
Higher-Order Symb Comput (2009) 22: 145–154
DOI 10.1007/s10990-009-9046-8

A minimalistic look at widening operators

David Monniaux

Published online: 17 December 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider the problem of formalizing in higher-order logic the familiar notion
of widening from abstract interpretation. It turns out that many axioms of widening (e.g.
widening sequences are ascending) are not useful for proving correctness. After keeping
only useful axioms, we give an equivalent characterization of widening as a lazily con-
structed well-founded tree. In type systems supporting dependent products and sums, this
tree can be made to reflect the condition of correct termination of the widening sequence.

Keywords Abstract interpretation · Widening · Termination · Abstraction · Well-founded
tree · Higher order · Inductive definition · Coq

1 The usual framework

We shall first recall the usual definitions of abstract interpretation and widening operators.

1.1 Abstraction and concretization maps

Abstract interpretation is a framework for formalizing approximation relationships arising in
program semantics and static analysis [7, 9]. Soundness of the abstraction is expressed by the
fact that the approximation takes place in a controlled direction. In order to prove that a given
set of undesirable states is unreachable, we can compute a superset of the set of reachable
states (an over-approximation thereof), in the hope that this set does not intersect the set of
undesirable states. If order to prove that we eventually reach a given set of states, we can
compute a subset of the set of states that eventually reach them (an under-approximation
thereof), in the hope that this set includes the initial states.

Most introductory materials on abstract interpretation describe abstraction as a Galois
connection between a concrete space S (typically, the powerset P(�) of the set of states

VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble-INP.

D. Monniaux (�)
CNRS/VERIMAG, 2 avenue de Vignate, 36810 Gières, France
e-mail: David.Monniaux@imag.fr

mailto:David.Monniaux@imag.fr

146 Higher-Order Symb Comput (2009) 22: 145–154

� of the program, or the powerset of the set of finite execution traces �∗ of the program)
and an abstract space S�. For instance, if the program state consists in a program counter
location, taken within a finite set P of program locations, and three integer variables, � =
P × Z

3, S = P(P × Z
3), the abstract state can be, for instance, a member of S� = P →

({⊥}∪ I 3), where P is the set of program locations, a → b denotes the set of functions from
a to b, I is the set of well-formed pairs (a, b) defining intervals (a ∈ Z ∪ {−∞}, b ∈ Z ∪
{+∞} and a ≤ b) and ⊥ is a special element meaning “unreachable”. S and S� are ordered;
here, S is ordered by set inclusion ⊆ and S� is ordered by
P , the pointwise application
of
 for all program locations: ⊥
 x� for all x in S�, and ((a1, b1), (a2, b2), (a3, b3))

((a′

1, b
′
1), (a

′
2, b

′
2), (a

′
3, b

′
3)) if for all 1 ≤ i ≤ 3, a′

i ≤ ai and bi ≤ b′
i . For the sake of simplicity,

we shall give examples further on where P is a singleton; the generalization to any finite
P is straightforward. P → ({⊥} ∪ I 3) is then isomorphic to {⊥} ∪ I 3 and we shall thus
consider, as a running example, the case where S is P(Z3) and S� is {⊥} ∪ I 3.

S and S� are connected by an abstraction map α and a concretization map γ .
γ maps any abstract state x� to the set of concrete states that it represents. Here,
γ ((a1, b1), (a2, b2), (a3, b3)) is the set of triples (v1, v2, v3) such that for all 1 ≤ i ≤ 3,
ai ≤ vi ≤ bi . α maps a set x of concrete states to the “best” (least) abstract element x�

such that x ⊆ γ (x�). Here, if x ⊆ Z
3, then for all 1 ≤ i ≤ 3, ai = inf(v1,v2,v3)∈x vi and

bi = sup(v1,v2,v3)∈x vi . γ must be monotone with respect to ⊆ and
: if x�
 y�, then
γ (x�) ⊆ γ (y�).

In some presentations of abstract interpretation, abstract elements x� are identified with
their concretization γ (x�). For instance, one talks directly of the interval [a, b], not of the
pair (a, b). This can make explanations smoother by clearing up notations. It is however
important for some purposes to distinguish the machine representation of an abstract element
x� from its concretization γ (x�), if only because γ may not be injective. For instance, x =
y ∧x ≤ 1 and x = y ∧y ≤ 1 define exactly the same part of the plane (as geometrical convex
polyhedra) but are different in their machine representation. This is the same difference as
that between the syntax and the semantics of a logic.

In this article, we distinguish this syntactic and semantical aspects, for several reasons.
First, certain abstract operations may be sensitive to the syntax of an abstract element; that
is, they may yield different results for x� and y� even though γ (x�) = γ (y�), as we shall
recall in Sect. 1.3 about the polyhedra and octagons.

Also, while in many cases
 is defined by a
 b ⇐⇒ γ (a) ⊆ γ (b), this relation
may sometimes be too costly or impossible to compute, and some smaller relation may
be used. For instance, if one uses a product of several abstract domains D

�

1 × · · · × D�
m,

each Di fitted with a decidable ordering
i , and γ (x
�

1, . . . , x
�
m) = γ1(x

�

1) ∩ · · · ∩ γm(x�
m)

then it is straightforward to consider the product ordering (x1, . . . , xm)
 (x ′
1, . . . , x

′
m) ⇐⇒

x1
i x ′
1 ∧ · · · ∧ xm
m x ′

m. If x
 x ′ for this ordering, then γ (x) ⊆ γ (x ′), but the two
are not necessarily equivalent. Consider for instance a simplification of the domain of
difference bounds [15], expressed as a product of simpler domains: the concrete states
in Q

3, the abstract domains D
�

1 = D
�

2 = D
�

3 = Q, γ1(c1) = {(x, y, z) ∈ Q
3 | x − y ≤ c1},

γ2(c2) = {(x, y, z) ∈ Q
3 | y − z ≤ c2}, γ3(c3) = {(x, y, z) ∈ Q

3 | x − z ≤ c3}. Obviously,
γ (1,1,2) = γ (1,1,3), yet (1,1,3) �
 (1,1,2). In order to use the product ordering, one has
to perform beforehands a reduction operation mapping (1,1,3) to (1,1,2), but such an op-
eration may be nontrivial: the one in the octagon abstract domain involves a Floyd-Warshall
shortest path computation, the one in the template linear constraints [20] involves linear
programming. In the case of real-life static analysis tools, e.g. the Astrée static analyzer [4],
with many nontrivial abstract domains interacting, it is not obvious whether γ (a) ⊆ γ (b) is
decidable, and even if it were, how to decide it within acceptable time.

Higher-Order Symb Comput (2009) 22: 145–154 147

Finally, since our goal is to write programs and proofs in a proof assistant based on intu-
itionistic type theory, we thought it best to clearly separate the computational, constructive
content from the non-computational content: membership in the set of reachable states of
a program is, in general, recursively enumerable but not recursive (from Turing’s halting
problem: one cannot in general decide whether the “end” line of the program is reachable);
thus the characteristic function of that set cannot be defined by constructive logic, since this
would involve describing an algorithm computing that function.

1.2 Obtaining invariants

Abstract interpretation replaces a possibly infinite number of concrete program execution,
which cannot be simulated in practice, by a simpler “abstract” execution. For instance, one
may replace running a program using our three integer variables over all possible initial
states by a single abstract execution with interval arithmetic. The resulting final intervals
are guaranteed to contain all possible outcomes of the concrete program. More formally, if
one has a transition relation τ ⊆ � × �, one defines the forward concrete transfer function
fτ : S → S as fτ (x) = {σ ′ | σ →τ σ ′ ∧ σ ∈ x}. fτ (W) is the set of states reachable in
one forward step from W . We say that the abstract transfer function fτ

�(x�) is a correct
abstraction for fτ if for all x�, fτ ◦γ (x�) ⊆ γ ◦fτ

�(x�). This soundness property means that
if we have a superset of the concrete set of states before the execution of τ , we get a superset
of the concrete set of states after the execution of τ .

As usual in program analysis, obtaining loop invariants is the hardest part. Given a set
x0 ⊆ � of initial states, we would like to obtain a superset of the set of reachable states
x∞ = {σ ′ | σ →∗

τ σ ′ ∧ σ ∈ x0}. The set of states xn reachable in at most n steps from x0 is
defined by induction: xn+1 = φ(xn), where φ(x) = fτ (x)∪x0 is monotone, because fτ is by
definition a ∪-morphism. The sequence (xn) is ascending, and its limit is x∞, which is the
least fixed point of φ by Kleene’s fixed point theorem; this sequence is thus often known as
Kleene iterations. x∞ is also known as the strongest invariant of the program. An inductive
invariant or post-fixpoint is a set x such that x0 ⊆ x and fτ (x) ⊆ x, and by Tarski’s theorem,
the intersection of all such sets is x∞.

Obviously, the set of all possible states (often noted �) is an inductive invariant, but it
is uninteresting since it cannot be used to prove any non-trivial property of the program. A
major goal of program analysis is to obtain program invariants x that are strong enough to
prove interesting properties, without being too costly to establish.

In some cases, interesting inductive invariants may be computed directly. Various ap-
proaches have recently been proposed for the direct computation of invariants, without
Kleene iterations. Costan et al. [6] proposed a method for computing least fixed points
in the lattice of real intervals by downward policy iteration, also known as strategy iter-
ation, a technique borrowed from game theory; they later extended their framework to other
domains. Gawlitza and Seidl [12] proposed a method for computing least fixed points in cer-
tain lattices by upward strategy iteration. Monniaux [17, 18] showed that least fixed point
problems in some lattices expressing numerical constraints can be reduced to quantifier
elimination problems, which in turn can be solved algorithmically. Other recent proposals
include expressing the least invariant problem in the abstract lattice directly as a constrained
minimization problem, then solving it with operational research tools [8]. One common fac-
tor to these approaches is that they target specific classes of abstract domains and programs;
in addition, they may also suffer from high complexity.

148 Higher-Order Symb Comput (2009) 22: 145–154

1.3 Abstract Kleene iterations and widening operators

The more traditional approach to finding inductive invariants by abstract interpretation is to
perform abstract Kleene iterations. Let x

�

0 be an abstraction of x0. Define φ�(x�) = f �
τ (x�)�

x
�

0, where � is a sound overapproximation of the concrete union ∪: γ (x�) ∪ γ (y�) ⊆ γ (x� �
y�). From the soundness of f �

τ and �, φ� is a sound abstraction of φ: for all x�, φ ◦ γ (x�) ⊆
γ ◦ φ�(x�). By induction, for all n, xn ⊆ γ (x�

n): assuming xn ⊆ φ(x�
n), xn+1 = φ(xn) ⊆

φ ◦ γ (x�
n) ⊆ γ ◦ φ�(x�

n) = x
�

n+1.
In many presentations of abstract interpretation, it is supposed that the abstract transfer

function f �
τ and the abstract union � are monotonic. Intuitively, this means that if the analy-

sis has more precise information at its disposal, then its outcome is more precise. This is
true for elementary transfer functions in most abstract domains, and thus of their composi-
tion into abstract transfer functions of more complex program constructions. A well-known
exception is when the abstract transfer function is itself defined as the overapproximation
of a least fixed-point operation using a widening operator (see below), yet there exist less
well-known cases where the abstract transfer function may be non-monotonic.1

Let us nevertheless temporarily assume that f �
τ and � and, thus, φ�, are monotonic, and

that a�, b�
 a� � b� for all a� and b�. Then x0
�
 x1

� and by induction, for all n, φ� being
monotonic, x�

n = φ�n
(x0

�)
 φ�n
(x1

�) = x
�

n+1; the sequence x�
n is therefore ascending. If

this sequence is stationary, there is a N such that x
�

N+1 = x
�

N . Then, γ (x
�

N) = γ (x
�

N+1) =
γ (f �

τ (x
�

N) � x
�

0) ⊇ γ ◦ f �
τ (x

�

N) ⊇ fτ ◦ γ (x
�

N), and γ (x
�

N) = γ (x
�

N+1) = γ (f �
τ (x

�

N) � x
�

0) ⊇
γ (x

�

0), which means that γ (x
�

N) is an inductive invariant. Obviously, if the abstract domain
S� is finite, then any ascending sequence is stationary.2

More generally, the same results hold for any domain of finite height (there exists an
integer L such that any strictly ascending sequence has at most length L), and, even more
generally, for any domain satisfying the ascending chain condition (there does not exist
any infinite strictly ascending sequence). Yet, even the very simple domain of products of
intervals that we defined earlier does not satisfy the ascending chain condition!

In domains that do not satisfy the ascending condition, the abstract Kleene iterations
may fail to converge in finite time. Such is the case, for instance, of the interval abstraction
of the program with a single integer variable defined by the transition system τ : for all n,
n →τ n + 1, and the initial state is 0. The best abstract transfer function φ� maps a pair
(0, n) representing an integer interval {0, . . . , n} to the pair (0, n + 1), thus the abstract
Kleene iterations are x�

n = (0, n) and the analysis fails to converge in finite time.
The traditional solution to the convergence problem in domains that do not satisfy the

ascending chain condition is to use a widening operator, which is a form of convergence ac-
celerator applied to abstract Kleene iterations [7, Def. 4.1.2.0.4], [9, Sect. 4]. Intuitively, the

1Such is for instance the case of the symbolic constant propagation domain proposed by Miné [16, Sect. 5],
[15, Sect. 6.3.4]. The full symbolic propagation strategy can induce non-monotonic effects: if the analysis
knows more relationships, it can perform spurious rewritings and paradoxically provide a less precise result.

The same is true of Miné’s linearization step, which dynamically abstracts nonlinear expressions as linear
expressions. Consider the nonlinear expression x × y where x ∈ [mx,Mx], y ∈ [my,My] and mx,my > 0: a
choice has to be made between several valid linearizations, here x × [my,My] and [mx,Mx] × y. While all
choices between candidate linearizations lead to sound results, they do not have the same precision and the
choice heuristic does not necessarily choose the one leading to the most precise results later on.
2This explains the popularity of Boolean abstractions: S� is the set of sets of bit vectors of fixed length L, and
these sets are often represented by reduced ordered binary decision diagrams (ROBDD) [5]. Reachability
analysis in BDD-based model-checkers is thus a form of Kleene iteration in the BDD space. Very astute
implementation techniques, involving generalized hashing of data structures, ensure that equality tests take
constant time and that φ� is computed efficiently.

Higher-Order Symb Comput (2009) 22: 145–154 149

widening operation examines the first abstract Kleene iterations and conjectures some pos-
sible over-approximation of the limit, which is then checked for stability; further iterations
may be necessary until an inductive invariant is reached. For each infinite height domain,
one or more widening operators must be designed. Consequently, most literature on abstract
interpretation domains includes descriptions of widening operators.

For instance, the interval abstract domain can be fitted with a simple widening discard-
ing unstable bounds [7], then later with the less brutal “widening up to” [14, Sect. 3.2] or
“widening with thresholds” [3, Sect. 6.4], [4, Sect. 7.1.2]. The domain of convex polyhedra
was first fitted with a very simple widening that discarded all unstable constraints [10], but
this widening was later refined in order to make it insensitive to syntactic variations in the
way semantically equivalent constraints were given [13, p. 56–57], [14, Sect. 2.2]. Miné
[15] fitted the octagon abstract domain with a similar construction, widening to +∞ the
unstable constraints. Again, this widening was sensitive to syntax, which lead to proposals
of semantic widenings [1]. Widening techniques are not restricted to numerical domains; for
instance there are specific techniques for widening over automata [11] (roughly speaking,
they overapproximate a language defined by an automaton by the language defined by a
quotient, of limited size, of that automaton; the limited size ensures termination).

Here is the most common definition:

Definition 1 A widening operator � on an abstract domain (S�,
) is a binary operator that
satisfies the three following properties:

1. x�
 x��y�

2. y�
 x��y�

3. for any sequence v�
n, a sequence of the form u

�

n+1 = u�
n�v�

n is ultimately stationary.

We can then use u
�

0 = x
�

0, u
�

n+1 = u�
n�φ�(u�

n). By the third property of the widening
operator, there exists N such that u

�

N = u
�

N�φ�(u
�

N). Thus, φ�(u
�

N)
 u
�

N , and γ ◦ φ�(u
�

N) ⊆
γ (u

�

N). But x0 ∪ fτ ◦ γ (u
�

N) = φ ◦ γ (u
�

N) ⊆ γ ◦ φ�(u
�

N) ⊆ γ (u
�

N) thus fτ ◦ γ (u
�

N) ⊆ γ (u
�

N)

and γ (u
�

N) is an inductive invariant.
Let us now have a second look at the hypotheses that we used to establish that result.

Though it is often assumed that the abstract domain is a complete lattice, and that the abstract
transfer function is monotonic, we never used either hypotheses. In fact, the only hypotheses
that we used are:

• fτ is monotonic and the concrete domain P(S) is a complete lattice, thus φ has a least
fixed point which is the least inductive invariant of the program.

• For all a� and b�, b�
 a��b�.
• For all sequence v�

n, any sequence defined by u
�

n+1 = u�
n�v�

n is stationary.

2 Relaxation of conditions and interpretation in inductive types

During our work on the Astrée tool [4], and when formalizing the notion of widening in
the Coq proof assistant [2],3 we realized that the usual definitions of abstract domains and
widenings are unnecessarily restrictive for practical purposes. Pichardie [19, Sect. 4.4] al-
ready proposed a relaxation of these conditions, but his definition of widenings is still fairly

3Coq is a proof assistant based on higher order logic, available from http://coq.inria.fr.

http://coq.inria.fr

150 Higher-Order Symb Comput (2009) 22: 145–154

complex. We propose here a drastically reduced informal definition of widenings, which
subsumes both the
 ordering and the � operator; this definition will be made formal as
Definition 3.

Definition 2 A widening system is an algorithm that proposes successive abstract elements
u

�

0, u
�

1, . . . , u
�
n to the rest of the analyzer, and receives v�

n from it. It can then either terminate
with some guarantee that γ (v�

n) ⊆ γ (u�
n), or propose the next element u

�

n+1. The system
never provides infinite sequences.

In practical use, v�
n = φ�(u�

n) and φ� is an abstraction of the concrete transformer φ of a
loop or, more generally, of a monotonic system of semantic equations.

It is obvious that any widening that verifies the conditions of Definition 1 also verifies
these conditions. Note that Definition 2 is strictly laxer than Definition 1. For instance,
we make no requirement that γ (u�

n) ⊆ γ (u
�

n+1); a widening system could first try some
ascending sequence u

�

0, . . . , u
�
n, regret, and restart with another sequence u

�

n+1,
A more mathematical way of seeing this definition is by interpreting the widening system

as a well-founded tree:

Definition 3 Let S� be an abstract domain with the associated concretization map γ . Let

be a preorder over S� such that γ is monotonic. A widening system is a well-founded tree
whose nodes are labeled by elements of S� (there may be several nodes with the same label).
From a node labeled with u�, there are branches labeled with every v� such that v� �
 u�.

Let u
�

0 be the label for the root of the tree, and let u
�

0, v
�

0, u
�

2, . . . be a path into the tree
consisting in successive nodes and edges. Because the tree is well-founded, this path is finite,
which means that it terminates with u

�

N , v
�

N such that v
�

N
 u
�

N . This recalls the termination
property of Definition 1.

Definition 3, combined with the
 test can be easily recast as couple of mutually induc-
tive types:

widening ≡ S� × (S� → answer)

answer ≡ termination | next of widening
(1)

From each node labeled by u�, for each v� there is an edge labeled by v�, which either
leads to “termination” if v�
 u�, or to another node (see Fig. 1).

Note that, even in an eager language such as Objective Caml, the widening tree is never
constructed in memory: its nodes are constructed on demand by application of the function
S� → answer.

In a higher-order type system with dependent sums and products such as the Calculus of
inductive constructions (as in Coq), the above inductive datatype can be adorned with proof
terms. A tree node widening is a pair (u�, a) where a maps each v� to an answer. a(v�) is
either “
”, carrying a proof term stating that γ (v�) ⊆ γ (u�), or another widening tree node.

Higher-Order Symb Comput (2009) 22: 145–154 151

Fig. 1 Interpretation of widening as a well-founded tree for the domain 1 � 2 � 3 � · · · + ∞. This domain
may be used to construct the domain of intervals: an interval [x, y] is represented by the pair (−x, y) ∈ N

2,
pointwise ordered, and the widening operation described here is applied to each coordinate. Each node rep-

resents a proposal u
�
n from the widening system. Each edge is labelled with the answer v

�
n from the analysis

system. The widening system either answers
 when it determines that v
�
n
 u

�
n, or makes a new proposal.

A proposal of +∞ forces termination: whatever u
�
n the analysis system then supplies, u

�
n
 +∞ (we left

out its outgoing branches, all finishing in
). A path from the root of the tree is an abstract Kleene iteration
sequence. The well-foundedness of the tree ensures the termination of such sequences

3 Implementation in Coq

We shall first show how to implement our concept of widening system in Coq, then we
shall give a few concrete examples of how common abstract interpretation techniques can
be implemented within this framework.4

3.1 Framework

We assume we have an abstract domain S with an ordering domain_le (representing

). In practice, this ordering is supposed to be decidable: there exists a function do-
main_le_decide that takes x and y as inputs and decides whether x
 y.

The answer is the disjunctive sum {domain_le y x} + widening: it either pro-
vides a new widening object, or a proof that y
 x. By inlining this type into the definition
of widening, we obtain:

Variable S : Set.
Hypothesis domain_le : S -> S -> Prop.
Hypothesis domain_le_decide :

forall x y : S,
{ domain_le x y } + {~ (domain_le x y) }.

Inductive widening: Set :=
widening_intro : forall x : S,

(forall y : S, widening + {domain_le y x}) -> widening.

Note that all properties desired of the widening are lumped in this definition. The
Inductive keyword introduces a type whose elements are all well-founded by construc-
tion; Coq will make it impossible to create widening trees that are not well-founded. The

4Source code may be downloaded from http://www-verimag.imag.fr/~monniaux/download/domains_coq.
zip.

http://www-verimag.imag.fr/~monniaux/download/domains_coq.zip
http://www-verimag.imag.fr/~monniaux/download/domains_coq.zip

152 Higher-Order Symb Comput (2009) 22: 145–154

correct termination property (termination only if v�
 u�) is also ensured by construction: a
leaf edge corresponding to u� and v� may be constructed only by giving a proof of v�
 u�

(a term belonging to the type domain_le v� u�).
In the above definition, we have added the hypothesis that
 is decidable (domain_le_

decide). This is not needed for this definition, but is useful in many constructions, and is
a very reasonable assumption to make. Indeed, the reason why we introduced
 as just any
order such that γ is monotonic, and not the most precise one, is that the most precise one
might not be decidable, or too costly to decide effectively.

Since widening is an inductive type, defining well-founded trees, it is possible to define
functions by induction over elements of that type. One especially interesting inductively
defined function takes f � : S� → S� as a parameter and computes x� such that f �(x�)
 x�

by well-founded induction over the widening tree. On a widening node labeled by u�, it
computes v� = f �(u�) then requests the “answer” from the widening node on the value v�:

• Either it answers with another widening node and the function is called recursively.
• Or it answers with a proof that v�
 u� and the algorithm terminates with the requested

answer (both u� and a proof that f �(u�)
 u�).

Section Recursor.
Variable f : S -> S.

Fixpoint abstract_lfp_rec
(iteration_step : widening) :
{ lfp : S | domain_le (f lfp) lfp } :=
let (x, xNext) := iteration_step in
match xNext (f x) with
| inleft next_widening => abstract_lfp_rec next_widening
| inright fx_less_than_x => exist (fun x => domain_le (f x) x)

x fx_less_than_x
end.

End Recursor.

For ease of use, we pack S, domain_le, an abstraction relation domain_abstracts
and other related constructs into one single domain record.

3.2 Examples

In numerical abstract domains, it is common to use “widening up to” [14, Sect. 3.2] or
“widening with thresholds” [3, Sect. 6.4], [4, Sect. 7.1.2]: one keeps an ascending sequence
z
�

1, . . . , z
�
n of “magical” values, and x��y� is the least element z

�

k greater than x� � y�. For
instance, instead of widening a sequence of integer intervals [0,1], [0,2] etc. to [0,+∞[,
we may try some “magical” values such as [0,255], [0,32767] etc. Yet, if all elements in the
sequence fail to define an inductive invariant, we are forced to try [0,+∞[. In other words,
after trying the “magical” values, we revert to the usual brutal widening on the intervals.

This is easily modeled within our framework by a “widening transformer”: taking a
widening W as input and a finite “ramp” l of values, it outputs a widening W ′ that first
applies the thresholds and, as a last resort, calls W . Variable T : domain is a para-
meter defining the original domain and original widening, which is used as the last resort
by our transformed widening. Function ramp_widening_search searches for the next
threshold in the “ramp”.

Higher-Order Symb Comput (2009) 22: 145–154 153

Section Widening_ramp.
Variable T : domain.

Fixpoint ramp_widening_search (bound : (domain_set T))
(ramp : (list (domain_set T))) { struct ramp } : (list (domain_set T)) :=
match ramp with
| nil => ramp
| (cons ramp_h ramp_t) =>
match (domain_le_decide T bound ramp_h) with
| left _ => ramp
| right _ => ramp_widening_search bound ramp_t
end

end.

Fixpoint ramp_widening (ramp : (list (domain_set T))) :
(widening (domain_set T) (domain_le T)) :=
match ramp with
| nil => domain_widening T
| (cons ramp_h ramp_t) =>
(widening_intro (domain_set T) (domain_le T) ramp_h

(fun (y : (domain_set T)) =>
match domain_le_decide T y ramp_h with

| left STOP =>
inright
(widening (domain_set T) (domain_le T)) STOP

| right _ =>
inleft

(domain_le T y ramp_h)
(ramp_widening (ramp_widening_search y ramp_t))

end))
end.

A trick often used in static analysis is to delay the widening [4, Sect. 7.1.3]. Instead of
performing � at each iteration, one performs � for a finite number of steps, then one tries �
again. For termination purposes, it suffices that there is some “fairness property”: � should
not be delayed infinitely. One can for instance choose to delay widening by n steps of �
after each widening step. This is again implemented as a “widening transformer”:

Definition delayed_widening_each_step :
nat -> (widening (domain_set T) (domain_le T)).

We can similarly build a product domain S
�

1 × S
�

2. The widening on couples
(a1, a2)�(b1, b2) = (a1�1b1, a2�2b2) is implemented by a “widening transformer” taking
one widening W1 on S

�

1 and a widening W2 on S
�

2 as inputs, and producing a widening on
S

�

1 ×S
�

2 by syntactic induction on W1 and W2: if a1
1 b1 ∧a2
2 b2, then (a1, a2)
 (b1, b2)

for the product ordering and one terminates; if a1
1 b1 but a2 �
2 b2 then one stays on a1

but moves one step into W2 (and mutatis mutandis reversing the coordinates); if a1 �
1 b1

and a2 �
2 b2, then one moves into both W1 and W2. This implements the usual widening on
products. This construct can be generalized to any finite products of domains.

4 Conclusion

By seeing the combination of the computational ordering
 and the widening operator �
as a single inductive construct, one obtains an elegant characterization extending the usual
notion of widening in abstract interpretation, suitable for implementation in higher order
logic.

154 Higher-Order Symb Comput (2009) 22: 145–154

Acknowledgements The author would like to thank the anonymous referees, whose suggestions greatly
improved this article. This work was partially funded by ANR project “ASOPT”.

References

1. Bagnara, R., Hill, P.M., Mazzi, E., Zaffanella, E.: Widening operators for weakly-relational numeric
abstractions. In: Hankin, C. (ed.) Static Analysis (SAS). LNCS, vol. 3672, pp. 3–18. Springer, Berlin
(2005). ISBN 3-540-28584-9. doi:10.1007/11547662_3

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: The Calculus
of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Berlin (2004). ISBN 3-
540-20854-2

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. In: Mogensen, T.Æ, Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation:
Complexity, Analysis, Transformation. LNCS, vol. 2566, pp. 85–108. Springer, Berlin (2002). ISBN
3-540-00326-6. doi:10.1007/3-540-36377-7_5

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A
static analyzer for large safety-critical software. In: Programming Language Design and Implementation
(PLDI), pp. 196–207. ACM, New York (2003). ISBN 1-58113-662-5. doi:10.1145/781131.781153

5. Clarke, E.M. Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999). ISBN
0-262-03270-8.

6. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A policy iteration algorithm for com-
puting fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.) Computer
Aided Verification (CAV). LNCS, vol. 4590, pp. 462–475. Springer, Berlin (2005). ISBN 3-540-27231-
3. doi:10.1007/11513988_46

7. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique des programmes. State doctorate thesis, Université sci-
entifique et médicale de Grenoble & Institut national polytechnique de Grenoble (1978). http://tel.
archives-ouvertes.fr/tel-00288657/en/. In French

8. Cousot, P.: Proving program invariance and termination by parametric abstraction, Lagrangian relaxation
and semidefinite programming. In: Sixth International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’05), January 17–19, 2005, pp. 1–24. Springer, Berlin (2005). ISBN
3-540-24297-X. doi:10.1007/b105073. http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml

9. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput., 511–547 (1992). ISSN
0955-792X. doi:10.1093/logcom/2.4.511

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program.
In: Principles of Programming Languages (POPL), pp. 84–96. ACM, New York (1978). doi:10.1145/
512760.512770

11. D’Silva, V.: Widening for automata. Diplomarbeit, Universität Zürich (2006)
12. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: de Nicola, R. (ed.):

Programming Languages and Systems (ESOP). LNCS, vol. 4421, pp. 300–315. Springer, Berlin (2007).
ISBN 978-3-540-71316-6. doi:10.1007/978-3-540-71316-6_21

13. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables d’un pro-
gramme. PhD thesis, Université scientifique et médicale de Grenoble & Institut national polytechnique
de Grenoble (1979). http://tel.archives-ouvertes.fr/tel-00288805/en/. In French

14. Halbwachs, N.: Delay analysis in synchronous programs. In: Computer Aided Verification (CAV), pp.
333–346. Springer, Berlin (1993). ISBN 3-540-56922-7. doi:10.1007/3-540-56922-7_28

15. Miné, A.: Weakly relational numerical abstract domains. PhD thesis, École polytechnique, Palaiseau,
France (December 2004). In English

16. Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: Verification,
Model Checking, and Abstract Interpretation (VMCAI’06). LNCS, vol. 3855, pp. 348–363. Springer,
Berlin (2006). ISBN 3-540-31139-4. doi:10.1007/11609773

17. Monniaux, D.: Optimal abstraction on real-valued programs. In: Filé, G., Nielson, H.R. (eds.) Static
Analysis (SAS ’07). LNCS, vol. 4634, pp. 104–120. Springer, Berlin (2007)

18. Monniaux, D.: Automatic modular abstractions for linear constraints. In: POPL (Principles of Program-
ming Languages). ACM, New York (2009). ISBN 978-1-60558-379-2. doi:10.1145/1480881.1480899

19. Pichardie, D.: Interprétation abstraite en logique intuitionniste: extraction d’analyseurs Java certifiés.
PhD thesis, Université Rennes 1 (2005). In French

20. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical
programming. In: VMCAI. LNCS, vol. 3385, pp. 21–47. Springer, Berlin (2005)

http://dx.doi.org/10.1007/11547662_3
http://dx.doi.org/10.1007/3-540-36377-7_5
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1007/11513988_46
http://tel.archives-ouvertes.fr/tel-00288657/en/
http://tel.archives-ouvertes.fr/tel-00288657/en/
http://dx.doi.org/10.1007/b105073
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1007/978-3-540-71316-6_21
http://tel.archives-ouvertes.fr/tel-00288805/en/
http://dx.doi.org/10.1007/3-540-56922-7_28
http://dx.doi.org/10.1007/11609773
http://dx.doi.org/10.1145/1480881.1480899

	A minimalistic look at widening operators
	Abstract
	The usual framework
	Abstraction and concretization maps
	Obtaining invariants
	Abstract Kleene iterations and widening operators

	Relaxation of conditions and interpretation in inductive types
	Implementation in Coq
	Framework
	Examples

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

