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Abstract For functional programs, unboxing aggregate data structures such as tuples re-
moves memory indirections and frees dead components of the decoupled structures. To
explore the consequences of such optimizations in a whole-program compiler, this paper
presents a tuple flattening transformation and a framework that allows the formal study and
comparison of different flattening schemes.

We present our transformation over functional SSA, a simply-typed, monomorphic lan-
guage and show that the transformation is type-safe. The flattening algorithm defined by our
transformation has been incorporated into MLton, a whole-program, optimizing compiler
for SML. Experimental results indicate that aggressive tuple flattening can lead to substan-
tial improvements in runtime performance, a reduction in code size, and a decrease in total
allocation without a significant increase in compilation time.
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1 Introduction

Unboxing is a method exploited by optimizing compilers to remove memory indirections
and unnecessary data. Unboxing optimizations improve run-time performance while pre-
serving behavior as well as type safety of programs. This paper presents a new SSA trans-
formation for flattening tuples in a whole-program compilation environment. Our transfor-
mation differs from classic unboxing methods and deforestation algorithms, utilizing whole-
program analysis to perform unboxing on a simple first-order intermediate language. To our
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knowledge, our transformation is the first to study the benefits of whole-program compila-
tion for unboxing.

The core of the flattening transformation revolves around passing both boxed and un-
boxed representations where needed. An unboxed representation is created by prefetching
tuple elements, i.e., selecting out the tuple’s structure. Where feasible, flattening a tuple re-
leases the association between the tuple’s constituent components, potentially enabling im-
proved memory utilization through the elimination of useless components and correspond-
ing selects. Our optimization strategy relies on a labeling of tuples, indicating which tuples
should be flattened. The correctness of a transformation induced by a labeling may require
that multiple representations of a tuple be preserved; to ensure this, both boxed and unboxed
representations are passed to all tuple use-sites.1 The degree to which flattening alleviates
memory indirections determines the efficiency of the optimization.

To motivate our approach, consider the following two versions of the functions ‘Coordi-
nateAdd’:

fun CoordinateAdd(f, pair1, pair2) =

let val x1 = # 1 pair1
val x2 = # 1 pair2

in f(x1 + x2, pair1)

end

fun CoordinateAddT(f, p1x, p1y, p2x, p2y) =

let val x1 = p1x

val x2 = p2x

in f(x1 + x2, p1x, p1y)

end

Suppose pair1 and pair2 are pairs in a typical (x, y) coordinate system and all
possible candidates for f are known. Unboxing both pairs, thereby passing the function
CoordinateAdd four arguments and the function f, eliminates the need for select state-
ments of the form, x1 = #1 pair1. If it can be determined that the function f’s arguments
can also be flattened, this transformation permits the compiler to pass each of the four ar-
guments, representing the decoupled elements of pair1 and pair2, in registers instead of
providing two heap allocated objects, as seen in CoordinateAddT . When the pairs are
flattened, the association between x and y dissolves, allowing the y coordinate of pair2 to
be dropped through useless variable elimination [17, 26]. Breaking the correlation between
x and y coordinates within the local context of CoordinateAdd does not impact the be-
havior of the function as long as it can be determined that for all possible values of f, the
argument pair1 can be flattened. Although this example is contrived, it demonstrates that
a logical data presentation (i.e., a grouping of coordinates into pairs) is not necessarily an
optimal run-time data organization.

In general, all call sites of CoordinateAdd must be known to determine all possible
candidates for f. However, such a determination about CoordinateAdd and f can be
made only in the context of whole-program compilation, or if CoordinateAdd and f do
not escape a function or module . If all candidates for f are not known, it may be the case that
our assumptions about pair1 uses are overly aggressive. Therefore, a compiler would need
a method to alter pair1’s representation. Without full knowledge about f, pair1 cannot

1Unneeded representations can be removed by useless code elimination.
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be flattened uniformly, instead a method to switch between boxed and unboxed represen-
tations is required. Alternatively, both representations can be passed to contexts in which
tuple use information is not present to aggressively unbox. Our optimization, thus, benefits
from whole program compilation in efficiency as un-needed tuple representations can be
eliminated.

In this paper we explore a tuple unboxing algorithm for whole-program optimizing com-
pilers. Our contributions are three-fold: (1) we present a formal semantics for the tuple
flattening program transformation, (2) we provide a detailed proof of type safety and cor-
rectness over a simple intermediate language, and (3) we present a detailed study of the
algorithm in the MLton Standard ML compiler, showing the approach is feasible even for
large programs.

1.1 Related work

There exist many transformations that optimize the memory usage of a program [20, 21],
unbox data [8], eliminate intermediate data structures instead of restructuring data repre-
sentations [24], and split data-structure via arity raising [10]. Because these transformations
remove overhead introduced by high-level abstractions, they have a potentially large per-
formance benefit. Our transformation is distinguished from this family of optimizations,
reducing overhead by eliminating memory indirections and unnecessary data stored within
tuples. Tuples are a core element of functional language programs, serving to group and
organize heterogeneous data objects. As data flows between functions, or even between dif-
ferent data structures, new intermediate tuples may be created. This is especially true of
functional programming languages in which dataflow is expressed primarily through func-
tion invocation. Whenever an intermediate tuple is allocated, a cost is incurred to allocate
the structure; subsequent costs accrue whenever its constituent elements are accessed.

Although potentially expensive, data boxing is an important compiler construct. Due to
polymorphism the actual type of an object may not be discernible at compile time in most
functional programs. Therefore, data representation decisions often cannot be inferred from
the static type of an object. Compilers for ML-like languages typically represent structured
data in boxed form [13] to avoid representational differences of data objects. Boxing en-
forces the invariant that all data structures have a uniform representation. Unfortunately,
the consequence of boxing objects results in memory indirections to access data structure
elements.

To limit memory access penalties, modern compilers discern opportunities to unbox data.
Run-time type inspection [11], tag-based and type-directed unboxing [8], and coercion-
based unboxing [14] are modern unboxing methods utilized by compilers and runtime sys-
tems. In run-time type inspection, the run-time representation of an object’s type is stored
within the program. Typing information is stored as extra arguments to polymorphic func-
tions as well as extra components to structures defining abstract types. Types are inspected
at run time to determine the location and size of values with polymorphic types. With tag-
based unboxing, data structures are annotated with type information, effectively tagging
the structure. Coercion-based unboxing inserts coercions when types are specialized so that
monomorphic code utilizes unboxed representations while polymorphic code operates on
boxed representations.

Unboxing implementations are not limited to optimizing data representations within
functions, but are also applied to optimize data flow between functions. For example, un-
boxing can improve closure construction strategies through succinct data representations.
TIL [19] and Flint [15], two middle ends for modern ML compilers, utilize unboxing [1, 4]
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for efficient closure representations [18]. Deforestation is a method for removing intermedi-
ate data structures [23]. Deforestation eliminates any unnecessary data structures passed
between functions, but does not impact data structures that are not intermediate results
[2, 25].

Type-directed unboxing [7, 8] relies on inducing data representations to fit their static
type. Coercions are needed to handle cases of polymorphism where an argument of poly-
morphic type may be applied to actuals of different static types. Coercions locally change
a tuple’s representation from boxed to unboxed and vice-versa. They provide the correct
version of a tuple in any given program context. However, coercions may introduce unnec-
essary overheads into a program. For example, calls to recursive functions wrapped with
coercions result in an increase in size from linear to quadratic [9]. Any change of repre-
sentation through a coercion requires rebuilding a tuple or extracting a tuple’s components
locally. There is no guarantee that a particular tuple will not be coerced many times (e.g.,
coercions may occur within a loop). In extreme cases, it is even possible for a tuple to con-
stantly change representations in the absence of loops. For example, two mutually recursive
functions can expect different representations of a particular argument they share in com-
mon.

One interesting version of type-directed unboxing is the method presented by Minamide
and Garrigue [9], an extension of Leroy’s [8] type-directed unboxing. A key contribution
of Minamide and Garrigue’s work revolves around keeping a reference boxed version of
every function to provide assurances on the complexity of type-directed unboxing. This
reference version is the original boxed version of the function, from which their algorithm is
able to generate any specialized version with only one coercion. This approach guarantees
that any particular representation is attainable through two coercions, one coercion to reach
the reference function and one to specialize the function arbitrarily, avoiding potentially
unbounded coercion chains.

Our approach differs from previous work in three key aspects. We eliminate duplicate
selects on tuples by providing prefetched data. Secondly, our approach is coercion free,
requiring no oscillations between representations. Thirdly, we specialize return points of
functions, allowing us to specify different representations for different join points without
generating different function representations.

1.2 Approach

Our flattening algorithm consists of three steps: labeling, transformation, and useless vari-
able elimination. We define a transformation over an SSA intermediate language [6]. This
decision allows us to avoid complexities that arise from polymorphic types, higher-order
functions, etc., and permits us to achieve a measure of language independence. The SSA
input program is first labeled by a simple transformation to labeled SSA. We define labeled
SSA as the SSA language where all variables are annotated by the compiler with a label
denoting whether or not a tuple should be flattened. Tuple variables that are to be unboxed
will be labeled as F (flat). Tuple variables that are to remain boxed and non-tuple variables
will be labeled as N (non-flat).

The labeled SSA program is then transformed back to SSA form through an applica-
tion of our flattening transformation. The transformation phase of the flattening algorithm
unboxes every tuple labeled flat, thus providing both a boxed and unboxed representation
where necessary. If a tuple labeled flat is used in a flat manner, the unboxed representa-
tion will be chosen avoiding the memory indirection. Notice that a tuple labeled flat that is
never used in a flat context will have its unboxed representation eliminated through useless
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code elimination. Likewise, any unnecessary boxed representations can also be eliminated
through useless code elimination. Duplication of representations occurs only if a tuple is
utilized in contexts which utilize both a boxed and unboxed representations.

Once a tuple is flattened, the association between the tuple and its flattened components
is lost. Later uses of a tuple cannot be transformed without maintaining an association be-
tween a tuple and its prefetched components. To maintain the correlation between boxed and
unboxed representations of a tuple, an unboxed representation is stored in a compile-time
tuple environment. A tuple environment contains a simple one-to-one mapping between a tu-
ple and a list of its flattened elements. An n-tuple labeled F will be followed by n bindings,
one for each of its components. To accomplish this, n new variables are introduced:

x = (a, b, c) →translation x1 = a, x2 = b, x3 = c x = (x1, x2, x3) (1)

The association between x and {x1, x2, x3} is added to the tuple environment. The original
definition of the tuple is left unmodified and any use-site that expects a boxed tuple is free
to utilize the original representation.

Our transformation utilizes useless code elimination as its third and final phase. Useless
code elimination removes unnecessary tuple creations and tuple selects at any program point
that requires only one representation. We rely on useless code elimination to minimize the
number of duplicate representations needed throughout the program.

1.3 MLton

We evaluate the effectiveness of this flattening strategy in the context of MLton (Cejtin
et al.), a whole-program optimizing compiler for SML. MLton compiles the full SML 97
language, including modules and functors. MLton supplies a host environment in which
we can test our optimization and document any effects it may have on other optimization
techniques.

MLton’s approach to compilation can be summarized as whole-program optimization
using a simply-typed first-order intermediate language. This approach is different from
other functional language compilers and imposes significant constraints on the compiler,
but yields many optimization opportunities not available with other approaches. We utilize
MLton’s compilation strategy to provide a flattening transformation that can be defined over
a simple first order language.

There are numerous issues that arise when translating SML into a simply-typed IL. First,
how does one represent SML modules and functors in a simply-typed IL, since these typi-
cally require much more complicated type systems? MLton’s answer: defunctorize the pro-
gram [3]. This transformation turns an SML program with modules into an equivalent one
without modules by duplicating each functor at every application and eliminating structures
by renaming variables. Second, how does one represent SML’s polymorphic types and poly-
morphic functions in a simply-typed IL? MLton’s answer: monomorphise the program [22].
This transformation eliminates polymorphism from an SML program by duplicating each
polymorphic datatype and function at every type at which it is instantiated. Third, how does
one represent SML’s higher-order functions in a first-order IL? MLton’s answer: defunc-
tionalize the program [12]. This transformation replaces higher-order functions with data
structures to represent them and first-order functions to apply them; the resulting IL is Static
Single Assignment form.

Because each of the above transformations requires matching a functor, function defin-
ition, or type definition with all possible uses, MLton must be a whole-program compiler.
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MLton’s whole-program compilation strategy has a number of implications. Most impor-
tantly, MLton’s use of defunctorization means that the placement of code in modules has no
effect on performance. In fact, it has no effect on the generated code whatsoever. Modules
are purely for the benefit of the programmer in structuring code. Also, because MLton du-
plicates functors at each use, no run-time penalty is incurred for abstracting a module into
a functor. The benefits of monomorphisation are similar. Thus, with MLton, a programmer
does not suffer the time and space penalties from an extra level of indirection in a list of
doubles just because the compiler needs a uniform representation of lists. In MLton, whole-
program control-flow analysis based on 0CFA [16] is employed early in the compilation
process, immediately after defunctorization and monomorphisation, and well before any se-
rious code motion or representation decisions are undertaken. Information computed by the
analysis is used in the defunctionalization pass to introduce dispatches at call sites to the
appropriate closure.

2 Semantics

We define our transformation over functional SSA, a variant of classical Static Single As-
signment form. Functional SSA preserves the static singe assignment property, but differs
from classic SSA in that all φ functions are eliminated [6]. Blocks in functional SSA cor-
respond to φ functions; they represent join points within the program. Using the correspon-
dence between φ functions and parameters to procedures whose call sites are known, all φ

functions are replaced by multiple calls to one block.
In functional SSA, a program is a list of functions operating over values of either prim-

itive or tuple type. One function in the program is distinguished as main denoting where
program execution begins. A function is composed of a list of blocks followed by a transfer
statement that shifts control to one of the function’s blocks. Similarly a block is a list of state-
ments, the last of which is a transfer. All functions and blocks are assumed to have unique
identifiers. Statements are of the form x : τ = e and range over assignments, tuple creation,
selects, and primitive operations. Primitive operations can constitute simple arithmetic or
more complex actions dealing with arrays, tuples, vectors, and references.

Transfers represent a change of control, either locally through Goto’s or interprocedu-
rally through Call’s. We distinguish explicitly between tail and non-tail calls in our gram-
mar. Returns dispatch based on their target block, providing each block with a set of return
values. Because we operate in a whole program compilation environment, all return points
are explicitly known. The freedom to flatten every block uniquely in our transformation
motivates this definition of return. Although the syntax distinguishes between specific
return points, functional SSA passes the same arguments to each return. Our transformation
relies on explicitly knowing all return points to allow per return point specialization of tu-
ple representations. A transformed program passes different variables to each return target.
The program’s execution completes upon evaluation of a return with an empty call stack.
We define a block identifier halt which defines the variables to be returned on program
completion.

To illustrate functional SSA, consider the example SML program in Fig. 2 and its func-
tional SSA representation in Fig. 3. The main function creates two vectors, calls Dot-
Product, extracts the second vector from the return value of DotProduct, and lastly
calls DotProduct again providing a new vector (4.5, 5.5, 6.5). The main function re-
turns the value returned by the second call to DotProduct. In functional SSA, main is
written as a three block function. Block b2 and halt represent the return point for the calls



Higher-Order Symb Comput (2008) 21: 333–358 339

Fig. 1 Functional SSA grammar

Fig. 2 ML example

to DotProduct. The function DotProduct computes the dot product in R3 where X and
Y are vectors in real space. Constituent components of the vectors X and Y (represented as
tuples in the function) are multiplied together and then summed. The function returns the
dot product of X and Y , as well as the original vectors. This function uses tuples X and Y

in both flat and non-flat ways. The functional SSA representation of DotProduct remains
essentially the same as the ML function, and consists of a single function call, and one block.
Notice the return in DotProduct distinguishes between its two possible return points, b2

and halt.

2.1 Functional SSA evaluation and type checking

The domains and evaluation of functional SSA programs is given in Figs. 4, 5, and 6. We
write x1, . . . , xn to denote a sequence of n elements, xn as a shorthand for a sequence of n

elements, x as a sequence of zero or more elements, ε as the empty sequence, and x;y as
the concatenation of two sequences. We define a reduction relation →E , which reduces a
functional SSA program to a value. We define ρ as an environment mapping variables to
values and ρ⊥ as the empty environment. We write ρ⊥ � Fn;call(main,unit) : τ →E

v to denote the evaluation of program P to value v. We also write ρ � e →E v, if the
expression e evaluates to the value v in the environment ρ and ρ � S →B ρ ′, if the evaluation
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Fig. 3 Functional SSA example

of statement S results in environment ρ ′. Transfers operate over a stack of target block and
environment pairs for non-tail calls. We write ρ,Bs � t →T v, if the transfer t evaluates
with the stack Bs to yield value v. For convenience we will switch between the names of
blocks and their concrete representations. The program transfer halt will return its value
without transferring control to another block, thus terminating the program.

We assume the program is annotated with types and all function and block names are
unique. To reason about type safety, we define a typing relation in Figs. 7 and 8. The defin-
ition is standard; we write � � e : τ , if expression e has type τ in the type environment �.
We also assume all primitive operations have types bound in �⊥, the initial typing environ-
ment. Type checking begins by extending the initial typing environment with function names
mapped to their types. Similarly we extend the typing environment when typechecking a
function with the blocks that compose the function. The transfer that begins the functions
(or blocks) evaluation is a local transfer. Any transfers within the body of the function’s (or
block’s) can transfer out of the function. The function’s return type is defined by its return
transfers. Each transfer executes a transition of → type. The type of the transfer is the return
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Fig. 4 Functional SSA evaluation domain

Fig. 5 Functional SSA evaluation

type of the function (or block) that it executes. Notice that a return is equivalent to a goto
and an if then else will also either execute a call or a goto.

Lemma 1

(1) if � � x : τ = e : τ then FV(e) ∈ Dom(�)

(2) if � � t : τ then FV(t) ∈ Dom(�).

Proof Simple induction on typing derivations. �

Lemma 2

(1) if ρ � x : τ = e →B ρ[x �→ v] then FreeVars(e) ∈ Dom(ρ)

(2) if ρ,Bs � t →t v then FreeVars(t) ∈ Dom(ρ).

Proof Simple induction on evaluation derivations. �
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Fig. 6 Functional SSA evaluation (continued)

3 Transformation

3.1 Labeling

Our transformation supports any labeling, allowing compilers to modify their flattening
strategy to their specific needs. We use labels N and F , where N denotes non-flat and F

denotes flat, to annotate SSA variables. A variable x that has been annotated with a labeling
is referred to as a labeled variable. We write L(x) to denote the label of x. For unifor-
mity, we mark every non-tuple variable with label non-flat. In SSA, a tuple as well as its
constituent component must be bound to variables. These variables can have any arbitrary
labeling. Therefore, to ensure that the flat representation is available for a given tuple we
emit new variables, representing each of the tuples components, and label them flat. Any
tuple definition labeled non-flat is boxed and remains so for the entirety of the program.

During whole program compilation, all uses of a variable are known and thus a consistent
labeling can be assured. We constrain that a dispatch statement in a return for some target
block b to be labeled exactly as the arguments for b. Since all return points are explicitly
known, each can have a unique labeling based on the formals the return point expects. All
arguments to calls and gotos are labeled based on what their target function or block
expects (see Fig. 10).

To store a correspondence between the nesting structure of the tuple and the emitted vari-
ables we introduce a tuple environment δ. For each nesting level of each tuple component we
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Fig. 7 Functional SSA typing rules

Fig. 8 Functional SSA typing rules (continued)

emit fresh variables and create a mapping in the tuple environment. For example, an argu-
ment x with the following type, (int * int)*(int * int), would be represented as
δ[x →δ x1, x2;x1 →δ x11, x12;x2 →δ x21, x22] where x1, x2, x11, x12, x21, x22 are fresh. The
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Fig. 9 Tuple environment
domain

Fig. 10 Labeling constraints: types annotations omitted where unnecessary

fresh variables x1 and x2 would both be labeled as flat because they are of tuple type and
the remaining fresh variables x11, x12, x21, and x22 would be labeled non-flat because they
are of primitive type. In order to keep our rules simple, we present the transformation in
two phases: the first builds a tuple environment and the second injects the fresh variables
stored in the tuple environment. In the first phase, we build the tuple environment through
the relations →δ and ⇀ starting from the empty tuple environment δ⊥, presented in Figs. 9
and 11. The tuple environment creation generates freshly labeled variables.

We write x1, . . . , xn fresh to denote the creation of n new labeled variables corresponding
to components of a tuple; the types of the variables are defined by the types of the tuple’s
components. The fresh variable is labeled flat if it is of tuple type and non-flat otherwise.

Since many different possibilities exist for labeling a program, it is difficult to uniquely
determine or infer an optimal labeling. Experimental results indicate that it is necessary to
adapt a labeling to a particular compiler and application. Optimizations can affect which
data should be unboxed and which should remain boxed. Applications themselves can also
affect the utility of a labeling. For instance, user-declared tuples of thousands of elements
should probably not be flattened, regardless of the efficiency of the transformation.

3.2 Flattening

Our flattening rules are defined by a transformation relation (see Fig. 12) ⇁T operating
over a tuple environment, a labeling L, and π , the current term being transformed. Given
a particular tuple environment δ, we write π ⇁ ψ if the transformation of term π yields a
sequence of terms ψ . To transform our program under ⇁ we introduce an auxiliary function
⇀F , shown in Fig. 13, that performs a fold over ⇁. The definitions of ⇁ and ⇀F are
mutually recursive, but restricted as follows: if π ⇁ π ′ and πs is a subterm of π then ⇀F
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Fig. 11 Building a tuple environment

Fig. 12 Functional SSA
transformation rules domain

can be applied to πs . Because only subterms will be evaluated with ⇀F , the recursion is
bounded. We define ψ as a short hand notion for a sequence of π terms.

The rules for Prog, Fun, and Block in Fig. 15 are similar. Each rule progresses over a list
of terms via ⇀F , building up ψ . The rule for Prog operates on a list of functions, applying
⇁ to each function. The rules for function and block are slightly more complex since both
can take arguments, but they are similar in structure to the rule for Prog.

The argument rule retrieves an argument mapped in the tuple environment (see Fig. 16).
Since all arguments labeled F (flat) will contain appropriate mappings based on a label-
ing pass, it is enough to retrieve fresh variables from the tuple environment. Any argument
labeled N (non-flat) does not contain a mapping and therefore cannot be flattened. The map-
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Fig. 13 Functional SSA transformation helper functions

Fig. 14 Selecting out a tuple’s structure

Fig. 15 Functional SSA transformation rules—program, function, block

pings in the tuple environment represent all nesting levels of the tuple, providing a complete
flat representation of the tuple.

There are two types of bindings that must to be considered. If the left hand side is labeled
flat the tuple’s structure is selected out. If the left hand side is labeled non-flat, the state-
ment is unchanged. The relation �S , defined in Fig. 14, provides a full flat representation.
The rules for tuples in Fig. 18 and primitive operations in Fig. 19 are similar to the assign-
ment rules. Primitive operations, shown in Fig. 19, are not transformed under ⇁. Instead,
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Fig. 16 Functional SSA transformation rules—argument

Fig. 17 Functional SSA transformation rules—assignment

Fig. 18 Functional SSA transformation rules—tuple

Fig. 19 Functional SSA transformation rules—primitive

arguments to primitives are always passed boxed. Primitives can potentially introduce new
tuples into the program. If a primitive introduces a new tuple, we flatten the tuple based on
its labeling.

As shown in Fig. 20, the translation of terms of the form x : τ = #i y, revolves around
exposing one nesting level of a tuple. If the target tuple y is labeled F (flat), we check
the tuple environment for y’s constituent components. Whenever there exists a select on a
flat tuple, our transformation eliminates the memory indirection with a simple assignment
statement, x : τ = yi , where yi corresponds to the statement yi : τ = #i y that has been
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Fig. 20 Functional SSA transformation rules—select

Fig. 21 Functional SSA transformation rules—transfer

Fig. 22 Functional SSA transformation rules—transfer

inserted by our transformation. If x is also F , our transformation sets x : τ = yi and emits
the appropriate select statements for x. If y is non-flat, the select cannot be eliminated.
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Fig. 23 Flattened functional SSA example

The rules for transfer2 expressions (see Fig. 21) must correctly flatten any arguments
based on the formals the transfer’s target expects. For instance, if we flatten a function f and
produce a flattened function f ′, a call to f must be translated into a call to f ′. Therefore,
the arguments the call supplies to f ′ must be translated based on what the formals of f ′

expect. Since we constrained our labeling of the dispatch statement to match the labeling of
the target block, the arity of the return values and formals will match. The transformation
rules select out all nesting levels of all tuples, providing the needed components for all tuples
passed out through a transfer.

Applying our transformation and utilizing a labeling that flattens all tuples, we can trans-
late the example program DotProduct as shown in Fig. 23. The application of the trans-
formation ⇁ to DotProduct successfully eliminates all selects. However, the number of
parameters passed to the function increases. Since both boxed and unboxed forms of X and
Y are utilized in DotProduct, the function takes eight arguments. The specialization of
the return to blocks b2 and halt both blocks to take different representations of the returned
tuples. There is some duplication of data because an unboxed representation of the original
tuples passed to DotProduct is required to be passed to halt.

2Because the transformation rules for tail and non-tail calls are identical besides syntactical differences, only
the rule for non-tail calls is provided.



350 Higher-Order Symb Comput (2008) 21: 333–358

Fig. 24 Extended typing domain

3.3 Correctness

Since functions can return potentially different representations of any returned tuple, our
existing type system is not adequate. To support multiple return types, we extend our type
system with sum types and add a new type checking rule for transformed programs which re-
places the old rule for return. We write τ1 + τ2 as the sum of types τ1 and τ2 (see Fig. 24).
The typechecking rule for return is fairly similar to the rule defined for functional SSA,
we check if the types of the formals and actuals match for each target block. However, the
type returned is the sum of types of the actuals passed to each block.

�(bi) = τi → τ ′
i i = 1, . . . , j

(bi ⇒ (x1i : τ1i , . . . , xni : τni) τi = (τ1i ∗ · · · ∗ τni)

τ = τl + · · · + τk τl 
= τk l, k ∈ 1, . . . , j

� � return(. . . |bj ⇒ (xj1 : τj1, . . . , xmj : τmj )) : τ (67)

We now define type safety for the transformed program in Theorem 1.

Theorem 1 Type safety for a transformed program. Given labeling L, and P ∈ Prog such
that �⊥ � P : τ where L,δ⊥,P ⇁ P ′ then �⊥ � P ′ : τ .

We proceed with a proof by contradiction by examining statements and transfers. As-
sume L, and P ∈ Prog such that �⊥ � P : τ where L,δ⊥,P ⇁ P ′ and �⊥ � P ′ : τ ′. There
are two possible cases, either a statement or a transfer produced a new type.

Transfers—Lemma 1 guarantees that all free variables are bound in the current typing
environment. Based on the labeling constraints, we know the labels of the actuals and for-
mals will match. Therefore, based the structure of δ and the transformation rules, the types
of the formals and actuals will match.

Statements—Statements that are not transformed remain type-safe. Statements in which
the left hand side is labeled F , will have their structure selected out into fresh variables,
based on δ. The labeling constraints and structure of δ guarantee the types match between
the fresh variables and the selected components of the tuple. The structure of δ preserves
the correlation between the fresh variables and tuple components. When selects are trans-
formed, the structure of δ and the labeling constraints guarantee the types match between the
removed selected and the fresh variable. We thus arrive at a contradiction since no new types
are introduced into the program. The structure of δ preserves the matching between fresh
variables and decoupled tuples elements, and labeling constraints force the match between
formals and actuals for all transfers, thus τ must equal τ ′.

Theorem 2 Correctness of a transformed program. Given labeling L, and P ∈ Prog such
that, ρ⊥ � P : τ →E v where L,δ⊥,P ⇁ P ′ then ρ⊥ � P ′ : τ →E v.

The definition is standard: if a program evaluates to a value v, we expect its transformed
counterpart to also evaluate to v. Since our transformation introduces only new temporary
variables, all variables present in program P will occur in the transformed program P ′ and
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will have the same runtime value (namely the same binding in ρ). Notice most statements
are not transformed; instead new statements are added to the program. We proceed by con-
structing a proof by contradiction. Assume ρ⊥ � P : τ →E v where L,δ⊥,P ⇁ P ′ and
ρ⊥ � P ′ : τ →E v′. There are two possible cases: either a transformed statement or transfer
generated a different value. We examine each case.

Statements—The only statements that are transformed are select statements of the form
x : τ = #i y which are changed to assignments (x : τ = yi ) by rules 59 and 60. The variable
yi is extracted from the ith component of y bound in the tuple environment. By the structure
of δ, we know y must have been labeled flat. By Lemma 2, y’s definition occurs prior in
the program, thus y is bound in ρ. By rule 55 and Lemma 2, all components of y are also
bound in ρ, through application of rules 45 and 46. Namely, the ith component of δ(y), yi ,
is bound to the ith component of y resulting in x being bound to the same value in P as well
as P ′. The proof for all other statements holds trivially by Lemma 2.

Transfers—By Lemma 2, all free variables in each transfer are bound in ρ. Based on our
labeling constraints which specify the matching of labels between actuals and formals, thus
guaranteeing appropriate bindings in the tuple environment for each tuple argument, we are
able to flatten any argument of the transfer. Therefore, by Lemma 2 and the transformation
rules for transfer the value of the formals and actuals match. We thus arrive at a contradiction
since no new values are introduced into the program, only decoupled tuples elements, and
formals and actuals match on all transfers, v must equal v′.

4 Experimental results

4.1 Labelings

Labelings provide the framework for the flattening algorithm; each labeling corresponding
to a flattening strategy. Benchmarks results directly depend on a flattening strategy because
a labeling determines the number of flattened tuples constructed for a program. The average
data size, length, and nesting level of tuples labeled flat also affects program performance.
Since a variety of dynamic statistics based on a labeling determine efficiency, it is difficult
to ascertain a unique optimal labeling strategy for all programs.

To illustrate the optimization potential and efficiency of tuple flattening, we compare and
contrast three strategies: (1) a bounded flattening method, (2) an argument-only strategy,
and (3) a flatten-all approach. These three strategies give a good overview of the effects of
tuple flattening. Results comparing the three strategies are presented in Sect. 4.2.

As a baseline reference strategy, we utilize argument-only. In ML all functions take one
argument, a tuple of the arguments passed to that function. The argument-only strategy
unboxes this tuple, thereby allowing functions to have more than one argument. This is a
basic compiler optimization for ML, which leaves all explicitly defined tuples boxed. The
corresponding labeling strategy marks all variables in functional SSA as non-flat.

The bounded flattening methodology flattens tuples only if they will be used mostly in a
flat context (determined by heuristics). Locally, we flatten tuples up to three nesting levels
if they are the target of select statements. However, for tuples passed between functions, the
bounded scheme flattens only those tuples created explicitly in bindings. These are user-
defined tuples and often the targets of selects. The corresponding labeling strategy labels
all variables of tuple type local within blocks and variables of tuple type that are explicitly
created as flat. All other variables are labeled as non-flat.

The flatten-all approach is the converse of the argument-only strategy. All tuples will be
aggressively unboxed to the extent their use-sites will allow. At every definition of a tuple,
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the unboxed version is generated. Useless code elimination removes any representations
which are not used. The only boxed tuples that will remain in the program are tuples supplied
as arguments to primitives. The result of this strategy is a program that contains as few boxed
tuples as possible. The corresponding labeling strategy marks all tuple variables as flat. All
other variables as marked non-flat.

4.2 Results

The results presented illustrate general trends seen across the MLton benchmark suite3 and
were obtained from running the MLton compiler on an Intel p4 2.4 Ghz computer with
1 gigabyte of memory running Gentoo Linux. The MLton benchmarking script runs and
compares various versions of the compiler for each benchmark. Benchmarks are executed
ten times and the average of each measurement is reported.

The first graph (see Fig. 25) compares the runtime ratios of both the flatten-all and the
bounded flattener normalized against the argument-only strategy. The first, light gray col-
umn represents the flatten-all methodology and the second, dark gray column the bounded
flattener. We observe significant speed ups in almost all cases using the bounded and the
flatten-all method when compared to argument-only. The cases that showed a degradation
of performance (i.e., a run-time ratio greater than 1) for flatten-all, suffered from incurred
flattening overheads which included data duplication, increased register pressure, and large
stack growth. Since the MLton compiler unboxes floating point numbers, we did not unbox
any tuple whose constituent components were of type real to limit stack growth. As a result,
floating point benchmarks, such as barnes-hut, did not benefit from the flattening pass.

In the floating point benchmarks most tuples were not flattened due to the heuristic re-
striction limiting flattening to non-floating point tuples. The larger amount of non-flat tuples
within a program, the greater the data duplication since useless code elimination cannot re-
move one of the two representations. We also noticed a larger than expected performance
gain in programs that contained little to no user-defined tuples, such as Psdes-rand. In
these test cases, the flattening algorithm unboxed intermediate tuples introduced into the
program via other optimization passes and calling conventions. In such cases, almost all
tuples were eliminated by our transformation. In programs that contain few user-defined tu-
ples, the majority of the benefit or our optimization results from the elimination of compiler
introduced tuples. In general, both the bounded and the flatten-all strategies performed very
well on both higher order and regular benchmarks compared to argument-only.

Static program size was not significantly affected by our flattening algorithm. In fact,
in many cases program size shrunk after the application of the source level transformation.
The graph shown in Fig. 26 depicts a selection of benchmarks and their growth in size for
each flattening strategy. Some programs, like MD5, were significantly reduced in size. This
large reduction is not an anomaly, and occurs because redundant selects and exposed useless
variables are eliminated during the third phase of our flattening transformation. Whenever a
tuple is flattened, useless code elimination is able to remove components of the tuple which
are not utilized by the program. Across forty benchmarks, the average size of the program
shrunk by five percent when compared to a argument-only strategy. The difference between
the bounded and the flatten-all scheme was negligible. Compile time ratio differences be-
tween the bounded and the flatten-all implementation were negligible and are omitted.

3The MLton benchmark suite contains about forty benchmarks with a selection of floating point, high order,
and regular benchmarks (see http://www.mlton.org).

http://www.mlton.org
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Fig. 25 Run time ratios—normalized vs argument-only

Fig. 26 Program size ratios—normalized vs argument-only

Total allocation in bytes varied greatly between the flatten-all and argument-only
schemes. The Fig. 27 shows total allocation ratios of flatten-all and bounded normalized
vs argument-only. In some cases, MD5 and Checksum, total allocation was reduced by a
ratio of one hundred. Decreases in total allocation occur because function arguments are
passed in registers, useless tuples are eliminated, and uncoupled, useless tuple elements are
eliminated through useless code elimination. Increases in total allocation can occur when
both boxed and unboxed representations are heavily utilized within a program, resulting
in a duplication of data because both representations are stored. In general, flatten-all ex-
perienced a decrease in total allocation. Increases were rare and usually only occurred in
programs utilizing floating point numbers or in cases where useless code elimination was
unable to remove one of the tuple’s representations. Besides floating point benchmarks, in
which case flatten-all had a higher allocation, flatten-all was similar to bounded.
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Fig. 27 Total allocation ratios—normalized vs argument-only

Fig. 28 Psdes-rand:
pre-flattening

4.3 Discussion

Consider the benchmark Psdes-rand presented in Fig. 31. Figures 28 and 29 are func-
tional SSA excerpts from the main loop in Psdes-rand depicting the program before and
after the transformation respectively. As the two figures show, all selects are eliminated from
the program by our transformation. The selects that are eliminated, were passed through
the main loops of Psdes-rand as arguments. By prefetching elements of tuples, we are
able to hoist these selects thereby avoiding their repetition within the bodies of the loops.
Useless code elimination removes the now unneeded boxed representations, allowing us to
transform blocks, such as L_46 and L_42 in Fig. 28, into corresponding blocks, L_46 and
L_88 in Fig. 29. The blocks L_46 and L_88 take no heap allocated arguments. This greatly
reduces the total allocation of the program, since all tuples are eliminated completely and
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Fig. 29 Psdes-rand:
post-flattening

Fig. 30 Complete domain listing

their utilized elements are free to be passed in registers. Since data duplication was not a
problem, stack growth was bounded by the size of the flattened tuple.

It is clear that flatten-all is a large win over argument-only. However, when compared to
the bounded flattening strategy, most benchmarks were equivalent. Some performed better
and most floating point benchmarks performed worse. If floating points were left boxed, we
suspect that the differences between flatten-all and bounded on floating point benchmarks
would be negligible. We surmise that more sophisticated labeling strategies and labeling
schemes will perform better than flatten-all. For instance, instead of completely unboxing
tuples, we could envision a labeling strategy that labels all tuple components. This would
allow certain components to remain boxed by introducing a singleton tuple. Another option
is to add more label types so that more information can be stored about a particular tuple
and its uses.

In a whole-program compilation environment tuple unboxing is able to avoid many of the
problems cited by Leroy. Since our approach is completely coercion free, no costs accrue
from changing representations since both are always available where needed. Compared to
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Fig. 31 Psdes-rand: MLton benchmark
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runtime type inspection, no typing information is necessary at run time to perform our un-
boxing technique. All unboxing is handled statically by the transformation. In contrast, our
transformation may cause increased register pressure, larger stack frames, and duplication
of data. These costs are not unique to our transformation, as other transformations also retain
multiple representations.

Although a function may never require the boxed version of a tuple, the overhead of pass-
ing a large number of arguments can offset the removal of any memory indirections select
statements introduce, especially if the elements of the tuple are large. Nested tuples can also
greatly increase stack size, since a tuple can have an arbitrary structure. A tuple containing a
complex nesting structure, if flattened completely, may cause exponential stack growth. This
is especially true if both representations at each nesting level of the tuple are not eliminated
by the useless code elimination pass. Although this occurs infrequently, it is nonetheless an
unfortunate side-effect of passing two representations. Passing duplicate data can result in
large stack frames since both pointers to heap allocated objects and their unboxed versions
are passed. Large stack frames not only are slow to construct, but contribute to a higher rate
of register spills.

References, arrays, and potentially other primitive operations may cause an implementa-
tion to lose track of tuples. If we store a tuple in a reference cell (or any mutable object), we
can no longer guarantee its mapping in the tuple environment. Our transformation is con-
servative in such cases, treating tuples extracted from mutable datastructures as new tuples.
Although SSA handles all potential naming problems, duplicate work is done if this tuple is
known. In the presence of must alias information [5], these duplications can be removed.

5 Conclusion

We provided a definition of a tuple flattening optimization which can be incorporated into
functional SSA-based compilers. Our transformation rules provide a framework in which
different flattening mechanisms (labelings) can be studied and compared formally. Our op-
timization is insensitive to the depth of tuple nestings. The optimization potential for tuple
flattening is significant; for certain benchmarks, improvements range up to 90% over opti-
mized counterparts that do not exploit flattening transformations. Our results indicate that
flattening is a reasonable and efficient optimization that can benefit any language that utilizes
tuple structures.
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