
Higher-Order Symb Comput (2010) 23:409–431
DOI 10.1007/s10990-010-9061-9

A multi-tier semantics for Hop

Manuel Serrano · Christian Queinnec

Published online: 20 August 2010
© Springer Science+Business Media, LLC 2010

Abstract Hop is a multi-tier programming language where the behavior of interacting
servers and clients are expressed by a single program. Hop adheres to the standard web
programming style where servers elaborate HTML pages containing JavaScript code. This
JavaScript code responds locally to user’s interactions but also (following the so-called Ajax
style) requests services from remote servers. These services bring back new HTML frag-
ments containing additional JavaScript code replacing or modifying the state of the client.

This paper presents a continuation-based denotational semantics for a sequential subset
of Hop. Though restricted to a single server and a single client, this semantics takes into
account the key feature of Hop namely that the server elaborates client code to be run in the
client’s browser. This new client-code dynamically requests services from the server which,
again, elaborate new client code to be run in the client’s browser.

This semantics details the programming model advocated by Hop and provides a sound
basis for future studies such as security of web applications and web continuations.

Keywords Multi-tier language · Web programming · Semantics

1 Introduction

Hop is dedicated to programming interactive applications on the web [16]. It belongs to the
new family of languages sometimes referred to as multi-tier languages [3, 12, 13]. Within a
single formalism, these languages specify code residing on multiple locations or tiers, such
as a client and a server. In Hop, the server is a full-fledged bootstrapped HTTP server [15]
and clients are regular browsers able to execute JavaScript programs.

M. Serrano (�)
INRIA/Sophia-Antipolis, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis, France
e-mail: manuel.serrano@inria.fr

C. Queinnec
UPMC/LIP6, 4, place Jussieu, 75252 Paris, France
e-mail: christian.queinnec@lip6.fr

mailto:manuel.serrano@inria.fr
mailto:christian.queinnec@lip6.fr

410 Higher-Order Symb Comput (2010) 23:409–431

Hop rests on the model of classical Ajax applications programming where server-side
code elaborates client-side code that will get evaluated by the clients, i.e., the web browsers.
Adopting this model allows Hop to be fully compatible with traditional web technologies
and distinguishes it from other multi-tier languages.

Realistic Hop applications involve several servers and several clients. Each server runs a
Hop runtime system that automatically deploys the application on the clients upon connec-
tions. The server-side parts are compiled to native code. The client-side parts are compiled
to JavaScript on the fly [9]. The two sides of the application run in parallel1 on different
computers. Clients pull data from the server by calling special functions named services.
Servers push data toward clients by means of signal broadcasts. This paper presents a for-
mal semantics for a simplified version of Hop that describes how a program is deployed
on a client and how the execution flows between one server and one client. It only focuses
on these aspects that distinguish Hop from traditional programming languages. Other lan-
guage features of Hop which are also common in other programming languages such as
signal broadcasting, concurrency, multiple clients, and multiple servers are ignored. This
study will provide a sound theoretical basis to address later these postponed topics. To our
knowledge the semantics presented in this paper is the first ever published that copes with
dynamic code generation of multi-tier programming languages.

Interactive web applications which demand server-side and client-side computations have
specificities such as intensive HTML manipulations or asymmetric distributed execution
that make general purpose programming languages inadequate or clumsy. These web appli-
cations actually demand new programming paradigms that are not well supported by tradi-
tional programming languages. Hop has been created to match this demand. Its design has
been motivated by a suite of web applications that were envisioned. After a couple of years
spent in developing Hop and web applications, we felt that it was time to polish the under-
lying model on which rests the language and to extract, from the implementation, a concise
description of the specificities that distinguishes it from other languages. This is the first
purpose of the semantics presented in the paper.

The second motivation is of a different nature. Being a multi-tier programming language,
Hop exposes a single formalism used to program a whole web application. This eases the
programming task because only one language has to be tamed. This also opens opportunities
for computing programs global properties, in particular security properties.

One of the plague of web applications is a security violation based on cross site scripting
(or XSS). It enables malicious attackers to inject client-side script into web pages viewed
by other users.2 The common approach to protect against XSS is to control client-side ex-
ecutions via browser [7] specific equipments. Provided with a coherent formalism for pro-
gramming the client and the server other approaches can be envisioned. The Hop semantics
explains how client-side programs are generated by servers. Thus, it can be used to reason
about client-code generation, for instance, for tracking unexpected or malicious client-side
codes generation.

The semantics given in this paper is formalized with a continuation-based denotational
style [17]. Besides being compact and hiding useless implementation details, this choice
offers several advantages: (i) it follows the spirit of the semantics used for the various revised
reports on Scheme [8], (ii) it makes all continuations explicit thus providing a sound basis

1In the actual implementation, servers handle several clients concurrently. This server-side parallelism is not
described in the simplified semantics presented in this paper.
2Sammy (http://en.wikipedia.org/wiki/Samy_(XSS)) is a famous example of a worm that propagate over
MySpace in the end of 2007.

http://en.wikipedia.org/wiki/Samy_(XSS)

Higher-Order Symb Comput (2010) 23:409–431 411

to study the introduction of web continuations [14], (iii) it gives us a first formal definition
raising new interrogations concerning, for instance, possible alternate choices, (iv) finally,
it represents a formal definition against which new semantics, currently under work, will be
gauged.

2 The Hop programming language

The Hop programming language is designed for the web according to the programming
model of the web. It assumes applications whose server sides generate HTML trees that
represent the client sides. These HTML trees play three roles: (i) they declare the UI for the
browsers, (ii) they declare client-side expressions, and (iii) they start the application on the
clients. Contrary to most systems, Hop embraces the server-side and the client-side of web
applications within a single language. Still, Hop is fully web compliant:

– server-side and client-side parts of the application communicate using HTTP connections,
– Hop client code is compiled into HTML and JavaScript,
– Hop can use foreign JavaScript APIs, REST APIs, or other common web technologies

out of the box.

When designing Hop we have found it interesting to adhere to the traditional web pro-
gramming model and to push it as far as possible. On the one hand we may consider this
model as awkward in terms of programming language but on the other hand, we also think
that we have to acknowledge that it has enabled the delivery of applications that were un-
conceivable only a couple of years ago. Using, studying, and exploring the traditional web
programming model is the path we follow to understand if this model is the reason of the
success of these web applications.

Hop is based on the Bigloo language,3 a dialect of Scheme R5RS [8]. Hop extends Bigloo
with four constructs to accommodate web programming:

– service definitions: services are server-side functions associated to URLs. These func-
tions are defined by the service form whose syntax is close to the traditional lambda
form. Although not presented in the paper, Hop syntactic sugars allows standard web
REST APIs to be automatically wrapped into services. Hence, web services can be used
in Hop programs using a single coherent syntax, whether they are implemented in the
language or not.

– service invocations: servers and clients may invoke services with the with-hop form.
When a client needs to fetch or send information from and to its origin server, it uses
with-hop. When it needs to execute an action such as raising the sound volume of a
multimedia application, it also uses with-hop. Symmetrically with-hop is also used
to implement server-to-server communication.

– client-side expressions: a Hop program starts to run on the server. It generates a client-
side program. On the server, this client-side program is a HTML document reified as an
AST (Abstract Syntax Tree). On the client, this program displays a GUI to end-users.
End-user actions, e.g., button clicks, mouse moves, etc. trigger evaluations of Hop client-
side expressions. The ˜ (tilde) form is a useful syntax to embed client-side expressions
within ASTs.

3http://www.inria.fr/indes/fp/Bigloo.

http://www.inria.fr/indes/fp/Bigloo

412 Higher-Order Symb Comput (2010) 23:409–431

π = Scheme
| (with-hop π π)
| ˜ξ

| (service [:url π] (id1 id2 ...) π)

ξ = Scheme
| (with-hop ξ ξ)
| $ π

Fig. 1 Hop dual grammar, server-side on the left, client-side on the right

– server-side expressions: server-side values can be injected inside client-side expressions
with the $ (dollar) form. At first glance, $-expressions can be considered as symmetric
to˜-expressions but, in fact, they should be better considered as unquote forms within
quasiquote forms.

Figure 1 shows the syntax of Hop. π is a server-side expression while ξ is a client-side
expression. Both syntaxes extend the Scheme’s syntax.

The rest of this section presents various examples that introduce Hop step by step. They
illustrate the aspects of the language that are formalized by the presented semantics. The
excerpts are all actual programs that can be run in Hop.

2.1 Creating a HTML document

Hop extends Scheme values with a new data type representing HTML ASTs that are created
and manipulated by Hop library functions. By convention, the names of these functions are
of the form <upper-case-letter+>. The following function hello1 creates such an AST
that defines a HTML page with a simple message. Using an AST instead of a textual string-
based representation ensures that HTML documents are well formed.

(define (hello1 x)
(<HTML> (<BODY> "Hello " x ’!)))

The expression (hello1 "world") produces a HTML page displaying Hello
world!.

2.2 Creating a HTML document with a client-side action

Once installed on a client, i.e., a web browser, a program reacts to end-user actions. These
actions are Hop client-side expressions, they are introduced inside the HTML AST by the

˜-form, such as:

(define (hello2 x)
(<HTML>

(<BODY> :onclick ~(alert "Goodbye")
"Hello " x ’!)))

An expression such as (hello2 "world") produces an HTML document that, when
displayed, looks similarly to (hello1 "world"). However, when the text is clicked,
a pop-up window displays the message Goodbye.

Higher-Order Symb Comput (2010) 23:409–431 413

As HTML syntactic correctness is ensured by compiling an AST into HTML, client-side
correctness is ensured by compiling ˜-forms into JavaScript. Being automatically gener-
ated, Hop client-side programs are guaranteed to be free syntactic errors that may plague
programs generated by systems based on textual representations.

Server-side and client-side expressions use different global environments: they do
not share variables. Hence, the next program creates a GUI displaying the sentence
Hello world! that, when clicked, pops up a window displaying Goodbye because,
while server-side x is bound to the string "world", client-side (global) x is bound to the
string "Goodbye":

(define (hello3 x)
(<HTML>

(<BODY> :onclick ~(alert x)
~(define x "Goodbye")
"Hello " x ’!)))

(hello3 "world")

The server-side and client-side runtime libraries offer similar libraries. In particular, the
HTML constructors and the DOM handling functions are available on both sides as demon-
strated in the next function:

(define (hello4 x)
(let ((sdiv (<DIV> "a server div")))

(dom-append-child! sdiv ("a server span"))
(<HTML>

(<BODY> :onclick ~(dom-append-child!
document.body
(<DIV> "a client div"))

sdiv))))

In this example, the library functions dom-append-child! and <DIV> are both used
once on the server and once on the client. On the server, a HTML subtree with the message
"a server div" is created and bound to the server local variable sdiv. Still on the
server, a span is added to sdiv. When the message "a server div" is clicked on the
client, a second div containing the message "a client div" is added to the document.
The client-side document is pointed to by the global variable documentwhich is initialized
by the browser.

2.3 Defining a service

Functions defined by the server can only be used by server-side expressions. Similarly func-
tions defined by the client can only be used by client-side expressions. Services overcome
the limitation of regular functions. Services are special server functions that can be invoked
by clients via URLs. They are defined by the special form service.

The following service shello4 wraps the hello4 function into a service:

(define shello4 (service :url "/hop/shello4" (x) (hello4 x)))

Defining a service binds a server-side function to a URL (here "/hop/shello4")
which can be used by any web browser to trigger a server-side computation, i.e., to call a

414 Higher-Order Symb Comput (2010) 23:409–431

server-side service. For instance, assuming a Hop server waiting connections on port 8080,
one may browse the URL http://localhost:8080/hop/shello4?x=world in
which case the HTML document presented in Sect. 2.2 is returned to the web browser.

Just as Scheme provides a shorthand for binding functions to variables, Hop provides
define-service to define and bind a service to a global variable while making this
service reachable via a URL deduced from its name. With that syntax, the former definition
of shello4 is simplified as:

(define-service (shello4 x) (hello4 x))

2.4 Invoking a service

A service is a functional value that, when invoked, returns its associated URL. For instance,
the expression (shello4 "world") produces the following URL:

http://localhost:8080/hop/shello4?x=world.

The with-hop special form triggers the evaluation of a service. with-hop forms may
be used either by servers or clients as:

(with-hop (shello4 "Hop") (lambda (v) ...))

A with-hop form invokes asynchronously a service (here shello4) and returns instantly
an unspecified value. When the service returns a result, a callback procedure (here, the
anonymous lambda) is applied on that result. The purpose of a with-hop form is to
spawn a remote service invocation and to register a callback that will get invoked asynchro-
nously when the client has received the response to its request. The precise semantics of the
with-hop form will be presented in Sect. 4.

2.5 Invoking a service from a client

Servers and clients use different name spaces but server values can be injected into client
code constructed on the server side by means of $-expressions.

(define-service (shello5 x)
(<HTML> (<BODY> :onclick ~(alert $x) "Hello!")))

This service returns a HTML page that, when clicked, pops up an alert displaying the argu-
ment passed to shello5. Here are three examples of invocations:

1. http://localhost:8080/hop/shello5?x=You%20clicked%20me!
2. (set! document.location (shello5 "You clicked me!"))
3. (set! document.location (shello5

("Yes you clicked me!")))

The global variable document which has been used in the example hello4 to access the
document currently displayed by the browser is now used to change the current location
of the browser. Changing the value of document.location instructs the browser to
download and to display a new URL.

Server-side values are injected within client-side expressions when the server builds the
HTML AST so $-forms do not involve any communication between servers and clients.

Higher-Order Symb Comput (2010) 23:409–431 415

$-forms are processed ahead of client-side evaluation. As a consequence, clients are unaware
of any afterward modifications of injected values.

All data types but plain functions introduced by the keyword lambda can be injected
into client-side code. Services can be injected into client-side code. This allows client-side
expressions to reify services and hence, to invoke them, such as:

(define-service (shello6 x)
(<HTML>

(<BODY> :onclick ~(with-hop ($(service ()
(format "Bonjour ~a" x)))

(lambda (v) (alert v)))
"Hello!")))

When this document is clicked, the client invokes the anonymous service that returns a
new string of characters. This string is sent back to the client and bound to the callback’s
parameter v that displays it in an alert dialog box.

Fig. 2 Sequence diagram for a service invocation. Snake arrows represent HTTP requests. Solid arrows
represent evaluation and marshalling via HTTP. Thick vertical arrows mean compilation towards JavaScript.
Names prefixed by js suggest they run in JavaScript

416 Higher-Order Symb Comput (2010) 23:409–431

Note that the :url argument of services presented in Fig. 1 is optional. Unless specified,
Hop automatically allocates fresh URLs. These are never reclaimed but the service form
accepts two optional arguments that control the life-time and time-to-live of the services.
Invoking a service that no longer exists raises a client exception.

Services accept parameters:

(define-service (shello7 x)
(<HTML>

(<BODY>
:onclick ~(with-hop ($(service (l) (reverse l))

(cons 1 $x)) (lambda (v) (alert v)))
"Hello!")))

Figure 2 displays the steps needed to evaluate the expression (shello7 ’(2 3)).
First, the shello7 service is invoked. This produces a web page displaying the message
Hello!. When clicked, it triggers a call to an anonymous service that reverses its argument.
The result (the list (3 2 1)) is displayed, on the client, in an alert window.

3 Informal semantics

As seen in the previous section, Hop mixes two locations for evaluation (servers and clients)
and two times of evaluation: initially on the server (when elaborating a HTTP response) then
on the client. Moreover, when the user interacts with the GUI displayed by the browser, new
evaluations may be requested on the server.

The main objective of a Hop server-side program is to generate new expressions to be
evaluated on the client. That is, client-side programs (a mix of HTML and JavaScript) are
first-class values generated by server-side computations. This is the standard model of most
web applications, and in particular, the model of pure AJAX applications that are dominant
in the landscape of the Web 2.0. The peculiarities of this model are reflected by an unusual
staged semantics of the language first informally introduced in this section then formally
presented in Sect. 4.

3.1 Core Hop

We assume that a user’s initial HTTP request forces the evaluation of a given Hop program
on the server. We do not specify how this is done and focus on the semantics of this running
Hop program. We define Core Hop, a simplified variant of Hop, which is an applied λ-
calculus with a single grammatical extension: the˜-form.

When a user interacts with the browser and this interaction requests a service from a
server, we modeled this interaction as a Core Hop expression to be evaluated in the global
environment of this server.

Computations in Core Hop may dynamically define new (anonymous) services (see
shello6 for instance) so we separate the global environment from the local lexical en-
vironment and we introduce a (gdef ν π) form to bind global variables from deeper
lexical environments. The (gdef ν π) form binds (or rebinds) the global variable ν to
the value of the expression π . The gdef form hides implementation details on how real
services (bound to URLs in real Hop) are invoked and how URLs are managed. In Core

Higher-Order Symb Comput (2010) 23:409–431 417

π = ν

| (gdef ν π)
| (lambda (ν) π)
| (π1 π2)
| (begin π1 π2)
| ˜�

ν = variable

� = ν

| (gdef ν �)
| (lambda (ν) �)
| (�1 �2)
| (begin �1 �2)
| $ π

| (with-hop (π �1) �2)

ξ = ν

| (gdef ν ξ)
| (lambda (ν) ξ)
| (ξ1 ξ2)
| (begin ξ1 ξ2)
| (with-hop (π ξ) ξ1)

Fig. 3 Grammar for Core Hop (left) and its Tilde Hop subset (center). Grammar for Core JavaScript is on
the right

Hop, services are invoked as plain expressions evaluated in the global environment of the
server.

Since the gdef form performs a side-effect, we also add the Scheme begin form to
Core Hop.

An usual HTTP response is a HTML tree with nodes containing JavaScript expressions
or references to JavaScript files. Since JavaScript expressions may dynamically construct
HTML trees, we simplify the semantics by assuming that the values produced by a Core Hop
program are JavaScript programs (values of the Core JavaScript language defined below)
that get executed by the client.

3.2 Tilde Hop

The˜-form allows Core Hop to create JavaScript programs. We name Tilde Hop this subset
of Core Hop. The ˜-form might be compared to a quasiquote form where unquote
is named $. A quasiquote form builds an S-expression whereas a˜-form builds a Core
JavaScript program.

A Tilde Hop expression looks like a Core JavaScript program with two additions (see
center part of Fig. 3) — the $-form introduces a Core Hop value into the JavaScript program
being built and — the with-hop form allows the client code, when run, to interact with
the server.

Similarly to quasiquote forms, ˜-forms are not essential: JavaScript programs may
also be built out of simple strings. However˜-forms allow Hop programmers to easily build
readable and always syntactically correct JavaScript programs.

3.3 Core JavaScript

Symmetrically, we simplify JavaScript into Core JavaScript, a quite similar applied
λ-calculus (see Fig. 3 right) with a new extension: the with-hop form to interact with
servers. The form (with-hop (π ξ) ξ1) (see Fig. 4) applies, in the global environ-
ment of the server, the value of π (a Core Hop expression yielding a function) on the value
of ξ (a Core JavaScript expression). This is a simplification since the expression π does not
travel from the client to the server: in real Hop, π stays on the server and is hidden behind a
URL.

The result of this application is a new JavaScript program sent back to the client where
it will run in the global environment. The value of this JavaScript program is then given as
argument to the callback ξ1 still in the global environment of the client.

418 Higher-Order Symb Comput (2010) 23:409–431

Fig. 4 Evaluation sequence of a with-hop form in Core Hop and Core JavaScript. Solid arrows represent
evaluation or marshalling. The snake arrow represents a service invocation

A HTTP response may contain HTML nodes with additional global JavaScript functions
hence the necessity of gdef to take this into account within Core JavaScript (see hello3
for instance).

The difference between the grammars of Core JavaScript (ξ) and Tilde Hop (�) comes
from $-forms that are only allowed in the latter. This reflects the different evaluation times
involved in Hop: first, a program generates an AST (π and �), second, the AST is evaluated
on the client (ξ).

3.4 User’s interactions on the client

We model a user’s interaction on the GUI displayed by the browser as the evaluation of a
Core JavaScript expression. This expression is evaluated in the global environment of the
client. It may involve some with-hop forms to fetch information from the server. That
information will be bound to the formal parameter of the callback function. JavaScript is
roughly sequential and so is Core JavaScript. All user’s interactions are therefore queued
and processed sequentially by an event loop. Conceptually, the sequential execution flows
from the server to the client and vice-versa and further user’s interactions are queued while
the server or the client is busy.

3.5 Recapitulation

Core Hop and Tilde Hop run on the server while Core JavaScript runs on the client. The
semantics of Core Hop twines a regular Scheme-like evaluation and a JavaScript program
creation much like a quasiquotation mechanism.

The initial continuation of this server computation expects a Core JavaScript program
that is sent to the client and run. The Core JavaScript evaluation looks like a regular Scheme
evaluation except that with-hop transfers the evaluation onto the server which returns to
the client a new Core JavaScript program to be queued for later evaluation. The evaluation
on the server and the client are therefore also twined together.

Higher-Order Symb Comput (2010) 23:409–431 419

The formal semantics of Core Hop, Tilde Hop, and Core JavaScript are given in the next
section.

4 Semantics

This section displays a greekified evaluator for this simplified Hop. We nearly follow the
conventions used for the formal semantics section in R5RS [8] that is:

ρ[ν → ε] substitution “ρ with ε for ν”
θ§θ∗ adjoining θ in sequence θ∗
η↓θ tuple projection
<> empty sequence

< θ > sequence of one term

The semantics of Core Hop, Tilde Hop, and Core JavaScript appear respectively on Fig. 5,
Fig. 6 and Fig. 7. The Appendix presents the Scheme source code of the executable inter-
preter for Core Hop from which the semantics has been automatically extracted.

4.1 Core Hop

Core Hop looks like a regular Scheme dialect but for the presence of gdef and ˜-forms.
The domains are indexed with S for the server-side, with C for the client-side, or with G
when generating Core JavaScript programs.

In Fig. 5, the first three arguments of S (as in Server) are the usual ones: lexical en-
vironment ρS, global environment γS and continuation κS. Fourth and fifth arguments are
explained below.

There is no mutable value hence the absence of a store in the semantics. However, global
variables are mutable (with gdef) so the global environment is given back to continuations.

π ∈ CoreHop
S : CoreHop → LexEnvS × GlobEnvS × ContS × LexEnvG × StateC → Ans
ν ∈ Var
ε ∈ ValS

ϕ ∈ (ValS × GlobEnvS × ContS × StateC → Ans) ⊂ ValS

ρS ∈ LexEnvS = Var → ValS

γS ∈ GlobEnvS = Var → ValS

κS ∈ ContS = ValS × GlobEnvS × StateC → Ans
ηS ∈ StateS = LexEnvS × GlobEnvS

↓ρ : StateS → LexEnvS

↓γ : StateS → GlobEnvS

S[[ν]]ρS γS κS ρG ηC = κS(lookupS(ν, ρS, γS)) γS ηC

S[[(gdef ν π)]]ρS γS κS ρG ηC = S[[π]]ρS γS (λεγS1ηC1.κSε γS1[ν → ε] ηC1) ρG ηC

S[[(lambda (ν) π)]]ρS γS κS ρG ηC = κS(λεγS1κS1ηC1.S[[π]]ρS[ν → ε] γS1 κS1 ρG ηC1) γS ηC

S[[(π π1)]]ρS γS κS ρG ηC = S[[π]]ρS γS (λϕγS1ηC1.S[[π1]]ρS γS1 (λεγS2ηC2.ϕε γS2 κS ηC2) ρG ηC1) ρG ηC

S[[(begin π π1)]]ρS γS κS ρG ηC = S[[π]]ρS γS (λεγS1ηC1.S[[π1]]ρS γS1 κS ρG ηC1) ρG ηC

S[[˜�]]ρS γS κS ρG ηC = G[[�]]ρG (λξηSηC1.κSξ ηS ↓γ ηC1) (stateS(ρS, γS)) ηC

Fig. 5 Core Hop semantics

420 Higher-Order Symb Comput (2010) 23:409–431

� ∈ TildeHop
ψ ∈ TildeHop callback

G : TildeHop → LexEnvG × ContG × StateS × StateC → Ans
ξ ∈ CoreJS ⊂ ValS

ρG ∈ LexEnvG = Var → ValS

κG ∈ ContG = CoreJS × StateS × StateC → Ans
Π : ValS → CoreJS

G[[ν]]ρG κG ηS ηC = κG(lookupG(ν, ρG)) ηS ηC

G[[(gdef ν �)]]ρG κG ηS ηC = G[[�]]ρG (λξηS1ηC1.κG �(gdef ν ξ)� ηS1 ηC1) ηS ηC

G[[(lambda (ν) �)]]ρG κG ηS ηC =
G[[�]]ρG[ν → �ν�] (λξηS1ηC1.κG �(lambda (ν) ξ)� ηS1 ηC1) ηS ηC

G[[(� �1)]]ρG κG ηS ηC =
G[[�]]ρG (λξηS1ηC1.G[[�1]]ρG (λξ1ηS2ηC2.κG �(ξ ξ1)� ηS2 ηC2) ηS1 ηC1) ηS ηC

G[[(begin � �1)]]ρG κG ηS ηC =
G[[�]]ρG (λξηS1ηC1.G[[�1]]ρG (λξ1ηS2ηC2.κG �(begin ξ ξ1)� ηS2 ηC2) ηS1 ηC1) ηS ηC

G[[$π]]ρG κG ηS ηC = S[[π]]ηS ↓ρ ηS ↓γ (λξγSηC1.κGΠ(ξ) (stateS(ηS ↓ρ, γS)) ηC1) ρG ηC

G[[(with-hop (π �) ψ)]]ρG κG ηS ηC =
G[[�]]ρG (λξηS1ηC1.G[[ψ]]ρG (λξ1ηS2ηC2.κG �(with-hop (π ξ) ξ1)� ηS2 ηC2) ηS1 ηC1) ηS ηC

Fig. 6 Tilde Hop semantics

The lookupS function (not shown) looks for the value of a variable ν, first in the lexical
environment ρS then in the global environment γS.

While on the server, the constant state of the client is held in ηC. Symmetrically the state
of the Core Hop evaluator on the server (its lexical and global environments) is captured in
ηS (with the stateS tuple-maker) while processing˜-forms.

Conversely the lexical environment where ˜-forms are processed is kept in ρG while
evaluating Core Hop forms.

4.2 Tilde Hop

Basically, forms are compiled (copied) into Core JavaScript (see Fig. 6) but for $-forms
whose value (that should be a Core JavaScript fragment) is grafted into the currently built
Core JavaScript program after being vetted by the Π filter (not further explained).

The generated Core JavaScript programs appear between � and � marks.
The environment ρG lists the lexical variables present in the generated lambda forms

of Core JavaScript. This environment is preserved while processing $-forms since they may
contain recursively additional ˜-forms. Similarly, the state of the server is held in ηS when
not processing $-forms.

While processing Tilde Hop (and Core Hop as well), the constant state of the client is
held in ηC. This argument may be safely ignored when not considering the role of the client.

Continuations in Tilde Hop are noted κG. They have a different type from those of Core
Hop. A conversion of continuations appears in the rule for $-forms.

Higher-Order Symb Comput (2010) 23:409–431 421

C : CoreJS → LexEnvC × GlobEnvC × ContC × Susp∗ × StateS → Ans
ν ∈ Var
ε ∈ ValC

φ ∈ (ValC × GlobEnvC × ContC × Susp∗ × StateS → Ans) ⊂ ValC

ρC ∈ LexEnvC = Var → ValC

γC ∈ GlobEnvC = Var → ValC

κC ∈ ContC = ValC × GlobEnvC × Susp∗ × StateS → Ans
ηC ∈ StateC = GlobEnvC × Susp∗
↓γ : StateC → GlobEnvC

↓θ∗ : StateC → Susp∗
Σ : ValC → ValS

C[[ν]]ρC γC κC θ∗ ηS = κC(lookupC(ν, ρC, γC)) γC θ∗ ηS

C[[(gdef ν ξ)]]ρC γC κC θ∗ ηS = C[[ξ]]ρC γC (λεγC1θ
∗

1ηS1.κCε γC1[ν → ε] θ∗
1 ηS1) θ∗ ηS

C[[(lambda (ν) ξ)]]ρC γC κC θ∗ ηS = κC(λεγC1κC1θ
∗

1ηS1.C[[ξ]]ρC[ν → ε] γC1 κC1 θ∗
1 ηS1) γC θ∗ ηS

C[[(ξ ξ1)]]ρC γC κC θ∗ ηS =
C[[ξ]]ρC γC (λφγC1θ

∗
1ηS1.C[[ξ1]]ρC γC1 (λεγC2θ

∗
2ηS2.φε γC2 κC θ∗

2 ηS2) θ∗
1 ηS1) θ∗ ηS

C[[(begin ξ ξ1)]]ρC γC κC θ∗ ηS = C[[ξ]]ρC γC (λεγC1θ
∗

1ηS1.C[[ξ1]]ρC γC1 κC θ∗
1 ηS1) θ∗ ηS

C[[(with-hop (π ξ) ξ1)]]ρC γC κC θ∗ ηS =
let κC1 = (λεγC1θ

∗
1ηS1.

let κC2 = (λφγC2θ
∗

2ηS2.

let f = (λγC3θ
∗

3ηS3.

let κS = (λϕγSηC.

let κS1 = (λξ2γS1ηC1.

let θ∗
4 =< Susp(φ,Π(ξ2)) > §ηC1 ↓θ∗

in LOOPC(ηC1 ↓γ , θ∗
4, (stateS(ρ

0
S , γS1))))

in ϕΣ(ε) γS κS1 ηC)

in S[[π]]ηS3 ↓ρ ηS3 ↓γ κS γ 0
C stateC(γC3, θ

∗
3))

in κC unspecified γC2 < Susp(f) > §θ∗
2 ηS2)

in C[[ξ1]]ρC γC1 κC2 θ∗
1 ηS1)

in C[[ξ]]ρC γC κC1 θ∗ ηS

κ0
S ξ γS ηC = LOOPC(ηC ↓γ , ηC ↓θ∗ § < Susp(idC,Π(ξ)) >, (stateS(ρ

0
S , γS)))

idCε γC κC θ∗ ηS = κCε γC θ∗ ηS

Fig. 7 Core JavaScript semantics

The function lookupG (not shown) searches in the ρG environment a variable ν. This
search returns a client-side expression (a Core JavaScript reference to a variable) of the
form �ν� (see the lambda rule).

4.3 Core JavaScript

The semantics of Core JavaScript is again similar to Scheme with the addition of the
with-hop form, see Fig. 7. The first three arguments of C (as in Client) are similar to
those of S : lexical environment ρC, global environment γC and continuation κC. Two addi-
tional arguments will be explained below.

While evaluating Core JavaScript expressions (without with-hop forms), the constant
state of the server is held in ηS and may be safely ignored.

JavaScript is a sequential language. We model Core JavaScript as an engine that con-
sumes a list of suspensions, see Fig. 8 for the LOOPC definition. When the user interacts

422 Higher-Order Symb Comput (2010) 23:409–431

LOOPC : GlobEnvC × Susp∗ × StateS → Ans
θ ∈ Susp = ValC × CoreJS + (GlobEnvC × Susp∗ × StateS → Ans)

Ans = CoreJS → Ans

LOOPC(γC,< φ, ξ > §θ∗, ηS) =
let κC = (λεγC1θ

∗
1ηS1.φε γC1 (λε1γC2θ

∗
2ηS2.LOOPC(γC2, θ

∗
2, ηS2)) θ∗

1 ηS1)

in C[[ξ]]ρ0
C γC κC θ∗ ηS

LOOPC(γC,< f > §θ∗, ηS) = fγC θ∗ ηS

LOOPC(γC,<>,ηS)ξ = LOOPC(γC,< Susp(idC, ξ) >,ηS)

Fig. 8 Client-side event loop

with the browser, this interaction is converted into a suspension appended to the list of
waiting suspensions. When a suspension is processed, its value is discarded and the next
suspension is run. When the list of waiting suspensions is empty, the browser waits for new
interactions.

A suspension is modeled as a pair made of a callback and a Core JavaScript program.
When the program is evaluated (in the global environment of the client) its value is eventu-
ally given to the callback (a JavaScript closure). For a with-hop-form, the Core JavaScript
program generated by the invoked service will be paired with the callback mentioned in the
with-hop-form into a suspension.

Figure 4 details the evaluation of the (with-hop (π ξ) ξ1) form. First, the ξ form
is evaluated, whose value (a Core JavaScript value: ε) is transferred to the server. Second,
the ξ1 form is evaluated whose value (a Core JavaScript function: φ) is the callback. Third,
the form π (a Core Hop expression) is evaluated on the server. Its value should be a function
that will be applied to Σ(ε) where Σ transforms (and moves) a Core JavaScript value into
a Core Hop value (not further explained). The result is a new Core JavaScript program (ξ2)
which is sent back to the client and packed into a suspension (Susp(φ,Π(ξ2))) appended
to the current list of suspensions ηC1 ↓θ∗ . This suspension will be processed later, the ξ2

expression will be evaluated yielding a value on which the callback φ will be applied.
In order to model the behavior of the browser, when the list of suspensions is empty, the

final answer (of domain Ans) is a function that waits for a new user’s interaction (a Core
JavaScript expression) and restarts the event loop. Hence the recursive type for Ans.

The last topic of interest is the initial continuation κ0
S (see Fig. 7) of the Core Hop pro-

gram that packs its value (a Core JavaScript program) into a suspension on which the Core
JavaScript event loop is started. The associated callback for this suspension is the Core
JavaScript identity function named idC.

4.4 Wrap up

The form with-hop presented in Sect. 4 slightly differs from the one implemented in
the Hop compiler. The syntax of the actual with-hop is (with-hop ηs

1 ηs) while the
syntax of the with-hop used for the semantics is (with-hop (π �1) �2). In the
actual Hop implementation the first argument ηS

1 is a service invocation. The ηs
1 expression

should then yield a service value that is, a URL. For the sake of simplicity, the formal
semantics elides services and represents them as global expressions. Then, its syntax slightly
differs from the actual one. However, the two forms are comparable. Here follows a macro
that implements the syntax used for the semantics in actual Hop syntax.

Higher-Order Symb Comput (2010) 23:409–431 423

(define-macro (with-hop (pi varpi) varpik)
‘(with-hop ($(service (x) (,pi x)) ,varpi)

,varpik))

Mixing extensively GUI declarations and client-side expressions can lead to spaghetti
code [11]. To avoid this bad programming style, Hop provides modules. A module is a
compilation unit that may be either used for server code or client code. Modules export
bindings and import other modules. A well-engineered Hop program consists of modules for
the server, modules for the client, and HTML trees that merely contain one-line expressions
that register callbacks or pop alert windows up. The goal of modules is to specify how values
are bound to global identifiers. Since they play no role at run-time, modules are not visible
from the dynamic semantics and then not addressed by this paper.

5 Related work

Several other languages address multi-tier programming. However, to our knowledge, Hop
is the only one that relies on a model so closely related to traditional web programming.
Invoking Hop services produce client-side expressions exactly as triggering XMLHttpRe-
quests in Ajax applications produce new HTML expressions. Hop services respond full-
fledged HTML trees (see the examples of Sect. 2) but for the sake of simplicity it has
been assumed here that these HTML trees only contain a single <SCRIPT> node. In Hop,
client-side programs are values of server-side computations. By contrast, all multi-tier pro-
gramming languages we are aware of assume a traditional programming model where pro-
grams are entirely known at compile-time and deployed on a server and clients before they
start.

Amongst these other systems, some address multi-tier web programming by extending
the Java programming language.

GWT (the Google Web Toolkit) is a platform that allows Java-like programs to be ex-
ecuted on the web. GWT programs are partly compiled to JavaScript. GWT programs are
static. They compile to classical desktop GUI programming such as advocated by the Java
Swing library. GWT programs do not adopt the traditional web programming style. Invoking
GWT methods does not produce new GWT expressions that should be evaluated by clients.
To our knowledge no formal semantics has been given for GWT.

Jif [1, 2] extends the Java programming language with security type annotations. The
Swift framework implements Jif. It uses the annotations to split Jif programs into a server
part and a client part. Swift compilation enforces security which means that private infor-
mation is unreachable by client-side programs. Swift generates GWT programs and thus Jif
programs are as static as GWT programs. The formal studies describing Jif/Swift focus ex-
clusively on security aspects: the type system and the security enforcement. However, they
do not isolate the core language on which the system rests nor they present a formal dynamic
semantics.

Hilda [19], as Jif, is a web environment that automatically partition multi-tier applica-
tions. It focuses on data-driven applications that run on top of a back-end data system. Hilda
is a high-level declarative language closer to UML than to an algorithmic programming
language. As such it is not directly related to Hop.

The RPC calculus [4] (λRPC) is an extension of the traditional λ-calculus used to model
the Links programming language [3]. Several elements of λRPC share similarities with Hop.
In particular, its defunctionalization process transforms high-level expressions into forms

424 Higher-Order Symb Comput (2010) 23:409–431

that only rely on functions similar to Hop’s services. The request form introduced by the
λRPC Client-Server Machine is close to Hop’s with-hop form. In spite of these similarities,
the two studies cover different aspects of multi-tier programming. While λRPC aims at mod-
eling location-aware languages in the context of stateless servers, the Hop semantics aims
at modeling dynamic client-side expressions production.

Semantics for multi-tier λ-calculus has been first studied in λMT [13] which seems to have
inspired both Jif and Links. It consists in a λ-calculus augmented with location annotations.
A large amount of this work consists in introducing and presenting the implementation of
the λMT which is split by an automatic transformation. Hop relies on a different model: it is
up to the programmer to choose where expressions are evaluated.

ML5 [12] is a variant of ML dedicated to spatially distributed computing. It al-
lows an entire multi-tier application to be developed and reasoned about as a uni-
fied program. ML5 is not theoretically restricted to two-sites applications although
the current implementation is specialized for the web and it only supports applica-
tions distributed over a web server and a web browser. ML5’s static type system is
based on modal logic which permits simultaneous reasoning from multiple perspec-
tives. The special form (from/get) allows any well-typed ML5 expression to be ex-
ecuted on a different host. Contrary to Hop, network traversals are thus not restricted
to function calls. ML5 generates HTML trees using plain character strings. Because
these trees contain ML5 expressions, the language provides the library function say
that dynamically transforms a client-side ML5 expression into a string. This technique
does not permit the semantics to accommodate the multi-stage programming needed
for generating dynamically new client GUIs. This is another main difference with
Hop.

Flapjax [10] is an extension of JavaScript that fosters functional reactive programming.
No formal presentation of Flapjax has been given yet but FrTime, the spiritual father of
Flapjax, has been described in a previous publication [5]. Event streams are ubiquitous
in Flapjax. They are used to intercept GUI events (mouse click or keystroke) but also
remote server calls. Merging and composing web services become easier than with tra-
ditional callback-based systems. Hence, Flapjax is convenient for programming web ap-
plications such as mashup. Although it provides some facilities to implement persistent
data storage, Flapjax is client centric. It is not a multi-tier programming language be-
cause it does not address the programming of the server. This is a deep difference with
Hop.

Hop is a sort of a multi-stage programming language [18] but, contrary to usual multi-
stage languages such as MacroML [6] or MetaOCaml, a Hop program does not gen-
erate another Hop program. As presented in the semantics, Hop relies on different lan-
guages: core Hop and core JavaScript. The latter being generated by the former. Further-
more core JavaScript programs are first class values of core Hop which can then inspect
and modify them dynamically. This strongly differentiates Hop from other multi-stage lan-
guages.

6 Conclusion and future work

This paper presents a denotational semantics for a simplified version of Hop, a Lisp dialect
designed for programming the web. The formal semantics focuses on the main specificity
of Hop: its elaboration of programs where client-side expressions are first-class values gen-
erated by server-side computations. To our knowledge, this is the first theoretical study that
copes with this aspect of the multi-tier programming advocated by the web.

Higher-Order Symb Comput (2010) 23:409–431 425

(define (S e)
(if (pair? e)

(case (car e)
((gdef) (Sgdef (cadr e) (caddr e)))
((lambda) (Slambda (cadr e) (caddr e)))
((begin) (Sbegin (cadr e) (caddr e)))
((tilde) (Stilde (cadr e)))
(else (Scombination (car e) (cadr e))))

(if (symbol? e)
(Svariable e)
(Sconstant e))))

(define (Sconstant cst)
(lambda (s.r s.g s.k g.r c.state)

(s.k cst s.g c.state)))
(define (Svariable var)

(lambda (s.r s.g s.k g.r c.state)
(s.k (s.lookup var s.r s.g) s.g c.state)))

(define (Sgdef var e)
(lambda (s.r s.g s.k g.r c.state)

((S e) s.r
s.g
(lambda (s.val s.g1 c.state1)
(s.k s.val (extend s.g1 var s.val) c.state1))

g.r
c.state)))

(define (Slambda var e)
(lambda (s.r s.g s.k g.r c.state)

(s.k (lambda (s.val s.g1 s.k1 c.state1)
((S e) (extend s.r var s.val) s.g1 s.k1 g.r c.state1))

s.g
c.state)))

(define (Scombination e1 e2)
(lambda (s.r s.g s.k g.r c.state)

((S e1) s.r
s.g
(lambda (s.phi s.g1 c.state1)

((S e2) s.r
s.g1
(lambda (s.val s.g2 c.state2)

(s.phi s.val s.g2 s.k c.state2))
g.r
c.state1))

g.r
c.state)))

(define (Sbegin e1 e2)
(lambda (s.r s.g s.k g.r c.state)

((S e1) s.r
s.g
(lambda (s.val s.g1 c.state1)

((S e2) s.r s.g1 s.k g.r c.state1))
g.r
c.state)))

(define (Stilde j)
(lambda (s.r s.g s.k g.r c.state)

((G j) g.r
(lambda (code s.state c.state)
(s.k code (Sstate.g s.state) c.state))

(mkSstate s.r s.g)
c.state)))

Fig. 9 The S evaluation function

426 Higher-Order Symb Comput (2010) 23:409–431

(define (C c)
(case (car c)
((Cconstant) (Cconstant (cadr c)))
((Cvariable) (Cvariable (cadr c)))
((Cgdef) (Cgdef (cadr c) (caddr c)))
((Clambda) (Clambda (cadr c) (caddr c)))
((Ccombination) (Ccombination (cadr c) (caddr c)))
((Cbegin) (Cbegin (cadr c) (caddr c)))
((Cwith-hop) (Cwith-hop (car (cadr c)) (cadr (cadr c)) (caddr c)))
(else (error))))

(define (Cconstant val)
(lambda (c.r c.g c.k c.susp* s.state)
(c.k val c.g c.susp* s.state)))

(define (Cvariable var)
(lambda (c.r c.g c.k c.susp* s.state)
(c.k (c.lookup var c.r c.g) c.g c.susp* s.state)))

(define (Cgdef var c)
(lambda (c.r c.g c.k c.susp* s.state)
((C c) c.r

c.g
(lambda (c.val c.g1 c.susp1* s.state1)
(c.k c.val (extend c.g1 var c.val) c.susp1* s.state1))

c.susp*
s.state)))

(define (Clambda var c)
(lambda (c.r c.g c.k c.susp* s.state)
(c.k (lambda (c.val c.g1 c.k1 c.susp1* s.state1)

((C c) (extend c.r var c.val)
c.g1
c.k1
c.susp1*
s.state1))

c.g
c.susp*
s.state)))

(define (Ccombination c1 c2)
(lambda (c.r c.g c.k c.susp* s.state)
((C c1) c.r

c.g
(lambda (c.phi c.g1 c.susp1* s.state1)
((C c2) c.r

c.g1
(lambda (c.val c.g2 c.susp2* s.state2)
(c.phi c.val c.g2 c.k c.susp2* s.state2))

c.susp1*
s.state1))

c.susp*
s.state)))

(define (Cbegin c1 c2)
(lambda (c.r c.g c.k c.susp* s.state)
((C c1) c.r

c.g
(lambda (c.val1 c.g1 c.susp1* s.state1)
((C c2) c.r

c.g1
c.k
c.susp1*
s.state1))

c.susp*
s.state)))

Fig. 10 The C evaluation function

Higher-Order Symb Comput (2010) 23:409–431 427

(define (G j)
(if (pair? j)

(case (car j)
((gdef) (Ggdef (cadr j) (caddr j)))
((lambda) (Glambda (cadr j) (caddr j)))
((begin) (Gbegin (cadr j) (caddr j)))
((dollar) (Gdollar (cadr j)))
((with-hop) (Gwith-hop (car (cadr j)) (cadr (cadr j)) (caddr j)))
(else (Gcombination (car j) (cadr j))))

(if (symbol? j) (Gvariable j) (Gconstant j))))
(define (Gconstant val)

(lambda (g.r g.k s.state c.state)
(g.k ‘(Cconstant ,val) s.state c.state)))

(define (Gvariable var)
(lambda (g.r g.k s.state c.state)

(g.k (g.lookup var g.r) s.state c.state)))
(define (Ggdef var j)

(lambda (g.r g.k s.state c.state)
((G j) g.r

(lambda (g.code s.state1 c.state1)
(g.k ‘(Cgdef ,var ,g.code) s.state1 c.state1))

s.state
c.state)))

(define (Glambda var j)
(lambda (g.r g.k s.state c.state)

((G j) (extend g.r var ‘(Cvariable ,var))
(lambda (g.code s.state1 c.state1)
(g.k ‘(Clambda ,var ,g.code) s.state1 c.state1))

s.state
c.state)))

(define (Gcombination j1 j2)
(lambda (g.r g.k s.state c.state)

((G j1) g.r
(lambda (g.code1 s.state1 c.state1)

((G j2) g.r
(lambda (g.code2 s.state2 c.state2)

(g.k ‘(Ccombination ,g.code1 ,g.code2)
s.state2
c.state2))

s.state1
c.state1))

s.state
c.state)))

(define (Gbegin j1 j2)
(lambda (g.r g.k s.state c.state)

((G j1) g.r
(lambda (g.code1 s.state1 c.state1)

((G j2) g.r
(lambda (g.code2 s.state2 c.state2)

(g.k ‘(Cbegin ,g.code1 ,g.code2)
s.state2
c.state2))

s.state1
c.state1))

s.state
c.state)))

Fig. 11 The G evaluation function

428 Higher-Order Symb Comput (2010) 23:409–431

(define (Gdollar e)
(lambda (g.r g.k s.state c.state)

((S e) (Sstate.r s.state)
(Sstate.g s.state)
(lambda (code s.g1 c.state1)
(g.k (cs2js code)

(mkSstate (Sstate.r s.state) s.g1)
c.state1))

g.r
c.state)))

(define (Gwith-hop e jarg jcb)
(lambda (g.r g.k s.state c.state)

((G jarg) g.r
(lambda (g.code1 s.state1 c.state1)

((G jcb) g.r
(lambda (g.code2 s.state2 c.state2)

(g.k ‘(Cwith-hop (,e ,g.code1) ,g.code2)
s.state2
c.state2))

s.state1
c.state1))

s.state
c.state)))

Fig. 12 The G evaluation function for $ and with-hop

(define (Cwith-hop e carg ccb)
(lambda (c.r c.g c.k c.susp* s.state)

(let ((c.k1 (lambda (c.val c.g1 c.susp1* s.state1)
(let ((c.k2 (lambda (c.cbval c.g2 c.susp2* s.state2)

(let ((cf (lambda (c.g3 c.susp3* s.state3)
;; reindented!

(let ((s.k3 (lambda (s.phi s.g3 c.state3)
(let ((s.k4 (lambda (prg s.g4 c.state4)

(let ((susp* (cons (mkSusp c.cbval (cs2js prg))
(Cstate.susp* c.state4))))

(loop_c (Cstate.g c.state4)
susp*
(mkSstate s.r0 s.g4))))))

(s.phi (js2cs c.val) s.g3 s.k4 c.state3)))))
((S e) (Sstate.r s.state3)

(Sstate.g s.state3)
s.k3
g.g0
(mkCstate c.g3 c.susp3*))))))

;; end of reindentation!
(c.k (unspecified)

c.g2
(cons (mkSusp cf) c.susp2*)
s.state2)))))

((C ccb) c.r
c.g1
c.k2
c.susp1*
s.state1)))))

((C carg) c.r
c.g
c.k1
c.susp*
s.state))))

Fig. 13 Client-side with-hop

Higher-Order Symb Comput (2010) 23:409–431 429

(define (s.lookup var r g)
(r var g))

(define (g.lookup var g.r)
(g.r var g.g0))

(define (c.lookup var c.r c.g)
(c.r var c.g))

(define (s.r0 var s.g)
(s.g var s.g0))

(define (s.g0 var s.g)
(wrong "No such variable" var))

(define (extend r pt img)
(lambda (var g)

(if (eq? var pt)
img
(r var g))))

(define (k0_s prg s.g c.state)
(loop_c (Cstate.g c.state)

(append (Cstate.susp* c.state)
(list (mkSusp id_c (cs2js prg))))

(mkSstate s.r0 s.g)))
(define (id_c c.val c.g c.k c.susp* s.state)

(c.k c.val c.g c.susp* s.state))

Fig. 14 Initialization

(define (loop_c c.g c.susp* s.state)
(if (pair? c.susp*)

(if (= 1 (length (car c.susp*)))
(loop_c_fun (susp->function (car c.susp*))

c.g (cdr c.susp*) s.state)
(loop_c_susp (susp->callback (car c.susp*))

(susp->program (car c.susp*))
c.g (cdr c.susp*) s.state))

(loop_c_empty c.g s.state)))
(define (loop_c_empty c.g s.state)

(lambda (c)
(loop_c c.g

(list (mkSusp id_c c))
s.state)))

(define (loop_c_susp c.cbval cprg c.g c.susp* s.state)
(let ((c.k (lambda (c.val1 c.g1 c.susp1* s.state1)

(c.cbval
c.val1
c.g1
(lambda (c.val2 c.g2 c.susp2* s.state2)

(loop_c c.g2 c.susp2* s.state2))
c.susp1*
s.state1))))

((C cprg)
c.r0
c.g
c.k
c.susp*
s.state)))

(define (loop_c_fun cf c.g c.susp* s.state)
(cf c.g

c.susp*
s.state))

Fig. 15 Client-side event loop

430 Higher-Order Symb Comput (2010) 23:409–431

The presented semantics assumes a simplified version of Hop. It assumes a sequential
evaluation that flows from servers to clients and vice-versa and it assumes that communi-
cations between clients and servers can only be initiated by clients. The actual Hop server-
side programming supports concurrency features and it allows servers to push data towards
clients. These two aspects have not been addressed here.

In the present study the marshaling and unmarshaling operations needed for invoking
services has been considered as opaque and implemented by two external functions (Σ and
Π). Since HTML trees contain identifiers referenced to by the rest of the program, we think
that the semantics of these operations should also be more deeply understood.

Formalizing a complete semantics for Hop will be the subject of future studies.

Acknowledgements Thanks for the reviewers whose help greatly improved this paper.

Appendix

The semantics has been automatically extracted from an executable Scheme interpreter writ-
ten in a denotational style. This interpreter is given here (Figs. 9–15).

References

1. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Building secure web applica-
tions with automatic partitioning. Commun. ACM 52(2), 79–87 (2009). doi:10.1145/1461928.1461949

2. Chong, S., Vikram, K., Myers, A.C.: Sif: Enforcing confidentiality and integrity in web applications. In:
Proc. 16th USENIX Security (2007)

3. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without tiers. In: 5th Interna-
tional Symposium on Formal Methods for Components and Objects (2006)

4. Cooper, E., Wadler, P.: The RPC calculus. In: International Conference on Principles and Practice of
Declarative Programming, Coimbra, Portugal (2009)

5. Cooper, G., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value language. In: Proceed-
ings of the European Symposium on Programming (ESOP’06), pp. 194–308 (2006)

6. Ganz, S.E., Sabry, A., Taha, W.: Macros as multi-stage computations: Type-safe, generative, binding
macros in macroml. In: International Conference on Functional Programming (ICFP’01), pp. 74–85.
ACM Press (2001)

7. Jim, T., Swammy, N., Hicks, M.: Defeating script injection attacks with browser-enforced embedded
policies. In: 16th International World Wide Web Conference (WWW 2007) (2007)

8. Kelsey, R., Clinger, W., Rees, J.: The revised(5) report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation 11(1) (1998)

9. Loitsch, F., Serrano, M.: Hop client-side compilation. In: Morazán, M.T. (ed.) Trends in Functional
Programming, vol. 8, pp. 141–158. Intellect, Bristol (2008)

10. Meyerovich, L., Guha, A., Baskin, J., Cooper, G., Greenberg, M., Bromfield, A., Krishnamurthi, S.:
Flapjax: A programming language for Ajax applications. In: Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA’09). Orlando,
FL, USA (2009)

11. Mikkonen, T., Taivalsaari, A.: Web applications—spaghetti code for the 21st century. Tech. Rep. SMLI
TR-2007-166, Sun Microsystems (2007)

12. Murphy, T., Crary, K., Harper, R.: Type-safe distributed programming with ML5. In: Trustworthy Global
Computing (2007). http://tom7.org/papers

13. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications by program transfor-
mation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’05), pp. 221–232. ACM, New York (2005)

14. Queinnec, C.: Continuations and web servers. High.-Order Symb. Comput. 17(4), 277–295 (2004)
15. Serrano, M.: HOP, a fast server for the diffuse web. In: Proceedings of the 11th International Conference

on Coordination Models and Languages (COORDINATION’09, Lisbon, Portugal). LNCS, vol. 5521.
Springer, Berlin (2009)

http://dx.doi.org/10.1145/1461928.1461949
http://tom7.org/papers

Higher-Order Symb Comput (2010) 23:409–431 431

16. Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web 2.0. In: Proceedings
of the First Dynamic Languages Symposium. Portland, Oregon, USA (2006)

17. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory.
MIT Press, Cambridge (1977)

18. Taha, W.: A gentle introduction to multi-stage programming. In: Domain-Specific Program Generation.
LNCS, vol. 3016. Springer, Berlin (2004). doi:10.1007/b98156

19. Yang, F., et al.: A unified platform for data driven web applications with automatic client-server parti-
tioning. In: 16th International World Wide Web Conference (WWW’07), pp. 341–350. Alberta, Canada
(2007)

http://dx.doi.org/10.1007/b98156

	A multi-tier semantics for Hop
	Abstract
	Introduction
	The Hop programming language
	Creating a HTML document
	Creating a HTML document with a client-side action
	Defining a service
	Invoking a service
	Invoking a service from a client

	Informal semantics
	Core Hop
	Tilde Hop
	Core JavaScript
	User's interactions on the client
	Recapitulation

	Semantics
	Core Hop
	Tilde Hop
	Core JavaScript
	Wrap up

	Related work
	Conclusion and future work
	Acknowledgements
	Appendix
	References

