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NON-ADJUNCTIVE INFERENCE AND CLASSICAL MODALITIES

ABSTRACT. The article focuses on representing different forms of non-adjunctive in-
ference as sub-Kripkean systems of classical modal logic, where the inference from �A

and �B to �A ∧ B fails. In particular we prove a completeness result showing that the
modal system that Schotch and Jennings derive from a form of non-adjunctive inference in
(Schotch and Jennings, 1980) is a classical system strictly stronger than EMN and weaker
than K (following the notation for classical modalities presented in Chellas, 1980). The uni-
fied semantical characterization in terms of neighborhoods permits comparisons between
different forms of non-adjunctive inference. For example, we show that the non-adjunctive
logic proposed in (Schotch and Jennings, 1980) is not adequate in general for representing
the logic of high probability operators. An alternative interpretation of the forcing relation
of Schotch and Jennings is derived from the proposed unified semantics and utilized in
order to propose a more fine-grained measure of epistemic coherence than the one pre-
sented in (Schotch and Jennings, 1980). Finally we propose a syntactic translation of the
purely implicative part of Jaśkowski’s system D2 into a classical system preserving all
the theorems (and non-theorems) explicilty mentioned in (Jaśkowski, 1969). The trans-
lation method can be used in order to develop epistemic semantics for a larger class of
non-adjunctive (discursive) logics than the ones historically investigated by Jaśkowski.

KEY WORDS: classical modal logic, epistemic logic, high probability operators, para-
consistent logic, non-adjunctive logic

1. INTRODUCTION

Non-Adjunctive logical systems are those where the inference from A

and B to A ∧ B fails. As is indicated in (Priest and Tanaka, 2000) the
first of these systems to be produced was also the first formal paracon-
sistent logic. This was Stanislaw Jaśkowski’s discussive (or discursive)
logic (Jaśkowski, 1969). The central idea in discussive logic is to formalize
the process of reasoning from the pooled views of various rational agents,
who might nevertheless disagree about the truth of various facts. Most
applications of non-adjunctive inference are epistemically motivated.

Another salient, and perhaps better studied, example is the logic of
monadic operators of high probability. Many authors have suggested that
formalizing the logic of such operators requires the use of non-adjunctive
inference (or the use of some form of paraconsistent formalism). Views pro
and con are discussed in (Kyburg, 1995). A related, but slightly different



582 HORACIO ARLÓ COSTA

argument proposes that ‘it is highly probable that’ should be formalized as
an epistemic modal operator. It is quite obvious that A ∧ B might fail to
be highly probable, even when A and B are highly probable. Under this
construal what fails is not the inference from A and B to A ∧ B, but the
inference from �A and �B to �A∧B, where ‘�’ is the monadic operator
of high probability.

Formalizing this latter account possesses also significant challenges. In
fact, the weakest of the system of modal logics endowed with a relational
semantics, the system K, satisfies the schema:

(C) (�A ∧ �B) → �(A ∧ B)

So, this suggests that studying a logical system where failures of this
modal form of Adjunction occur requires a generalization of the standard
Kripke semantics for modal operators. This generalization, even though
less carefully studied than its relational counterpart, has indeed been pro-
posed (independently) by Dana Scott (1970) and Richard Montague (1970).
A systematic presentation of this semantics and of the systems of classical
modal logic that correspond to them is offered in Part III of (Chellas, 1980)
– this includes work first presented in (Segerberg, 1971). Brian Chellas
calls this generalization of relational semantics minimal models. They are
otherwise known as neighborhood models, and this will be the terminology
adopted here. (Arló-Costa, 2002) proposes the use of the family of sub-
relational classical modal logics in order to formalize epistemic operators
where different failures of logical omniscience occur. In particular it is
suggested the possibility of using some of these systems in order to model
monadic operators of high probability. The logical focus of (Arló-Costa,
2002) is to study a first order extension of some of the classical modal
systems weaker than K. Kyburg and Teng (2002) have focused on the
propositional level and on applications considering high probability. They
identify the logical system EMN as the one involved in representing high
probability operators.1 Classical systems can be introduced succinctly as
follows (we will provide more background below):

DEFINITION 1.1. A system of modal logic is classical if and only if it
contains the axiom ♦A ↔ ¬�¬A, and is closed under the rule of inference
RE, according to which �A ↔ �B should be inferred from A ↔ B.

In addition EMN satisfies the axioms:

(M) �(A ∧ B) → (�A ∧ �B)
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as well as:

(N) �true

The weakest Kripkean system, the system K, is equivalent to EMCN,
so EMN is one of the classical systems which fail to satisfy the modal
counterpart of adjunction. It is not difficult to see that the remaining axioms
and rules are naturally motivated for an operator of high probability.

One of the virtues of the previous account is the natural intuitiveness
of the use of a modal operator in order to represent qualitative probability.
Another virtue is the fact that the analysis can be carried out by using an
extension of classical logic, without modifying the underlying notion of
logical consequence. Of course, the analysis still requires using a gener-
alization of relational semantics in order to understand the nature of the
modal operator ‘�’.

There is, nevertheless, an intimate connection between non-adjunctive
inference and relational modal operators (where (C) fails), which we intend
to study in detail here. As has happened in other areas of philosophical
logic, connections between non-standard logical systems and extensions
of classical logic illuminate the nature of both (an example is given by the
connections between intuitioninsm and the modal system S4).

Schotch and Jennings have offered in (Schotch and Jennings, 1980)
one of the standard contemporary systems of non-adjunctive inference,
and in the process of doing so, they also derived a modal system from the
non-adjunctive notion of consequence (the forcing relation) used in their
analysis. Nevertheless, the nature of this modal operator and its potential
relationships with the epistemic � axiomatized by EMN is not immedi-
ate. They offer a semantics, which they see as a generalization of Kripke
semantics. One of my goals here is to show that their modal operator has
neighborhood models of the type proposed by Scott and Montague. I shall
provide closure conditions on neighborhoods that completely characterize
Schotch and Jennings’ modal operator. The semantics allows us to locate
Schotch and Jennings’ modal system as a classical system of modal logic
stronger than EMN and weaker than K. The system in question has not
been independently studied by modal logicians. I shall also study a natural
strengthening of their logic, also weaker than K.

I shall show via examples that the resulting classical modal system
is not adequate to represent operators of high probability. This, in turn,
sheds some light concerning the nature of the forcing relation proposed by
Schotch and Jennings. Even when the notion in question admits an epis-
temic interpretation, I shall argue that the interpretation in question is very
different from the one required for monadic operators of high probability.
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The nature of non-adjunctive inference in Schotch and Jennings’ system,
as well as various strengthenings studied here, seem to be more naturally
related to the first systems developed by Jaśkowski.

I shall proceed as follows. First, I shall introduce the forcing relation
of Schotch and Jennings as well as their derived modal operator. Then I
shall enter the details of neighborhood semantics and I shall prove that the
axiomatization of Schotch and Jennings’ is complete with respect to the
proposed neighborhood model. Once this is done we will use the models
in question in order to show that operators of high probability need not
meet the constraints on neighborhoods needed for Schotch and Jennings’
operators (with the exception of some limit cases). Finally a strengthening
of Schotch and Jennings’ modal logic will be considered. I shall close
with some philosophical remarks concerning the epistemic nature of the
forcing relation and I shall utilize them in order to motivate a new measure
of coherence of information.

2. MEASURES OF COHERENCE AND NON-ADJUNCTIVE INFERENCE

The central idea behind Schotch and Jennings’ notion of forcing is their
proposal for measuring the coherence of a set of sentences. Their coher-
ence function c is a function having as its domain the set of all finite sets
of sentences and as a codomain the set Nat ∪ {w}, where Nat is the set of
natural numbers.

DEFINITION 2.1. For false /∈ �, c(�) = m if and only if m is the least
integer such that there are sets

a1, . . . , am, with ai �� false (1 ≤ i ≤ m)
and

⋃m
i=1 ai = �

where � is the classical notion of consequence and where c(�) = w by
convention if false ∈ �.

Now we can define a notion of derivability in terms of this notion of lev-
els of coherence. The forcing relation [� is characterized as a relation
between finite sets of sentences and sentences and defined as follows:

DEFINITION 2.2. For c(�) = n(w), � [� A if and only if for every
n-fold (w-fold) decomposition a1, . . . , an, of �, there is some i such that
ai � A (1 ≤ i ≤ n(w)).

The forcing relation obeys the following structural rules (as the classical
notion of consequence �):
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(Ref ) A ∈ � ⇒ � [�A

(Mon) � [�A ⇒ � ∪ � [� A, when c(� ∪ �) = c(�).
(Trans) � ∪ {A} [� B and � [�A → � [�B

We need an additional structural rule as well, which depends on the
previous concept of m-cluster. For a any finite set we say that C ⊆ 2a is
an m-cluster if and only if m ∈ Nat and:

For all f ∈ ma , there is x ∈ C, and there is y ≤ m: x ⊆ f −1[y].
In words: for any way of dividing a into m subsets there is a member x

of C such that x is included in at least one of the m subsets into which a

has been divided.

(Clus) If C = {c1, . . . , cn} is an m-cluster constructed out of A1, . . . , Ak

∈ � and c(�) = m, then (c1 [�B, c2 [�B, . . . , cn [�B) ⇒ � [�B

In addition we have the usual rules for introducing and eliminating
connectives, with the notable exception that the rule for introducing con-
junction only holds for sets �, such that c(�) = 1. In other words, from
� [�A and � [�B it no longer follows that � [� (A∧B), unless c(�) = 1.

We can now introduce a generalization of the standard (logical) notion
of theory. The most immediate definition is an obvious generalization of
the classical notion:

DEFINITION 2.3. � is a m-theory if and only if c(�) = m and � [�A

entails A ∈ �.

The notion of m-theory can also be expressed via two closure conditions,
without appealing to a direct use of ‘ [� ’.

DEFINITION 2.4. � is a m-theory if and only if

(a) A ∈ � and � A → B, entail that B ∈ �

(b) If {c1, . . . , ck} ⊆ 2� is an m-cluster, then
∨k

1{∧c1, . . . , ∧ck} ∈ �,
where ∧ci denotes ‘∧Ai1, . . . , ∧Aij ’ for ci = {Ai1, . . . , Aij }.

This notion of m-theory, which generalizes the standard notion of theory,
will be useful in order to introduce the necessity operator that Schotch and
Jennings derive from the forcing relation. This derivation will be the focus
of the next section.



586 HORACIO ARLÓ COSTA

3. NECESSITY DERIVED FROM THE FORCING RELATION

The first step in the derivation is to enlarge the language of the propo-
sitional calculus PC with a new connective �. A pre-model B for the
enlarged language PC(�) is a standard model (U, P ) of a non-empty
set U and a valuation P mapping the atoms of the language to events
in 2U . P is extended (uniquely) to a function ‖ · ‖B which evaluates all
sentences of the language by means of classical truth conditions. So, we
have ‖A ∧ B‖B = ‖A‖B ∩ ‖B‖B , etc.

No specific truth conditions are introduced for ‘�’ aside from stipu-
lating that ‖�A‖B ∈ 2U , for all A. So, ‘�’ is not really behaving as a
logical constant at this stage. Still the �-operator can be used in order to
‘guard’ inconsistent formulae. So, even when ‖{A, ¬A}‖B = ∅, we have
‖{�A, �¬A}‖B �= ∅.

The second step in the derivation of a model for the �-operator will
be to restrict the class of pre-models to a special subclass called full pre-
models.

DEFINITION 3.1. B is a full PC(�) pre-model if and only if, B is a
pre-model and for all u such that �(u)B = {A ||=B

u �A} is an n-theory,
a ⊆ �(u)B , such that a �� false, a ⊆ b and b �� false, then ‖b‖B �= ∅.

Now as a final step of the construction we derive the underlying structure
of the desired model and the truth conditions for �A form the restrictions
imposed by [� . This is done in two steps, the first of which is to define a
n-natural relation.

DEFINITION 3.2. Let B be a full PC(�) pre-model. For each n ∈ Nat
let r be a function r : {x | c(�(x)B) = n} → Un. Let u be an element of
U such that c(�(u)B) = n. Further let �(u) = {δ | δ : �(u)B → n} be
the set of non-trivial n-fold decompositions of �(u)B .

Then r(u) = {〈x1, . . . , xn〉 | xi ∈ ‖δ−1[i]‖B (1 ≤ i ≤ n) for some
δ ∈ �(u)}. Finally if 〈x1, . . . , xn〉 ∈ r(u) we write uRx1, . . . , xn and
call R the n-natural relation of u.

Now we can prove the following theorem stating the desired truth condi-
tions for the derived modal operator:

THEOREM 3.1 (Schotch and Jennings). If B is a full PC(�) pre-model
and �(u)B is an n-theory and R the n-natural relation, then |=B

u �A if
and only if for all x1, . . . , xn, if uRx1, . . . , xn, then |=B

x1
A or . . . or |=B

xn
A.

Schotch and Jennings comment that their semantics is a generalization
of Kripke semantics. Nevertheless, the presentation is non-standard and
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dependent of the notion of pre-model. It would be nice to see whether
the proposed semantics can be classified in terms of some of the well-
known generalizations of relational semantics. I shall focus on this topic
in Section 4.

3.1. The Logic Kn

The goal of Schotch and Jennings is to show that the class of structures
generated in the previous section determine a modal logic extending the
non-adjunctive logic presented above. The logic in question is obtained by
supplementing the axioms and rules constraining the [� relation with the
following rule:

(RKn) If c(�) = n, and � [�B, then �[�] � �B, where �[�] =
{�A | A ∈ �}.

Schotch and Jennings built a canonical model for the resulting logic Kn,
and they prove that the model is a full PC(�) pre-model, satisfying the
closure restriction used in the theorem presented above.

In the following sections I shall proceed as follows. First I shall pro-
vide some background about neighborhood models of modalities. Then
I shall introduce a constraint on neighborhoods, called clustering, and I
shall show that this constraint is a ‘natural’ semantic counterpart of the
notion of m-theory. This introductory result might help connecting the new
neighborhood structures with the ones built up by Schotch and Jennings.
Then I shall prove a general representation result for Kn in terms of neigh-
borhood models, which does not require using the full PC(�) pre-models
of Schotch and Jennings.

4. NEIGHBORHOOD MODELS FOR MODALITIES

We will introduce here the basis of the so-called neighborhood semantics
for propositional modal logics. We will follow the standard presentation
given in Part III of (Chellas, 1980).

DEFINITION 4.1. M = 〈W, N, P 〉 is a neighborhood model if and only
if:

(1) W is a set,
(2) N is a mapping from W to sets of subsets of W ,
(3) P is a standard valuation mapping the atoms of the language to sub-

sets of W .
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Of course the pair F = 〈W, N〉 is a neighborhood frame. The following
definition makes precise the notion of truth in a model.

DEFINITION 4.2 (Truth in a neighborhood model). Let u be a world in a
model M = 〈W, N, P 〉. P is extended (uniquely) to a relation |=u (where
M |=u A states that A is true in the model M at world u). The extension is
standard for Boolean connectives. Then the following clauses are added in
order to determine truth conditions for modal operators.

(1) M |=u �A if and only if ‖A‖M ∈ N(u)

(2) M |=u ♦A if and only if ‖¬A‖M /∈ N(u)

where, ‖A‖M = {u ∈ W : M, |=u A}.
‖A‖M is called A’s truth set. Intuitively N(u) yields the propositions that
are necessary at u. Then �A is true at u if and only if the ‘truth set’ of A

(i.e. the set of all worlds where A is true) is in N(u). If the intended in-
terpretation is epistemic N(u) contains a set of propositions understood as
epistemically necessary. This can be made more precise by determining the
exact nature of the epistemic attitude we are considering. N(u) can contain
the known propositions, or the believed propositions, or the propositions
that are considered highly likely, etc. Then the set P = {‖A‖M ∈ 2W :
|=u ♦A} determines the space of epistemic possibilities with respect to the
chosen modality – knowledge, likelihood, etc.

Clause (2) forces the duality of possibility with respect to necessity. It
just says that ♦A is true at u if the denial of the proposition expressed by A

(i.e. the complement of A’s true set) is not necessary at u. N(u) is called
the neighborhood of �.

4.1. Augmentation

The following conditions on the function N in a neighborhood model M =
〈W, N, P 〉 are of interest. For every world u in M and every proposition
(set of worlds) X, Y in M:

(m) If X ∩ Y ∈ N(u), then X ∈ N(u), and Y ∈ N(u).
(c) If X ∈ N(u), and Y ∈ N(u), then X ∩ Y ∈ N(u).
(n) W ∈ N(u).

When the function N in a neighborhood model satisfies conditions (m),
(c) or (n), we say that the model is supplemented, is closed under inter-
sections, or contains the unit respectively. If a model satisfies (m) and (c)
we say that it is a quasi-filter. If all three conditions are met it is a filter.
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Notice that filters can also be characterized as non-empty quasi-filters –
non-empty in the sense that for all worlds u in the model N(u) �= ∅.

DEFINITION 4.3. A neighborhood model M = 〈W, N, P 〉 is augmen-
ted if and only if it is supplemented and, for every world u in it:

⋂
N(u) ∈ N(u).

Now we can present an observation (established in Chellas, 1980, Sec-
tion 7.4), which will be of heuristic interest in the coming section.

OBSERVATION 4.1. M is augmented just in case for every world u and
set of worlds X in the model: (a) X ∈ N(u) if and only if

⋂
N(u) ⊆ X.

It easy to see that every augmented model is a filter: supplemented, closed
under intersections and possessed of the unit. Moreover, every finite filter is
augmented. This suggests a tight relationships between neighborhood and
Kripke models: a Kripke model is essentially an augmented neighborhood
model.

4.2. Epistemic Interpretation of Augmentation

In recent work in epistemic logic it is quite usual to represent agents by
acceptance sets or belief sets, obeying certain rationality constraints. If the
representation is linguistic the agent is represented by a logically closed
set of sentences. If the representation is done in a σ -field or relative to
a universe of possible worlds, the agent is represented by a set of points
such that all propositions accepted (believed) by the agent are supersets of
this set of points. Adopting either representation is tantamount to imposing
logical omniscience as a rationality constraint.

When a neighborhood frame is augmented we have the guarantee that,
for every world u, its neighborhood N(u) contains a smallest proposition,
composed of the worlds that are members of every proposition in N(u). In
other words, for every u we know that N(u) always contains

⋂
N(u) and

every superset thereof (including W ).
We will propose to see the intersection of the neighborhood of a world

as an acceptance set for that world, obeying the rationality constraints re-
quired by logical omniscience. The following results help to make this idea
more clear.

OBSERVATION 4.2 If M is augmented, then for every u in the model:
|=u �A iff and only if

⋂
N(u) ⊆ ‖A‖M, and |=u ¬�A iff and only if⋂

N(u) �⊆ ‖A‖M.
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Epistemic possibility is, in this setting, understood in terms of compati-
bility with the belief set

⋂
N(u). In other words |=u ♦A if and only if

‖A‖M ∩ (
⋂

N(u)) �= ∅. This in turn means that, when the model M i s
augmented, |=u ♦A holds whenever ‖A‖M is logically compatible with
every epistemically necessary proposition in the neighborhood.

This epistemic interpretation of augmentation can be extended to the
case of neighborhoods that are not augmented. The basic idea is to ex-
tend the previous account even for inconsistent neighborhoods with empty
intersection:

DEFINITION 4.4 (Poss). M |=u ♦A if and only if for every X in N(u),
‖A‖M ∩ X �= ∅.

The central idea being that an (unclosed) inconsistent set of statements
can be used in order to establish what is possible as follows: if a statement
contradicts a member of the set, then it is not possible. For certain standard
of quality control, that one of the inspected pieces is not OK is not a serious
possibility. And at the same time, it is not a serious possibility that all the
inspected pieces are OK. A detailed analysis of the logical consequences
of adopting this extended notion of epistemic possibility for first order
languages, as well as some consequences concerning the lottery paradox,
is presented in (Arló-Costa, 2002).

4.3. The Level of Coherence of Neighborhoods

The previous remarks bring us directly to the fact that most of the non-
normal classical models will contain inconsistent neighborhood models.
We can measure the level of coherence of these neighborhoods as we can
measure the level of coherence of a set of sentences.

DEFINITION 4.5. A set of propositions N has level of coherence m if
and only if m is the least integer such that there is a sequence of sets of
propositions X1, . . . , Xm where each of these sets is in N , such that ∅ �=⋂

Xi and
⋃

i Xi = N . Each of the sequences X1, . . . , Xm will be called
an m-decomposition of N .

This is a straightforward adaptation of the ideas of Schotch and Jennings
presented above. We can add a bit of useful notation here:

DEFINITION 4.6. If a set of propositions N has degree of coherence m,
and X1, . . . , Xm is an m-decomposition δ of N , then the sets G1 = ⋂

X1,

. . . , Gm = ⋂
Xm, are called a set of m-generators of Nδ.

Now the following closure condition on neighborhoods, which we can call
clustering is of interest:
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DEFINITION 4.7. A neighborhood model M = 〈W, N, P 〉 is m-clustered
if and only if for every u ∈ W , and for every X ⊆ 2W , if N(u) has level of
coherence m.

X ∈ N(u) if and only if for all generators G1, . . . , Gm for N(u), either
G1 ⊆ X, or . . . , or Gm ⊆ X.

We will say that a neighborhood of level of coherence m in a clustered
model is m-clustered. It is not difficult to see that a clustered neighbor-
hood is supplemented and possesses the unit, even though it need not be
closed under intersections. The next section will be devoted to show that
clustering is the counterpart for neighborhoods of the syntactic notion of
m-theory.

5. FROM PRE-MODELS TO NEIGHBORHOOD MODELS

Let N = 〈U, N, P 〉 be a neighborhood model. We can then prove the
following result about clustering:

THEOREM 5.1. Let N be a neighborhood model and let �(u)N =
{A | N |=u �A}. �(u)N is an m-theory if and only if N(u) is m-clustered.

Proof. Assume that X = ‖A‖N ∈ N(u). Then, by the truth conditions
of the �-operator, A ∈ �(u)N . Therefore, �(u)N [�A (by [Ref ]). So, for
all m-decompositions δ of �(u)N , there is i, ‖δ−1[i]‖N ⊆ ‖A‖N .

Since �(u)N is an m-theory, N(u) has level of coherence m and all
m-generators of N(u) are given by the sets ‖δ−1[1]‖N , . . . , ]‖δ−1[m]‖N

for each δ. So, we have that for all sets of m-generators G1, . . . , Gm for
the neighborhood, there is Gi in the set entailing X, and this is enough to
establish the LTR part of the proof.

For the RTL part of the proof assume that X = ‖A‖N /∈ N(u). Then
we have that A /∈ �(u)N and since �(u)N is, by hypothesis, a m-theory,�(u)N �[�A. Therefore there is δ ∈ �(u): for all i (1 ≤ i ≤ n) ‖δ−1[i]‖N

�⊆ ‖A‖N . For the reasons invoked in the first part of the proof, this means
that there is a set of m-generators of N(u), ‖δ−1[1]‖N , . . . , ‖δ−1[n]‖N

such that neither of them entails ‖A‖N . This completes the proof. �
The proof is more direct than a similar proof in terms of the m-natural
relation, offered by Schotch and Jennings. The reason for this directness is
the fact that m-clustering seems to be a more ‘natural’ semantic counterpart
for the syntactic notion of m-theory.
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6. COMPLETENESS IN TERMS OF CANONICAL NEIGHBORHOOD

MODELS

A direct completeness proof in terms of canonical neighborhood models
proceeds as follows. The construction of the canonical model is standard.
Let � be a system of classical modal logic. Then let Max� � denote a
maximal and consistent set of sentences of �. Let pn denote the atoms of
the language. In addition we have the notation |A|� = {Max� | A ∈ �},
where |A|� is A’s proof set for the system �. The canonical model N =
〈W, N, P 〉 is built up as follows:

(1) W = {� | Max� �}.
(2) For all u ∈ N , �A ∈ u if and only if |A|� ∈ N(u).
(3) Pn = |pn|� , for n = 0, 1, . . . .

I shall not repeat here the main results about canonical models for classical
systems, which can be found in (Chellas, 1980). The result that interest us
in order to prove a determination result for the logic Kn is the following
one:

THEOREM 6.1. Let N = 〈W, N, P 〉 be the smallest canonical neigh-
borhood model for the classical system containing the rule RKn. Then
for every u in N N(u) has degree of coherence n if and only if N(u) is
n-clustered.

Proof. Let � be a system of classical logic containing the rule RKn and
let N be the smallest canonical neighborhood model for �, i.e. a model
such that N(u) = {|A|� | �A ∈ u}. Assume for arbitrary u that N(u)

has degree of coherence n. Assume in addition that X ∈ N(u). Then,
X = |A|� , for �A ∈ u.

Since �A ∈ u we have that A ∈ �(u)N = {A | �A ∈ u}. This indi-
cates, by Reflexivity of [� , that �(u)N [�A. So, for all n-decompositions
δ of �(u)N , there is i, δ−1[i] � A. Now, all the n-generators of N(u) are
the sets:

|δ−1[1]|�, . . . , |δ−1[n]|� for some decomposition δ of �(u)N .

So, we know that for any arbitrary set of n-generators G1, . . . , Gn

for N(u) where:

G1 = |δ−1[1]|�, . . . , Gn = |δ−1[n]|� for some decomposition δ of�(u)N

there should be i, such that Gi = |δ−1[i]|� ⊆ |A|� .
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On the other hand, if we assume that for all n-generators G1, . . . , Gn

of N(u) there is at least one Gi entailing |A|�; this is tantamount to assume
that �(u)N [�A. So, by the rule RKn, �′ = {�B | �B ∈ u} � �A.
Therefore �A ∈ u, which entails that |A|� ∈ N(u), as needed. �

7. HIGH PROBABILITY NEIGHBORHOODS AND CLUSTERING

Let NP = 〈U, NP , V 〉 be a high n-probability model, where U is the
universe, V a valuation and P a probability function defined on a Boolean
sub-algebra of the power set of U . In addition, NP is defined as follows:

DEFINITION 7.1. NP (u) = {X | P(X) ≥ n}.
As we reported above, it is clear from the work of Kyburg and Teng (2002)
that high probability models are supplemented and possess the unit, and
they are not closed under intersections. In addition, we can apply Schotch
and Jennings’ ideas here by measuring the coherence of high probability
neighborhoods.

Some salient cases are immediate. High n-probability neighborhoods
which contain a point w ∈ U such that P({w}) ≥ n are augmented with⋂

N(u) = {w}. Nevertheless, high probability neighborhoods are not in
general clustered:

EXAMPLE 7.1. Consider a .6-probability neighborhood where U con-
tains four points, and let P({w1}) = .5, P({w2}) = .1, P({w3}) = .3,
P({w1}) = .1. This neighborhood has level of coherence 1 with only one
generator in {w1}. Nevertheless, the neighborhood is not clustered, because
{w1} /∈ N(u).

The example gives some hints about the nature of the notion of cluster-
ing itself and about the nature of the non-adjunctive logics based on it.
There are, of course, a variety of possible epistemic interpretations for the
notion. I am interested here in the fact that clustering admits an interpre-
tation, which is compatible with endorsing the most demanding standards
of epistemic rationality in terms of logical closure. Here is the basis of this
account of clustering (comparisons with the logic of high probability will
flow naturally from the interpretation itself).

The gist of the idea is to see clustering as an account of epistemic
indeterminacy prompted by data, which can be incoherent. An alternative
example will help motivating the idea.
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EXAMPLE 7.2 Consider a .6-probability neighborhood where U con-
tains four points, and let P({w1}) = .4, P({w2}) = .3, P({w3}) = .2,
P({w1}) = .1. This neighborhood has level of coherence 2. Possible gen-
erators include G1 = {w2}, G2 = {w3}; G1 = {w1}, G2 = {w2, w3};
G1 = {w1}, G2 = {w4, w2, w3}; G1 = {w1}, G2 = {w2}; G1 = {w1},
G2 = {w3}.

A cluster in the sense of Schotch and Jennings is: C1 = {w1, w2}, C2 =
{w1, w3}, C3 = {w4, w2, w3}. So we have that N(u) = {X | either C1 ⊆
X, or C2 ⊆ X, or C3 ⊆ X}.

Even when the last example was generated by utilizing high probability,
I ask the reader to abstract from that fact and to just consider the data
in the neighborhood as a possible data set independently of its origin. An
agent facing the set of possible 2-decompositions of the data can be seen as
being in doubt between various ways of articulating the data as the pooled
knowledge of two consistent, but unclosed views. So the idea of forcing
can be articulated as a form of cautious inference, where one should be
committed to infer something from the data as long as it follows from any
of the possible manners of articulating the data. So, for example, one of
the generators will be in the neighborhood as long as it is a conclusion
inferable from all possible articulations of the data.

So, clustering can be seen as a condition which requires the maximum
degree of logical perfection as is compatible with the degree of indetermi-
nacy represented in the neighborhood. If, as in the first example, there
is no degree of indeterminacy, and the level of coherence is one, then
the agent should be logically omniscient, i.e. the neighborhood should be
augmented. Of course, this is a requirement which clashes with the logic
of high probability, which permits augmentation only in some limit cases,
but that establishes its own standard of rationality, not necessarily coherent
with logical closure (seen as an ideal of rationality).

8. A MORE FINE-GRAINED MEASURE OF COHERENCE?

The previous epistemic account of clustering suggests, in turn, that Schotch
and Jennings’ measure of coherence might not be fine-grained enough
to reflect an intuitive notion of coherence in terms of epistemic determi-
nacy. It seems that there are cases where neighborhoods, which intuitively
bear different degree of coherence, receive nevertheless the same measure.
For example, consider the following class of neighborhoods of level of
coherence n:
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DEFINITION 8.1. A neighborhood N(u) is closed under a set of m-
generators G1, . . . , Gm if and only if N(u) can be represented as {X ⊆
2U | G1 ⊆ X} ∪ · · · ∪ {X ⊆ 2U | Gm ⊆ X}.
It is clear that neighborhoods closed under m-generators have level of co-
herence m. Nevertheless, of two neighborhoods of level of coherence m

it seems that if one is closed under generators and the other is not, the
one which is closed is epistemically more determinate (and intuitively
more coherent) than the one which is unclosed. For example, consider the
following modification of our second example:

EXAMPLE 8.1 Consider a neighborhood N(u) which is closed under
the generators G1 = {w2}, G2 = {w3} in Example 7.2.

Certainly there are grounds here in order to make a logical distinction.
The models whose neighborhoods are closed under generators are a strict
subclass of the clustered models. Syntactically the requirement can be
expressed by constraining further the forcing relation:

(CG) If a1, . . . , an is an n-decomposition of �, then � [� ∧ ai , for all i,
1 ≤ i ≤ n.

A possible improvement on the measure of coherence we have been
using can be to define:

DEFINITION 8.2. For consistent �, c(�) = m.n if and only if m is the
least integer such that there are sets

a1, . . . , am, ai �� false (1 ≤ i ≤ m)

and
⋃m

i=1 ai = �

where � is the classical notion of consequence, c(�) = w if false ∈ �, and
where n is the number of possible m-decompositions of �.

So, according to this proposal, the coherence of the neighborhood in Ex-
ample 7.1 is 1; the coherence of the neighborhood in Example 7.2 is 10;
and the coherence of the neighborhood in Example 8.1 is 2.

9. CLOSURE UNDER GENERATORS

Neighborhood semantics is a generalization of relational semantics. So,
we can obtain the entire normal family of modal systems by adding appro-
priate constraints on neighborhoods. Here is a list of those constraints for
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the standard schemas D, T, B, 4 and 5 (in epistemic logic 4 is called KK
or positive introspection, etc.). The constraints are conditions on a model
M = 〈U, N, P 〉, for every world u and proposition X in M.

(d) If X ∈ N(u), then Xc /∈ N(u).
(t) If X ∈ N(u), then u ∈ N(u).
(b) If u ∈ N(u), then {w ∈ M | Xc /∈ N(w)} ∈ N(u).
(iv) If X ∈ N(u), then {w ∈ M | X ∈ N(w)} ∈ N(u).
(iv) If X /∈ N(u), {w ∈ M | X /∈ N(w)} ∈ N(u).

Now consider the following constraint on neighborhoods:

DEFINITION 9.1 (J-�). For every u ∈ U , Y ∈ 2W , NY (u) = ⋃{N(w) |
w ∈ Y ⊆ U and N(w) is a neighborhood in a model of a classical system
�}.
When � is any normal Kripkean system, (J-�) seems to model constraints
inspired by Jaśkowski’s ideas (the next section provides an introduction to
some of these ideas).

(J-�)-neighborhoods represent the sum of the beliefs of n participants
in a ‘discussion’ (where n is the cardinality of Y ). The set of beliefs of each
participant w ∈ Y is represented by the propositions in Nw. The standards
of rationality of participants are given by the constraints imposed by �.

Notice that as long as � is any normal system, a model closed under
(J-�) is clustered, closed under generators and of level of coherence n,
where n is the number of participants. In fact, since in this case we have
K ⊆ �, the corresponding model of � is augmented, with ∅ �= ⋂

N(w)

for each N(w) ∈ NY (u). Therefore each
⋂

N(w) is a generator.
There is a hierarchy of models closed under generators which obey

(J-�) for the various possible normal �. These systems are interesting per
se independently of their eventual connection with the systems historically
proposed by Jaśkowski’s (a concrete connection with one of Jaśkowski’s
systems is studied below).

10. JAŚKOWSKI’S SYSTEM D2

The first non-adjunctive system in the literature was proposed by Jaśkowski
in an article published in 1948 (Jaśkowski, 1948), later reprinted in 1969
in Studia Logica (Jaśkowski, 1969). Jaśkowski was interested in studying
contradictory deductive systems including at least two theses that contra-
dict each other. He was aware that any contradictory system based on a
two-value logic is trivial or, as he preferred to call it: over-complete, in the
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sense that every meaningful formula is a thesis of the system. This is so in
virtue of the following law;

(Over Completeness) A → (¬A → B)

So, Jaśkowski presented the problem of studying contradictory systems
in the following terms:

The task is to find a system of the sentential calculus which: (1) when applied to the
contradictory systems would not always entail their over-completeness, (2) would be rich
enough to enable practical inference, (3) would have an intuitive justification (Jaśkowski,
1969, page 145).

Kolmogorov’s system (Kolmogorov, 1924) based on the four Hilbert’s
axioms of positive logic plus:

(K9) (A → B) → ((A → ¬B) → ¬A)

was one of the known systems in the literature accessible to Jaśkowski
which failed to satisfy Over-completeness, but Kolmogorov’s system when
applied to a contradictory system produced undesirable results (every for-
mula beginning with the symbol of negation is a thesis). So, Jaśkowski
developed a new formalism whose intended interpretation diverged from
systems like Kolmogorov’s (or other multi-valued systems proposed at the
time).

The main idea of a discursive system is simple. Jaśkowski invites the
reader to consider a deductive system pooling the theses advanced by sev-
eral participants in a discourse. So, Jaśkowski proposes: ‘Let such a system
which cannot be said to include theses that express opinions in agreement
with one another, be termed a discursive system’ (Jaśkowski, 1969, page
149). Moreover he immediately remarks:

To bring out the nature of the theses of such a system [a discursive system] it would be
proper to precede each thesis by the reservation: “in accordance with the opinion of one of
the participants of the discourse” [. . . ] Hence the joining of a thesis to a discursive system
has a different intuitive meaning than has assertion in an ordinary system (Jaśkowski, 1969,
page 149).

And he proposes to encode this epistemic attitude via the modality
usually reserved to encode the notion of possibility (metaphysical or epis-
temic):

Discursive assertion includes an implicit reservation of the kind specified above, which –
out of the functions so far introduced in this paper – has its equivalent in possibility Pos.
Accordingly, if a thesis α is recorded in a discursive system, its intuitive sense ought to
be interpreted so as if it were preceded by the symbol Pos, that is, the sense “it is possible
that α” (Jaśkowski, 1969, page 149).

It is clear that Jaśkowski proposes this representation of discursive as-
sertion for instrumental reasons even when it reverses the usual practice
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in epistemic logic of reserving � for the representation of the main atti-
tude (knowledge, belief, etc.) and ♦ for the encoding of possibility. His
discussion of discursive implication shows in an even more clear manner
that he is trying to utilize known modal notions in order to represent a
notion of implication that does not obey Over-completeness. He considers
and discards various modal translations of a discursive connective →d . For
example the translation of A →d B as ♦(A → B), which he discards for
not obeying elemental patterns of inference like modus ponens. Finally he
notices that the translation of A →d B as ♦A → B, preserves patterns of
inference that he considers desirable.

There seems to be a tension in Jaśkowski’s writings between intuitive
and instrumental adequacy. In fact, as he notices, the straightforward trans-
lation of A →d B, in accordance with the proposed epistemic reading of
♦ would be: “if anyone states that A, then B”. But it is unclear how B

should be read in this interpretation of A →d B. The literal translation
would be: “if anyone states that A, then B is the case”. Nevertheless this
interpretation should be attentive to the fact that each assertion (including
conditional assertions) are preceded by ♦. So, for example, modus ponens
works because for a (Kripkean) modality the following is a theorem:

(MP) ♦((♦A → B) ∧ ♦A) → ♦B)

So, the assertion of A →d B should be intuitively interpreted along the
following lines: “In accordance with the opinion of one of the participants
of the discourse, if anyone states that A, then B,” which nests various
epistemic modalities.

Max Urchs presents in (Urchs, 1970) a characterization of Jaśkowski’s
system D2 along lines suggested by Jaśkowski’ in (Jaśkowski, 1969).2 Let
FORd be the set of formulas freely generated from a denumerable set of
atomic propositions by means of some boolean complete set of connectives
and two additional connectives: the discussive conjunction ∧d and the
discussive implication →d . Then Urchs provides a syntactic translation
t : FORd → FORm from FORd to propositional modal language FORm

with identical set of atoms AT . Let ♦ be S5-possibility. The translation
proceeds as follows:

(1) t (H) =df H , for H ∈ AT .

(2) t (¬H) =df ¬t (H).

(3) t (H ∧ G) =df t (H) ∧ t (G).

(4) t (H ∧d G) =df t (H) ∧ ♦t (G).

(5) t (H →d G) =df ♦t (H) → t (G).
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Urchs, commenting on the translation, says that ‘it may appear some-
what bewildering’. In fact, the role of the translation is purely instrumental.

DEFINITION 10.1. D2 =df {H ∈ FORd : ♦t (H) ∈ S5}.
The idea is to characterize something less familiar (D2) in terms of some-
thing more familiar, namely the system S5. Since then recent work in
paraconsistent logic has followed Jaśkowski’s practice of characterizing
D2 in terms of Kripkean modalities (da Costa and Dubikajtis, 1977), in
particular via the appeal to the system S5.

At this point it should be clear to the reader why D2 is non-adjunctive.
The reason is that the following formula is not a thesis of D2:

(Ad) A →d (B →d (A ∧ B))

in virtue of the fact that the corresponding translated formula utilizing S5-
possibility fails to be a theorem in S5. The final part of this article will be
devoted to show that there are alternative translations of D2 into classical
systems of modal logic. I think that this alternative translation reveals in a
more clear manner the epistemic nature of Jaśkowski’s ideas. In a nutshell,
I think that the translation to non-normal classical systems has not only
instrumental but also foundational value, by suggesting possible epistemic
reconstructions of non-adjunctive inference. And, of course, represent-
ing D2 in this way is part of my attempt here of showing that various
well-known non-adjunctive systems have counterparts in corresponding
systems of classical modalities which are non-normal.

I shall focus on the purely implicative part of D2 and therefore I shall
only present a sketch of a complete translation (which should include as
well at least discursive equivalence or discursive conjunction). The empha-
sis here is on the nature of the required translation, which can also be used
(by adjusting parameters) to produce other discursive systems (in the broad
sense of the Jaśkowskian notion) other than the ones historically proposed
by Jaśkowski.

We need first some notational distinctions about the underlying lan-
guage. Let L be the language obtained by adding a discursive implication
to the purely Boolean language L0. Let, in addition, LB be L − L0, and
finally let L→ be the purely implicative fragment of the language, contain-
ing formulae A →d B, where A and B are either Boolean or conditionals.
In order to represent a discussion it would be useful in addition to have a
set agents I participating in the discussion and the duals operators �i , ♦i,
for i ∈ I . �iA carries the intuitive meaning: “agent i stated A” or “Agent
i believes A”. We also need two ‘group’ operators:
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DEFINITION 10.2.

�A =df ∃i�iA

♦A =df ∀i♦iA

The definition intends to capture the intuitive reading of � proposed by
Jaśkowski: “A has been stated by someone in the discussion” (or the sim-
pler and weaker reading that will be proposed below: “there is an agent
in a group that believes that A”). The dual modal notion of epistemic
possibility states that A is possible as long as it is epistemically possible
for each agent in the discussion. Now we can utilize these operators in
order to propose a modal translation for A →d B. The idea is to translate
the discursive conditional as �iA → ♦iB, i.e. “B is epistemically possible
for some agent i, given that he believes A”. This basic idea can be made
more precise via the following translation:

(1) t (H) =df �iH , for H ∈ AT .
(2) t (H ∧ G) =df t (H) ∧ t (G).
(3) t (¬H) =df �i¬H , for H ∈ AT .
(4) t (¬H) =df ¬t (H), for H ∈ L − AT .
(5) t (H →d G) =df t(H) → T (G).

where we have the following additional definitions:

t(A) = t (A) if A ∈ LB and t(A) = �iA otherwise.
T (B) = t (B) if B ∈ LB and T (B) = ♦iB otherwise.

Let’s consider some examples in order to see how the translation
works.

(A →d B) ∧ ¬B) →d ¬A

The translation of this formula is:

((�iA → ♦iB) ∧ �i¬B) → ♦i¬A

Intuitively the translated formula says that if agent i believes ¬B but B

is possible for i if A is believed, then i considers that ¬A is possible. The
central thesis A →d A follows as long as our operators �i are constrained
by:

(D) �iA → ♦iA
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In other words, the neighborhoods for these operators are consistent in
the sense that we should have:

(d) If X ∈ Ni(u), then Xc /∈ Ni(u)

The D2 theorem (A ∧ B) →d A, as well as the law of importation
follow as long as the operator �i obeys:

(M) �i(A ∧ B) → (�iA ∧ �iB)

Some D2 theses follow straightforwardly in virtue of the definitions and
the duality of each modal operator involved in the translation. Examples
of theses of this sort considered by Jaśkowski are:

(¬A →d A) →d A

(A →d ¬A) →d ¬A

The following D2 theorem imposes another important constraint on the
underlying modal logics for agents:

(¬A →d (B ∧ ¬B)) →d A

Here the crucial constraint is:

(N) �itrue

The translation offered so far is still insufficient to meet some of the
basic conditions of adequacy imposed by Jaśkowski. For example, modus
ponens does not hold. Nevertheless the use of additional constraints which
apparently were also required in Jaśkowski’s system3 guarantee not only
modus ponens but also the following additional theses of D2:

(A →d B ∧ A →d ¬B) →d ¬A

(¬A →d B ∧ ¬A →d ¬B) →d A

These theses hold as long as the epistemic modalities for each agent are
constrained by the following saturation condition:

(S) ♦iA → �iA

The logic imposed on the �i operators (and their duals) is still rather
weak. In particular condition (C) need not be satisfied, and therefore the
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EMNDS system does not have relational models. In order to see this just
consider a neighborhood model with a finite domain U = {w1, w2, w3}
and such that there is a neighborhood containing exactly the set U and all
the propositions {x, z} where x �= z and x, z range over the given universe.
Condition (C) is violated although all axioms in EMNDS are satisfied.

This previous analysis suggests the interests of focusing on the follow-
ing translation:

DEFINITION 10.3. D =df {H ∈ L : t (H) ∈ EMNDS}.

D contains all the purely implicational theorems mentioned by Jaśkowski
in (Jaśkowski, 1969). By the same token all the non-theorems explicitly
mentioned in (Jaśkowski, 1969) do not belong to D (here the failure of (C)
is important):

((A →d B) ∧ (A →d ¬B)) →d C

(A →d (¬A →d B)

(A →d (¬A →d ¬¬A)) →d B

(A →d (B →d (A ∧ B))

It is easy to see that the fact that the �i operators obey the laws of
EMNDS entails that � obeys the laws of EMNS – the condition D for
the group operators requires that �A → ♦A, which is not entailed by�iA → ♦iA.4

This also indicates that we can translate formulae of D2 directly to the
modal logic EMNS containing only the operators � and ♦, rather than to
a multi-modal logic. The idea, in virtue of the previously stated facts is to
translate A →d B directly to �A → �B.

I conjecture that the translation sketched above (or some slight modi-
fication of it to accommodate other connectives) is enough from a logical
point of view for the purposes of individuating a classical modal system
(without Kripkean counterpart) corresponding to D2. The general idea of
the translation can be extended in order to capture different discussive
logics. For example one might be interested in representing a discussion
between EMN agents that are not only consistent and saturated (individ-
ually) but that eventually also obey individually (C). Moreover the agents
in question can be opinionated (as in many reconstructions of Jaśkowski’s
ideas) in the sense that for every world w, the set {A : w |= �iA} is a max-
imal and consistent set of sentences. Cases of this sort can be represented
via neighborhoods closed under generators – where the group operators
used in the translation are still classical and non-Kripkean (even when the
agent operators might be Kripkean). I focused here, nevertheless, on what
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seems the weakest translation available where not only the group operators
but also the agent operators are non-Kripkean.
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NOTES

1 Moshe Vardi considered in (Vardi, 1986) the use of classical modal systems in order
to represent both failures of logical omniscience and high probability operators. He also
stated in passing that the proposal can be used in order to circumvent the lottery paradox.
Nevertheless, after considering the use of classical modal systems, Vardi discarded them
without exploring their logical power. For example, the main development in (Arló-Costa,
2002) is to utilize first order extensions of classical systems in order to obtain insights
about the lottery paradox. In fact, propositional classical modalities are not expressive
enough to encode what is logically interesting about the paradox. Vardi gave two rea-
sons for not utilizing systems of classical modalities (which he dubs intensional logic
following Montague’s terminology). The central reason is that this approach “leaves the
notion of a possible world as a primitive notion [. . .]. While this might be seen as an
advantage by the logician whose interest is in epistemic logic, it is a disadvantage for
the “user” of epistemic logic whose interest is mostly in using the framework to model
belief states (page 297).” Vardi proceeds instead to establish that: “a world consists of a
truth assignment to the atomic propositions and a collection of sets of worlds. This is,
of course, a circular definition. . .”. Vardi proceeds in ways that are almost completely
orthogonal to the main theoretical considerations first introduced in (Arló-Costa, 2002)
and re-iterated (more briefly) here. Even when circular definitions and ‘composite’ worlds
can be made mathematically coherent in various ways (among them by abandoning the
axioms of foundation in set theory (Barwise, 1988)) this is precisely what I intend to avoid
by utilizing classical modal systems in order to represent ‘bounded’ epistemic operators.
Rather than having composite worlds consisting of truth assignments and a collection of
sets of worlds, it seems preferable to leave the worlds as primitives and associating them
with a collection of sets of worlds (their neighborhoods). Once this foundational point
is seen, one can go further and proceed to study interesting phenomena via appropriate
constraints on the neighborhood function or by studying first order extensions, apparently
completely unexplored until the publication of (Arló-Costa, 2002). So, the main point of
Vardi’s article, in spite of mentioning classical systems in passing, is to defend a posi-
tion orthogonal with the one presented here and in (Arló-Costa, 2002). His main idea
is to abandon the idea (common in epistemic semantics) that worlds should be treated
as primitives. Exploring the technical complexities implicit in embracing this research
program (which might include the use of circular definitions) might be interesting per
se (Barwise and Moss, 1988), but such complexities do not seem to be needed for purely
foundational reasons related to the application of epistemic logic to cases where logical
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omniscience fails. The modal logics proposed by Scott and Montague, I would like to
argue, offer a rich representational tool compatible with the use of standard set theory. Both
for applied and for pure applications. In particular I intend to argue here that various types
of paraconsistent systems can be parametrically classified by determining their ‘classical’
counterparts. Moreover, this classification offers simultaneously a manner of developing
epistemic interpretations for these paraconsistent systems as well as a heuristic tool for the
investigation of the family of non-Kripkean classical modalities itself.

2 I am indebted here to an anonymous referee who suggested the potential interest of
Urchs’s work in his review.

3 The following informal description of Jaśkowski’s systems indicates that he might
have required a stronger constraint than saturation:

In a discourse, each participant puts forward some information, beliefs, or opinions. What
is true in a discourse is the sum of opinions given by participants. Each participant’s
opinions are taken to be self-consistent, but may be inconsistent with those of others. To
formalise this idea, take an interpretation, I , to be one for a standard modal logic, say S5.
Each participant’s belief set is the set of sentences true in a possible world in I . Thus, A

holds in I iff A holds at some world in I . Clearly, one may have both A and ¬A (but not
A ∧ ¬A) holding in an interpretation (Priest and Tanaka, 2000).

4 There is a slight abuse of notation here. We are using the same letter (D) to characterize
the agent axiom (�iA → ♦iA) and the group-axiom (�A → ♦A).
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