤i b ⇒ −t ib ≤i −t ia;
(d) −t i −t i a = a.

(6) f i-inversion(−f i):
(a) a ≤t b ⇒ −if a ≤t −if b;
(b) a ≤f b ⇒ −if b ≤f −if a;
(c) a ≤i b ⇒ −if b ≤i −if a;
(d) −if −if a = a.

(7) tf i-inversion(−tf i):
(a) a ≤t b ⇒ −t if b ≤t −t if a;
(b) a ≤f b ⇒ −t if b ≤f −t if a;
(c) a ≤i b ⇒ −t if b ≤i −t if a;
(d) −t if −t if a = a.

In SIXTEEN3 all seven inversion operations can be defined as shown in
Table I. A routine calculation over this table immediately gives us the
following proposition:

PROPOSITION 3.6. For any x in SIXTEEN3:

(1) −t −f x = −f −t x = −tf x;
(2) −t −i x = −i −t x = −t ix;
(3) −f −i x = −i −f x = −f ix;
(4) −t −f −ix = −f −t −ix = −t −i −f x = −f −i −t x =

−i −t −f x = −i −f −t x = −tf −i x = −t i −f x =
−f i −t x = −i −tf x = −f −t i x = −t −f i x = −tf ix.

Our main concern will naturally be focused on t-inversion, f -inversion
and tf -inversion as the most obvious candidates for representing an object-
language negation. The following proposition highlights some key features
of these operations that will be employed in the further analysis.

PROPOSITION 3.7. For any x in SIXTEEN3:

(1) T ∈ −t x ⇔ N ∈ x;
N ∈ −t x ⇔ T ∈ x;
F ∈ −t x ⇔ B ∈ x;
B ∈ −t x ⇔ F ∈ x;

(2) T ∈ −f x ⇔ B ∈ x;
B ∈ −f x ⇔ T ∈ x;
F ∈ −f x ⇔ N ∈ x;
N ∈ −f x ⇔ F ∈ x;

(3) T ∈ −tf x ⇔ F ∈ x;
B ∈ −tf x ⇔ N ∈ x;
F ∈ −tf x ⇔ T ∈ x;
N ∈ −tf x ⇔ B ∈ x.
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TABLE I

Inversions in SIXTEEN3.

a −t a −f a −ia −tf a −t ia −f ia −tf ia

N N N A N A A A
N T F NFT B NTB NFB FTB
F B N NFB T FTB NFT NTB
T N B NTB F NFT FTB NFB
B F T FTB N NFB NTB NFT

NF TB NF NF TB TB NF TB
NT NT FB NT FB NT FB FB
FT NB NB NB FT FT FT NB
NB FT FT FT NB NB NB FT
FB FB NT FB NT FB NT NT
TB NF TB TB NF NF TB NF

NFT NTB NFB N FTB T F B
NFB FTB NFT F NTB B N T
NTB NFT FTB T NFB N B F
FTB NFB NTB B NFT F T N

A A A N A N N N

Note that �t , 	t , and −t are now not the only algebraic operations that
naturally correspond to logical conjunction, disjunction, and negation; 	f ,
�f , and −f (or even −tf ) may play this role as well. And taking into
account the fact that x �t y �= x 	f y, x 	t y �= x �f y and −t x �= −f x,
we can state that both logical orders bring into existence “parallel” and, in
fact, distinct logical connectives.

Thus, it seems rather natural to explore the possibility of a unified
approach to all of these operations within a joint logical framework. To
determine such a framework syntactically, we consider (in the most gen-
eral case) the language Ltf that comprises ∧t , ∨t , ∼t , ∧f , ∨f , and ∼f as
propositional connectives. As to the semantics, let v16 (a 16-valuation) be
a map from the set of propositional variables into 16, and let us define:

DEFINITION 3.8. For any A and B:

(1) v16(A ∧t B) = v16(A) �t v16(B);
(2) v16(A ∨t B) = v16(A) 	t v16(B);
(3) v16(∼tA) = −t v

16(A);

(4) v16(A ∧f B) = v16(A) 	f v16(B);
(5) v16(A ∨f B) = v16(A) �f v16(B);
(6) v16(∼f A) = −f v16(A).

This definition naturally extends a 16-valuation v16 to a valuation of
compound formulas, thereby enabling an evaluation of arbitrary formulas
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from Ltf .17 In this way SIXTEEN3 allows a nontrivial coexistence of pairs
of different (although analogous) logical connectives without collapsing
them into each other. It may be helpful to think of ∧t , ∨t , ∼t in terms of
the presence of truth and to treat ∧f , ∨f , ∼f as essentially highlighting the
absence of falsity.

Incidentally, one may notice that SIXTEEN3 in a way “improves” some
perhaps disputable aspects of FOUR2. It has been observed that the ac-
count of the truth functions applied to the “nonstandard” truth values
(N and B) in FOUR2 looks a bit “puzzling” or even “odd” (see
[3, pp. 516–518]). Indeed, intuitively it is not so evident why we should
get N ∧ B = F and N ∨ B = T. SIXTEEN3 offers in fact a quite different
account of gaps and gluts. Their conjunction, for example, can produce
again either a gap or a glut, depending on whether we wish to stress the
presence of truth (using ∧t ) or the absence of falsity (using ∧f ), cf. Note 7.

Following Belnap [3, p. 518], we may now notice that at this point we
have a nice algebraic structure, but we still do not have a logic. To get a
full-fledged logic, a mere lattice of truth values is not enough (no matter
how beautiful it is) – this lattice has also to be equipped with a suitable
entailment relation. The canonical way to do so is to define entailment just
through the logical order as it is done, e.g., in FOUR2 by using ≤t (see
Definition 1.1).

But in SIXTEEN3 – as it was noted above – we actually have two dis-
tinct logical orders (one for truth and one for falsity), and it would be
hardly justifiable to prefer the truth order over the (non-)falsity order as
“the most proper” representative of the notion of “logical inference”. This
means that we get at least three options: to consider the logic of the truth
order (only), to deal with the logic of the falsity order (only), and to define
a logic based on both orderings.

4. THE LOGIC OF THE TRUTH ORDER

Belnap [3, p. 518] thinks of a logic as “rules for generating and eval-
uating inferences”. Let us first concentrate on the latter task. Typically
a (semantic) definition of an entailment relation provides a method for
checking the validity of any inference. And we can use the truth order of
SIXTEEN3 to obtain such a definition (for arbitrary formulas A, B ∈ Ltf )
in a straightforward way.

DEFINITION 4.1. A �16
t B iff ∀v16(v16(A) ≤t v16(B)).18

This definition gives a precise semantic characterization of the logic that
corresponds to the order ≤t in SIXTEEN3. That is, the (semantically de-



136 YAROSLAV SHRAMKO AND HEINRICH WANSING

fined) logic (Ltf , �16
t ) is the set of all statements A �16

t B with A, B ∈
Ltf such that for every 16-valuation v16, v16(A) ≤t v16(B). Paraphrasing
Belnap [3, p. 518], we might state that having an argument involving any
inferential connections in the language Ltf , we can now unambiguously
decide whether “it is a good one” from the standpoint of the truth order.

To obtain rules for generating valid inferences (in a systematic way),
we have to formalize the logic (Ltf , �16

t ), i.e., characterize it syntactically
by means of a suitable deductive system. We shall approach this task using
the apparatus of first degree consequence. We shall introduce complete
systems for some important fragments of the language Ltf , leaving the
syntactic formalization of the whole logic (Ltf , �16

t ) to future work.

4.1. The Language Lt and the System FDEt
t

Let us first investigate a logic that is generated solely by algebraic opera-
tions determined by the truth order. To do so, we consider the language Lt

with ∧t , ∨t and ∼t as propositional connectives. Having a 16-valuation v16,
we can use Definition 3.8(1)–(3) and Propositions 3.4(1), (2) and 3.7(1)
for evaluating any formula of the language Lt .

LEMMA 4.2. In SIXTEEN3 the following clauses are all equivalent (for
any A, B ∈ Lt ):

(a) ∀v16(F ∈ v16(B) ⇒ F ∈ v16(A)), (b) ∀v16(N ∈ v16(B) ⇒ N ∈ v16(A)),

(c) ∀v16(T ∈ v16(A) ⇒ T ∈ v16(B)), (d) ∀v16(B ∈ v16(A) ⇒ B ∈ v16(B)).

Proof. This is a generalization (and, in fact, an extension) of Dunn’s
analogous result for FOUR2 (see, e.g., the proof of Proposition 4 in
[19, p. 10]).

(a) ⇒ (b) First, we define for any valuation v16 a t-counterpart valua-
tion v16′ as follows:

T ∈ v16′(p) ⇔ B ∈ v16(p); B ∈ v16′(p) ⇔ T ∈ v16(p);
F ∈ v16′(p) ⇔ N ∈ v16(p); N ∈ v16′(p) ⇔ F ∈ v16(p).

An easy induction extends v16′ to any formula of Lt .
Now, let ∀v16(F ∈ v16(B) ⇒ F ∈ v16(A)). Assume ∃v16(N ∈ v16(B)

and N /∈ v16(A)). Then F ∈ v16′(B) and F /∈ v16′(A). A contradiction.
(b) ⇒ (c) For any valuation v16 we define a t-dual valuation v16∗ as

follows:

T ∈ v16∗(p) ⇔ N /∈ v16(p); B ∈ v16∗(p) ⇔ F /∈ v16(p);
F ∈ v16∗(p) ⇔ B /∈ v16(p); N ∈ v16∗(p) ⇔ T /∈ v16(p);

and show by induction that it can be extended to any formula of Lt .
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Let ∀v16(N ∈ v16(B) ⇒ N ∈ v16(A)). Assume ∃v16(T ∈ v16(A) and
T /∈ v16(B)). Then N /∈ v16∗(A) and N ∈ v16∗(B). A contradiction.

(c) ⇒ (d) Let a counterpart valuation be defined as above, and let
∀v16(T ∈ v16(A) ⇒ T ∈ v16(B)). Assume ∃v16(B ∈ v16(A) and B /∈
v16(B)). Then T ∈ v16′(A) and T /∈ v16′(B). A contradiction.

(d) ⇒ (a) Let a dual valuation be defined as above. Let ∀v16

(B ∈ v16(A) ⇒ B ∈ v16(B)). Assume ∃v16(F ∈ v16(B) and F /∈ v16(A)).
Then B /∈ v16∗(B) and B ∈ v16∗(A). A contradiction. �
LEMMA 4.3. For any A, B ∈ Lt : A �16

t B iff ∀v16(T ∈ v16(A) ⇒ T ∈
v16(B)).

Proof. In view of the previous lemma, our claim is equivalent with: For
any A, B ∈ Lt : A �16

t B iff

(∗) ∀v16∀y(((∃x ∈ 16) y ∈ x & T ∈ y)

⇒ (y ∈ v16(A) ⇒ y ∈ v16(B)))

& ∀v16∀y(((∃x ∈ 16) y ∈ x & T /∈ y) ⇒ (y ∈ v16(B)

⇒ y ∈ v16(A))).

(⇒) If A |=16
t B, by definition, ∀v16(v16(A) ≤t v16(B)), and thus

(i) v16(A)t ⊆ v16(B)t and (ii) v16(B)−t ⊆ v16(A)−t . By (i), if T ∈ y ∈
v16(A), then y ∈ v16(B). By (ii), if T /∈ y ∈ v16(B), then y ∈ v16(A).

(⇐) Suppose (∗) holds. We must show that (1) v16(A)t ⊆ v16(B)t and
(2) v16(B)−t ⊆ v16(A)−t . Ad (1): Let y ∈ v16(A)t . Then T ∈ y and
y ∈ v16(A). Suppose y /∈ v16(B)t . Then y /∈ v16(B) or T /∈ y. But since
T ∈ y, we have y /∈ v16(B). Since y ∈ v16(A), by (∗), y ∈ v16(B), a
contradiction. Ad (2): Let y ∈ v16(B)−t . Then T /∈ y and y ∈ v16(B).
Suppose y /∈ v16(A)−t . Then y /∈ v16(A) or T ∈ y. But since T /∈ y, we
have y /∈ v16(A). By (∗), y /∈ v16(B), a contradiction. �
Now we can determine the logic that corresponds to the entailment relation
introduced by Definition 4.1, when A, B ∈ Lt . For formulas built up from
∧t , ∨t and ∼t this relation can be axiomatized by a (first degree) conse-
quence system, which we call FDEt

t . The superscript indicates the type of
language used, and the subscript explicates the kind of consequence. The
system is thus a pair (Lt , �t ), where �t is a binary relation (consequence)
on the language Lt satisfying the following postulates (axiom schemes and
rules of inference):

at1. A ∧t B �t A

at2. A ∧t B �t B

at3. A �t A ∨t B

at4. B �t A ∨t B
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at5. A ∧t (B ∨t C) �t (A ∧t B) ∨t C

at6. A �t ∼t∼tA

at7. ∼t∼tA �t A

rt1. A �t B, B �t C/A �t C

rt2. A �t B, A �t C/A �t B ∧t C

rt3. A �t C, B �t C/A ∨t B �t C

rt4. A �t B/∼tB �t ∼tA.

Note that postulates of FDEt
t are direct analogues to the postulates of

the first degree entailment system Efde from [2, p. 158] (Dunn in [17] dubs
it Rfde, emphasizing the fact that it is simultaneously a fragment of both
relevance logics E and R). In our view, this observation reinforces the
claim that the logic of first degree entailment is a significant logical system
that can be arrived at using different well-motivated approaches.

First, we prove the consistency of FDEt
t relative to �16

t .

THEOREM 4.4. For any A, B ∈ Lt : If A �t B, then A �16
t B.

Proof. Taking into account Lemma 4.3, it suffices to prove that (1) if
A �t B is an axiom of FDEt

t , then ∀v16(T ∈ v16(A) ⇒ T ∈ v16(B)), and
(2) all the rules of FDEt

t preserve this property. This is mainly a routine
check (employing Propositions 3.4(1), (2) and 3.7(1)) and can be safely
left to the reader, except of rt4 which, in addition, needs Lemma 4.2 for
its justification. Assume A �16

t B, i.e., ∀v16(T ∈ v16(A) ⇒ T ∈ v16(B))

(Lemma 4.3). Then by Lemma 4.2 ∀v16(N ∈ v16(B) ⇒ N ∈ v16(A)).
Suppose ∼tB �

16
t ∼tA, i.e., ∃v16(T ∈ v16(∼tB) and T /∈ v16(∼tA)). Then

∃v16(N ∈ v16(B) and N /∈ v16(A)) (Proposition 3.7), a contradiction. �
To prove completeness we have to construct a suitable canonical model.
Let a theory be a set of sentences closed under �t (i.e., for every theory α,
if A ∈ α and A �t B, then B ∈ α) and ∧t (if A ∈ α and B ∈ α, then
A ∧t B ∈ α). A theory α is prime iff the following holds: if A ∨t B ∈ α,
then A ∈ α or B ∈ α. The following fact about prime theories is very well
known (Lindenbaum’s Lemma, a proof is given, e.g., in [19, p. 13]):

LEMMA 4.5. For any A and B ∈ Lt , if A �t B, then there exists a prime
theory α such that A ∈ α and B /∈ α.

We next consider ordered pairs of prime theories. For any ordered pair
of prime theories T = 〈α1, α2〉 we define the canonical 16-valuation v16

T

as follows:

N ∈ v16
T (p) iff ∼tp ∈ α1;

T ∈ v16
T (p) iff p ∈ α1;

F ∈ v16
T (p) iff ∼tp ∈ α2;

B ∈ v16
T (p) iff p ∈ α2.
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Now we can show that the canonical 16-valuation so defined is naturally
extended to any formula of the language:

LEMMA 4.6. Let v16
T be defined as above. Then for any A ∈ Lt :

N ∈ v16
T (A) iff ∼tA ∈ α1;

T ∈ v16
T (A) iff A ∈ α1;

F ∈ v16
T (A) iff ∼tA∈ α2;

B ∈ v16
T (A) iff A ∈ α2.

Proof. This is a usual induction on the construction of formulas. We
show only the case with negation leaving other cases to the reader.

Let A = ∼tB, and the lemma holds for B. Then we have:
N ∈ v16

T (∼tB) ⇔ T ∈ v16
T (B) (Proposition 3.7) ⇔ B ∈ α1 (inductive

assumption) ⇔ ∼t∼tB ∈ α1 (at6).
F ∈ v16

T (∼tB) ⇔ B ∈ v16
T (B) (Proposition 3.7) ⇔ B ∈ α2 (inductive

assumption) ⇔ ∼t∼tB ∈ α2 (at6).
T ∈ v16

T (∼tB) ⇔ N ∈ v16
T (B) (Proposition 3.7) ⇔ ∼tB ∈ α1 (induc-

tive assumption).
B ∈ v16

T (∼tB) ⇔ F ∈ v16
T (B) (Proposition 3.7) ⇔ ∼tB ∈ α2 (induc-

tive assumption). �
THEOREM 4.7. For any A, B ∈ Lt : If A �16

t B, then A �t B.
Proof. Let A �16

t B. For the sake of contradiction assume A �t B. Then,
by Lemma 4.5, there exists a prime theory α such that A ∈ α and B /∈ α.
Consider a pair of prime theories T = 〈β1, β2〉 such that α = β1, and
β2 is arbitrary. Then we have T ∈ v16

T A and T /∈ v16
T B. A contradiction

(by Lemma 4.3). �

4.2. The Language Ltf for ≤t

4.2.1. Adding More Negations
The system FDEt

t is quite standard. It is formulated in a customary lan-
guage with conjunction, disjunction and negation, and it is equipped with
a suitable entailment relation corresponding to ≤t in SIXTEEN3. But what
kind of logical systems can we obtain by axiomatizing the relation �16

t (in-
troduced by Definition 4.1) when it is extended to richer fragments of the
language Ltf and to the entire language? It turns out that in the presence
of formulas with ∧f , ∨f and ∼f , the previous Lemmas 4.2 and 4.3 require
some essential modifications (restrictions).

LEMMA 4.8. For any A, B ∈ Ltf in SIXTEEN3 the clause (a) from
Lemma 4.2 is equivalent to the clause (c), and (b) is equivalent to (d).
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Proof. We prove here only the case (c) ⇒ (a), because the other cases
are analogous. For any 16-valuation v16 we define a tf-dual valuation v16#

as follows:

T ∈ v16#(p) ⇔ F /∈ v16(p); B ∈ v16#(p) ⇔ N /∈ v16(p);
F ∈ v16#(p) ⇔ T /∈ v16(p); N ∈ v16#(p) ⇔ B /∈ v16(p).

An induction by construction shows that these conditions also hold for
any formula A ∈ Ltf . Let ∀v16(T ∈ v16(A) ⇒ T ∈ v16(B)) and assume
there exists a 16-valuation v16 such that F ∈ v16(B) and F /∈ v16(A). Then
T /∈ v16#(B) and T ∈ v16#(A), which contradicts the assumption. �
LEMMA 4.9. For any A, B ∈ Ltf :

A �16
t B iff (a) ∀v16(T ∈ v16(A) ⇒ T ∈ v16(B)) and

(b) ∀v16(B ∈ v16(A) ⇒ B ∈ v16(B)).

Proof. Mutatis mutandis, as in Lemma 4.3, taking into account that (∗)

from Lemma 4.3 is also equivalent to the right-hand side of the statement
in the present lemma. �
The logical system that should correspond to the logic (Ltf , �16

t ) defined
at the beginning of this section can be called FDEtf

t = (Ltf , �t ). As a first
step toward axiomatizing FDEtf

t , we enrich the language Lt by another
negation operator and consider the language Lt+ ∼f

:= {∧t , ∨t , ∼t , ∼f }.
Now we can introduce the system FDE

t+∼f

t = (Lt+ ∼f
, �t ), where �t is

the binary relation on Lt+ ∼f
satisfying the axioms and rules of inference

at1 − at7 and r1 − r4 stated above, as well as the following additional
postulates for ∼f :

at8. A �t ∼f ∼f A

at9. ∼f ∼f A �t A

at10. ∼f ∼tA �t ∼t∼f A

rt5. A �t B/∼f A �t ∼f B.

It is not difficult to show (using Lemmas 4.8 and 4.9) that Theorem 4.4
holds for any formula of the language Lt+ ∼f

. That is, we have:

THEOREM 4.10. For any A, B ∈ Lt+ ∼f
: If A �t B, then A �16

t B.

Note that the following statements are theorems of FDE
t+ ∼f

t :

tt1. ∼f (A ∧t B) �t ∼f A ∧t ∼f B;
tt2. ∼f A ∧t ∼f B �t ∼f (A ∧t B);
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tt3. ∼f A ∨t ∼f B �t ∼f (A ∨t B);
tt4. ∼f (A ∨t B) �t ∼f A ∨t ∼f B;
tt5. ∼t∼f A �t ∼f ∼tA.

To prove completeness, we continue to deal with prime theories closed
under �t . But now for any theory α, we define the set of formulas

α∗ := {A | ∼f A ∈ α}.
LEMMA 4.11. Let α be a theory and let α∗ be defined as above. Then:

(1) α∗ is a theory;
(2) ∼f A ∈ α∗ iff A ∈ α;
(3) α∗ is prime iff α is prime.

Proof. (1) Assume A �t B and A ∈ α∗. Then, by rt5 ∼f A �t ∼f B

and by definition of α∗, ∼f A ∈ α. Hence ∼f B ∈ α, and thus B ∈ α∗.
Next, assume A ∈ α∗ and B ∈ α∗. Then ∼f A ∈ α and ∼f B ∈ α. Hence,
∼f A ∧t ∼f B ∈ α, and by tt2 ∼f (A ∧t B) ∈ α. By definition of α∗,
A ∧t B ∈ α∗.

(2) ∼f A ∈ α∗ ⇔ ∼f ∼f A ∈ α (by definition) ⇔ A ∈ α (by at8, at9).
(3) (⇒) Assume α is not prime. Then there are A and B such that

A ∨t B ∈ α, A /∈ α, and B /∈ α. Then, by (2) above, ∼f (A ∨t B) ∈ α∗,
and ∼f A /∈ α∗, and ∼f B /∈ α∗. By t4, ∼f A ∨t ∼f B ∈ α∗, and hence α∗
is not prime. (⇐) Assume α∗ is not prime. Then there are A and B such
that A ∨t B ∈ α∗, and A /∈ α∗, and B /∈ α∗. By definition of α∗, we have:
∼f (A ∨t B) ∈ α, and ∼f A /∈ α, and ∼f B /∈ α. Arguing as above we
conclude that α is not prime. �
The definition of α∗ and Lemma 4.11 immediately call to mind the famous
“Routley star operator” used for defining a negation operator in the “Aus-
tralian semantics” for relevance logic. In fact, the Routley star ∗ represents
an algebraic operation known as involution (see, e.g., [1, 11, 34]). In view
of this, ∼f can be naturally interpreted as an object language involution
connective with respect to �t , whereas ∼t stands for a negation relative
to �t . It is quite remarkable that SIXTEEN3 allows us to deal with ∼f

and ∼t simultaneously, thereby delivering interesting new evidence for a
deep interrelation between the “Australian” and the “American” semantics
(cf. [18, pp. 45–47]).

For any prime theory α we define the canonical 16-valuation v16
α as

follows:

N ∈ v16
α (p) iff ∼tp ∈ α;

T ∈ v16
α (p) iff p ∈ α;

F ∈ v16
α (p) iff ∼tp ∈ α∗;

B ∈ v16
α (p) iff p ∈ α∗.19
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LEMMA 4.12. Let v16
α be defined as above. Then for any formula A∈

Lt+ ∼f
:

N ∈ v16
α (A) iff ∼tA ∈ α;

T ∈ v16
α (A) iff A ∈ α;

F ∈ v16
α (A) iff ∼tA ∈ α∗;

B ∈ v16
α (A) iff A ∈ α∗.

Proof. We again, as in the proof of Lemma 4.6 consider only the case
with negation. Let A = ∼f B, and the lemma holds for B. Then we have:

N ∈ v16
α (∼f B) ⇔ F ∈ v16

α (B) (Proposition 3.7) ⇔ ∼tB ∈ α∗ (induc-
tive assumption) ⇔ ∼f ∼tB ∈ α (definition of α∗) ⇔ ∼t∼f B ∈ α (at10).

F ∈ v16
α (∼f (B)) ⇔ N ∈ v16

α (B) (Proposition 3.7) ⇔ ∼tB ∈ α (induc-
tive assumption) ⇔ ∼f ∼tB ∈ α∗ (Lemma 4.11(2)) ⇔ ∼t∼f B ∈ α∗(at10).

T ∈ v16
α (∼f (B)) ⇔ B ∈ v16

α (B) (Proposition 3.7) ⇔ B ∈ α∗ (induc-
tive assumption) ⇔ ∼f (B) ∈ α (definition of α∗).

B ∈ v16
α (∼f (B)) ⇔ T ∈ v16

α (B) (Proposition 3.7) ⇔ B ∈ α (induc-
tive assumption) ⇔ ∼f (B) ∈ α∗ (Lemma 4.11(2)). �
THEOREM 4.13. For any A, B ∈ Lt+ ∼f

: If A �16
t B, then A �t B.

Proof. Let A �16
t B. Assume A �t B. Then, by Lemma 4.5 there exists a

prime theory α such that A ∈ α and B /∈ α. Taking the canonical valuation
v16

α , we have T ∈ v16
α A and T /∈ v16

α B. A contradiction (by Lemma 4.9). �
It is interesting to observe that by setting ∼A := ∼f ∼tA, we obtain another
unary connective, which appears to be another kind of negation. It is not
difficult to show that the following statements are theorems of FDE

t+ ∼f

t :

tt6. ∼(A ∧t B) �t ∼A ∨t ∼B;
tt7. ∼A ∧t ∼B �t ∼(A ∨t B);
tt8. ∼A ∨t ∼B �t ∼(A ∧t B);
tt9. ∼(A ∨t B) �t ∼A ∧t ∼B;

tt10. A �t ∼∼A;
tt11. ∼∼A �t A.

Also contraposition holds:

rt6. A �t B/∼B �t ∼A.

DEFINITION 4.14. For any A and B: v16(∼A) = −tf v16(A).

4.2.2. Conjunctions and Disjunctions
Finally we add ∧f , ∨f to Lt+ ∼f

and regain the whole language Ltf .
The main task is now to characterize ∧f , ∨f through the “truth-conse-
quence” �t , but it is not quite clear how to approach this task successfully.
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Since SIXTEEN3 is interlaced and distributive, the monotonicity rules
A �t B/C ∧f A �t C ∧f B and A �t B/C ∨f A �t C ∨f B as well
as all the distributive laws (A ∧f (B ∨t C)) �t (A ∧f B) ∨t (A ∧f C),
etc.) must hold and may be postulated. Also the De Morgan laws (∼f A∧f

∼f B �t ∼f (A ∨f B), etc.) are valid inferences. On the other hand the
introduction/elimination postulates mixing falsity-connectives and truth-
consequence (such as A ∧f B �t A, A �t A ∨f B, etc.), fail to hold
(otherwise ∧f and ∧t would be indistinguishable).

What is the sense of the presence of two different conjunctions (and
disjunctions) in one system? Such a situation is not unusual. We may recall
the presence of extensional and intensional conjunctions and disjunctions
in various substructural logics (among them relevance logic). We believe
that a careful investigation of the interrelations between ∧t , ∨t , ∧f and ∨f

may throw additional light on this situation.20

We leave the following as an open problem:

PROBLEM 4.15. Axiomatize the whole FDEtf
t .

5. THE LOGIC OF THE FALSITY ORDER

It is quite natural to suppose that the logic determined by the falsity order in
a given language should be perfectly dual to the logic of the truth order in
this language. Namely, we should be able to obtain syntactic and semantic
presentations of these logics from one another simply by exchanging the
‘t’ and ‘f ’ subscripts in the postulates and definitions of the corresponding
systems.

DEFINITION 5.1. A �16
f B iff ∀v16(v16(B) ≤f v16(A)).

We again can consider the language Lf with propositional connectives
∧f , ∨f and ∼f . A 16-valuation is extended to compound formulas of Lf

by Definition 3.8(4)–(6) and Propositions 3.4(3), (4) and 3.7(2). We obtain
the system FDEf

f = (Lf , �f ) just by replacing ∧t , ∨t , ∼t and �t in the
axioms and rules of FDEt

t by ∧f , ∨f , ∼f and �f , respectively.
The logic (Ltf , �16

f ) and the system FDEtf

f are defined in analogy

to the definitions of (Ltf , �16
t ) and FDEtf

t . On the way to axiomatizing
FDEtf

f , we consider the language Lf + ∼t
:= {∧f , ∨f , ∼f , ∼t}. We in-

troduce the system FDEf + ∼t

f = (Lf + ∼t
, �f ), where �f is the binary

relation on Lf + ∼t
satisfying the dualized versions of the axioms and rules

of (Lt+ ∼f
, �t ).
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As to the connective ∼ defined at the end of Subsection 4.2.1, it can be
shown that in FDEf + ∼t

f the statements tf 6 − tf 11 hold, as well as the rule
rf 6, which are obtained from tt6 − tt11 and rt6 by replacing uniformly the
subscript ‘t’ by ‘f ’. Thus, whereas ∼t is a negation connective relative to
≤t but an involution connective relative to ≤f , and ∼f is a negation for ≤f

but an involution for ≤t , ∼ is a negation connective with respect to both
logical orderings. That is, ∼ can be naturally interpreted as a generalized
logical negation.

Again, we have an open problem.

PROBLEM 5.2. Axiomatize the whole FDEtf

f .

6. THE BI-CONSEQUENCE LOGIC AND LOGICAL BILATTICES

Usually, a complete logical system comprises one syntactic deducibility
relation � and one semantic entailment relation � such that for all formulas
A and B of the formal language under consideration, A � B iff A � B.
The characterization of logic as the theory of valid inferences, however,
does not preclude that there may be more than just one kind of valid
inferences. The trilattice SIXTEEN3 comes with two natural definitions
of (non-equivalent) entailment relations reflecting increase of truth and
decrease of falsity. Therefore it appears to be quite natural to conceive of
the unified logic of SIXTEEN3 as a bi-consequence system comprising two
kinds of entailment relations.21 This consideration leads us to the following
definition:

DEFINITION 6.1. The bi-consequence logic (Ltf , �16
t , �16

f ) is the set of
all true statements A �16

x B, where A, B ∈ Ltf , and x = t or x = f ,
(cf. Definitions 4.1 and 5.1, respectively).

The bi-consequence system FDEtf

tf = (Ltf , �t , �f ) is to be defined syn-

tactically just as FDEtf
t ∪ FDEtf

f .
The peaceful co-existence of two entailment and two deducibility rela-

tions in one and the same logic is useful, because – as we have seen – it
may well make a difference whether we move along the truth order or the
non-falsity order.

Uniqueness of inference is attainable, if it is required that valuations are
preserved by both orderings.

DEFINITION 6.2. A �16 B iff (A �16
t B and A �16

f B).
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PROBLEM 6.3. Investigate the set of all statements A �16 B. Does it
determine an autonomous system FDEtf = (Ltf , �) (where A � B is
defined as A �t B and A �f B)? Is FDEtf axiomatizable?

Definition 6.2 calls to mind the notion of a logical bilattice introduced by
Arieli and Avron, [4–6].

DEFINITION 6.4. Let B = (B, ≤1, ≤2) be a bilattice, where �1 and
	1 (�2 and 	2) are the meet and join operations with respect to ≤1 (≤2).
A bifilter on B is a nonempty proper subset F ⊂ B, such that

(1) x �1 y ∈ F iff x ∈ F and y ∈ F ;
(2) x �2 y ∈ F iff x ∈ F and y ∈ F .

A bifilter F is said to be prime, if it satisfies

(1) x 	2 y ∈ F iff x ∈ F or y ∈ F ;
(2) x 	2 y ∈ F iff x ∈ F or y ∈ F .

A pair (B, F ) is called a logical bilattice, if B is a bilattice and F is a
prime bifilter on B.

Arieli and Avron [5, 6] show that FOUR2 constitutes a logical bilattice
with {T, B} as the unique prime bifilter. They consider the language L∗ =
{∧t , ∨t , ∼t , ∧f , ∨f } (notation adjusted) and define entailment relations as
follows:

DEFINITION 6.5. Let (B, F ) be a logical bilattice, and let L∗(B) be L∗
extended by a propositional constant for each element from B. A valuation
function v maps atoms to elements of B and is extended to compound
formulas in the natural way (cf. the definition of 16-valuations). Let A,
B ∈ L∗(B). Then A �BL(B,F ) B iff for every valuation v, v(A) ∈ F
implies v(B) ∈ F . Moreover, A �BL B iff for every bilattice (B, F ), we
have A �BL(B,F ) B.22

It turns out that entailment with respect to FOUR2 and entailment with
respect to the class of all logical bilattices coincide.

THEOREM 6.6 (Arieli and Avron [5]). A�BL B iff A�BL(FOUR2,{T,B}) B,
for all A, B ∈ L∗.

But why should we consider (L∗, �BL) the logic of logical bilattices?
The set of designated elements {T, B} is the smallest bifilter originating
from the logical (truth-and-falsity) order and the information order from
FOUR2. If entailment is understood as preservation of designated truth



146 YAROSLAV SHRAMKO AND HEINRICH WANSING

values, it seems quite natural to require that the definition of entailment
in the logic of logical bilattices takes into account only logical orders.
The set 16 offers an opportunity to meet this requirement. Namely, let us
disregard for a while the information ordering of SIXTEEN3 (i.e., sim-
ply “erase” the i-axis in Figure 4). Then SIXTEEN3 turns into a bilattice
SIXTEEN2 := (16, ≤t , ≤f ) with two logical orders – a truth order and
a falsity order – which are independent of each other. We believe that
it is much more appropriate to consider SIXTEEN2 the proper structure
that should define the basic logic of logical bilattices in the language Ltf

instead of L∗. The language L∗ simply leaves out the negation operation
supplied by the second ordering relation.

The set {T, NT, TB, NTB} is, by Proposition 2.23 in [5], the smallest
prime bifilter in SIXTEEN2.23

DEFINITION 6.7. Let (B, F ) be a logical bilattice, let Ltf (B) be Ltf

extended by a propositional constant for each element from B, and let
A, B ∈ Ltf (B). Then A �bl(B,F ) B iff for every valuation v16, v16(A) ∈
F implies v16(B) ∈ F . Let des := {T, NT, TB, NTB}. Then A �bl B iff
A �(SIXTEEN2,des) B.

It seems that the system (Ltf , �bl) is a natural candidate for the title “basic
logic of logical bilattices” in the sense of Arieli and Avron.

OBSERVATION 6.8. It is not the case that for any A, B ∈ Ltf : A �16 B

if and only if A �bl B.
Proof. Clearly, A ∧t B |=bl B but A ∧t B �|=16 B, because A ∧t B

�|=16
f B. �

Arieli’s and Avron’s strategy for defining an entailment relation consists in
specifying a set of designated truth values and considering preservation of
them. This is a general strategy extending the classical conception of valid
inference. In the presence of two logical orderings, one for truth and one
for (non-)falsity, however, a bi-consequence logic not only emerges natu-
rally, but might be taken to be a welcome generalization of the standard
conception of logic.

7. CONCLUDING REMARKS

In this paper we have argued in favor of introducing generalized truth
values and generalizing Belnap’s useful four-valued logic. It turned out
that the logic generated separately by the algebraic operations under the
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truth order and the falsity order in the trilattice SIXTEEN3 in fact coin-
cide with the logic of first degree entailment Efde. However, we have also
seen that directing the attention from FOUR2 to the trilattice SIXTEEN3

in a very natural way leads to richer propositional logics. In particular,
we semantically defined the systems FDEtf

f and FDEtf
t and characterized

their fragments FDE
t+∼f

t and FDEf + ∼t

f . In addition, we have introduced

a new bi-consequence system called FDEtf

tf . We expect this logic to be
an interesting and useful instrument in information processing, especially
when it becomes important to separately keep track of positive and nega-
tive information. As we have argued above, this may be the case when we
deal with a net of hierarchically interconnected computers.

Definitions 4.1 and 5.1 can naturally be extended to define entailment
as a relation between arbitrary sets of formulas (cf. [28, p. 417]):

DEFINITION 7.1. Let �, � be arbitrary sets of formulas of Ltf . Then

� �16
t � iff

∃A1, . . . , Am ∈ �, ∃B1, . . . , Bn ∈ � (A1 ∧t · · ·∧t Am �16
t B1 ∨t · · ·∨t Bn);

� �16
f � iff

∃A1, . . . , Am ∈ �, ∃B1, . . . , Bn ∈ �(A1∧f · · ·∧f Am �16
f B1∨f · · ·∨f Bn).

An obvious line of further research is to construct Gentzen-style sequent
calculi for the logics presented above. Another interesting task consists
in introducing object language implication connectives →t and →f that
correspond to the relations �16

t and �16
f , and to formulate logics involving

these additional connectives.
As we have emphasized repeatedly, the truth order in FOUR2 is, in

fact, a truth-and-falsity order, whereas the truth and falsity orderings in
SIXTEEN3 are independent of each other. Therefore, the starting point for
generalizing the construction of the present paper should be P (4) instead
of P (2). Let P 1(X) := P (X) and P n(X) := P (P n−1(X)) for n > 1.
The information ordering on any set of generalized truth values is just the
subset relation. In order to employ Definition 3.3 as a definition of the truth
and the falsity orderings on P n(4) for n > 1, we may use the following
stipulations:

xt
n := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) T ∈ yn−1}

x−t
n := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) T /∈ yn−1}

x
f
n := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) F ∈ yn−1}

x
−f
n := {y0 ∈ x | (∃y1 ∈ y0) (∃y2 ∈ y1) . . . (∃yn−1 ∈ yn−2) F /∈ yn−1}



148 YAROSLAV SHRAMKO AND HEINRICH WANSING

We can then define an infinite chain of trilattices by setting:

Mn
3 := (P n(4), �i , 	i , �t , 	t , �f , 	f )

and M1
3 := SIXTEEN3. A plethora of further questions and problems now

emerges quite naturally. For instance:

PROBLEM 7.2. Let n > 1. Determine the logic (Lt , �4(2n)

t ) of the truth

order and the logic (Lf , �4(2n)

f ) of the falsity order in Mn
3 .

PROBLEM 7.3. Let n > 1. Determine the logic (Ltf , �4(2n)

t ) of the truth

order and the logic (Ltf , �4(2n)

f ) of the falsity order in Mn
3 .

DEFINITION 7.4. A �4(2n)

B iff (A �4(2n)

t B and A �4(2n)

f B).

PROBLEM 7.5. Present a proof-theoretical characterization of �4(2n)

for
n > 1.
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NOTES

1 Dunn has developed this approach already in his doctoral dissertation [14] and then
presented it in a number of conference talks and publications, most notably in [16] (see
also [15]). The reader may consult [18] and [19] for a comprehensive account and system-
atization of Dunn’s (and other) work in this area (cf. [41]). In the literature, the semantic
strategy in question is sometimes called the “American Plan” as opposed to the so-called
“Australian Plan”. Both labels were brought into usage by R. Meyer [37] to contrast the
four-valued approach of the “Americans” Dunn and Belnap to the star semantics of the
“Australians” Routley and himself.

2 Consider the set 2 = {F, T } to be the usual set of classical truth values. A standard
classical valuation v2 (a 2-valuation) is then a function from the set of sentences into 2
ascribing thus to every sentence one and only one element from 2, i.e., either truth or
falsity.

3 In [40, p. 762] this kind of valuation has been called multivaluation.
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4 Bilattices have been studied by many authors (most notably by M. Fitting and
A. Avron) in various contexts – see, e.g., [5–8, 21–27, 30, 39] and references therein.

5 The information order is sometimes referred to as a “knowledge order” (denoted
by ≤k), which is not quite accurate from a philosophical point of view taking into account
the classical definition of knowledge as justified true belief.

6 J. M. Dunn informed us that this question was first raised by Manfred von Thun, when
Dunn gave a lecture on “An Intuitive Semantics for First-Degree Entailments” at LaTrobe
University in October 1975. As R. Meyer nicely put it: “. . . if we take seriously both true
and false and neither true nor false separately, what is to prevent our taking them seriously
conjunctively? As in ‘It is both true and false and neither true nor false that snow is white’ ”
[37, p. 19]. As we will argue below, Meyer’s own answer to this question – “This way, in
the end, lies madness” (ibd.) – appears a bit overhasty.

7 Graham Priest, however, has presented in [38] an argument for taking seriously the set
of truth values P ({ {F }, {T }, {T , F } }). See also [33].

8 The idea to consider generalized truths values as subsets of a set containing more than
two elements (T and F) has been also expressed by A. Karpenko in [35], p. 46.

9 A “Belnap computer” is just a computer that uses Belnap’s four-valued logic. Note
also that it is not crucial for our example to have exactly four Belnap computers, there can
well be more of them, or less (even one would be enough; the main point is that it should
be connected to some “higher” computer).

10 Note that our notion of a multilattice is extremely general. We do not impose any
additional conditions that interconnect individual lattices of a given multilattice. Accord-
ing to our definition, a bilattice (n = 2) is just a set with two lattice-forming partial
orders on it. Strangely enough there is no uniform and generally accepted definition of
a bilattice in the literature. When Ginsberg first introduced this notion in [31], he de-
fined it as a quintuple (B, ∧,∨, ·, +) such that (B, ∧, ∨) and (B, ·, +) are both lattices
and each operation respects the lattice relations in the alternate lattice. (Fitting calls this
latter condition the interlacing condition, i.e., a bilattice à la [31] is an interlaced bilattice in
Fitting’s sense.) But already in [32] we find a quite different definition according to which
an operation of negation becomes a necessary element of any bilattice. This definition
has been adopted in [5, 6, 23] and by some other authors. However, we believe that
it is too narrow, because “there are interesting bilattice-like structures that do not have
a notion of negation” [23, p. 241]. Fitting in [22] introduces the notion of a pre-bilattice
just as a non-empty set with two partial orderings each giving this set the structure of a
lattice. Then in [27] he defines a bilattice as a pre-bilattice with some “useful connections
between orderings”. We find this definition a bit vague. When exactly is a connection
“useful”? Could we speak of “interesting” connections instead? And if we just omit the
“usefulness requirement”, then the definition is not very informative, for it is not difficult
to introduce at any time some (maybe even trivial) kind of connection between given or-
derings. In fact, we do not think that the notion of a pre-bilattice is needed at all. What
is really crucial here, is the number of different partial orderings defined on one and the
same set. All other properties and conditions (including conditions that connect the order-
ing relations) can be specified later, thereby giving rise to different types of multilattices
(and bilattices).

11 There are also some other works in the literature which deal with the notion of a
trilattice. Lakshmanan and Sadri introduced this notion in [36, p. 257], being directly
motivated by enriching Ginsberg’s bilattices with a precision ordering. However, they
aim at constructing a probabilistic calculus as a suitable framework for probabilistic de-
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ductive databases, thus dealing with an algebra defined on a set of interval pairs rather than
on a set of generalized truth values. Another line of research concerning trilattices comes
from formal concept analysis, a research area established and investigated by R. Wille,
B. Ganter and their collaborators (see [12, 29, 42], and [44]). This tradition seems to be
developing totally independently of investigations in the field of bilattices and multi-valued
logic.

12 Note that the information ordering so defined is apparently independent of any other
partial order that could ever be introduced on a multilattice.

13 As Fitting put it: “[W]e might call a truth value t1 less-true-or-more-false than t2 if t1
contains false but t2 doesn’t, or t2 contains true but t1 doesn’t” [24, p. 94].

14 Note that we could introduce sets x−t and x−f for FOUR2 as well, for example as
follows:

x−t := {z ∈ x | z �= T }; x−f := {z ∈ x | z �= F }.

It turns then out, however, that x−t = xf and x−f = xt , which once again confirms our
observation that truth and falsity in FOUR2 are still interdependent.

15 Similarly, T and F from 4 can be viewed as analogues (or representatives) of the
classical values T and F .

16 Thus, Belnap’s informational interpretation of generalized truth values is not just an
incidental façon de parler, but expresses the very essence of his construction. Therefore it
is not by chance that this semantics has found so many fruitful applications in theoretical
computer science and other areas related to information theory.

17 Note that according to Propositions 3.4 and 3.7 any 16-valuation for an arbitrary
formula A can be unambiguously modeled by a certain combination of the expressions
N ∈ v16(A), F ∈ v16(A), T ∈ v16(A), B ∈ v16(A) and their negations. For example
v16(A) = NT is representable as N ∈ v16(A), F /∈ v16(A), T ∈ v16(A) and B /∈ v16(A),
etc. This will greatly simplify the whole semantic exposition.

18 This definition introduces a relation between (two) formulas. It is not difficult to extend
it to a relation between arbitrary sets of formulas (see Definition 7.1 below).

19 Incidentally, it turns out that it is possible to apply a similar construction in the com-
pleteness proof for FDEt

t , too. Namely, consider α∗ := {A | ∼tA /∈ α}. Then, even for
formulas of the “pure” language Lt , we can simply define a canonical valuation v16

α for
any prime theory α as above (instead of dealing with arbitrary pairs of prime theories and
the canonical valuation v16

T ). However, in this case such a construction is not necessary,
and one can content oneself just with pairs of theories which are totally independent of
each other.

20 It is interesting to note that ∧t and ∧f (as well as ∨t and ∨f ) behave virtually iden-
tically with respect to Belnap’s T and F (the representatives of classical truth values).
The only difference between the “parallel” conjunctions and disjunctions concerns their
contrasting behaviour with respect to gaps and gluts (see Proposition 3.4). Thus, e.g., for
any x, y ∈ 16, if N ∈ x and B ∈ y, then N ∈ x ∧t y and B /∈ x ∧t y, but B ∈ x ∧f y and
N /∈ x ∧f y.

21 Cf. the formalism of “biconsequence relations” developed by Bochman in [13].
22 Actually, Arieli and Avron define more general notions. Let �, � be finite sets of

formulas from L∗(B). � |=BL(B,F ) � iff for every valuation v such that v(A) ∈ F for
each A ∈ �, there exists some B ∈ � with v(B) ∈ F . � |=BL � iff for every bilattice
(B, F ), � |=BL(B,F ) �.
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23 Note that if we consider again the information order and return to SIXTEEN3, we
can analogously define the notion of a (prime) trifilter (and generally, for multilattices the
notion of a multifilter). Then the set {T, B, NT, TB, NFT, NTB, FTB, A} turns out to be
the smallest prime trifilter in SIXTEEN3.
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