
Higher-Order Symb Comput (2007) 20: 199–207
DOI 10.1007/s10990-007-9018-9

A call-by-name lambda-calculus machine

Jean-Louis Krivine

Published online: 25 October 2007
© Springer Science+Business Media, LLC 2007

Abstract We present a particularly simple lazy lambda-calculus machine, which was intro-
duced twenty-five years ago. It has been, since, used and implemented by several authors, but
remained unpublished. We also build an extension, with a control instruction and continua-
tions. This machine was conceived in order to execute programs obtained from mathematical
proofs, by means of the Curry-Howard (also known as “proof-program”) correspondence.
The control instruction corresponds to the axiom of excluded middle.

Keywords Lambda-calculus machine · Control instruction · Curry-Howard
correspondence

1 Introduction

We present, in this paper, a particularly simple lazy machine which runs programs written in
λ-calculus. It was introduced by the present writer more than twenty years ago. It has been,
since, used and implemented by several authors, but remained unpublished.

In the second section, we give a rather informal, but complete, description of the machine.
In the second part, definitions are formalized, which allows us to give a proof of correctness
for the execution of λ-terms. Finally, in the third part, we build an extension for the machine,
with a control instruction (a kind of call-by-name call/cc) and with continuations.

This machine uses weak head reduction to execute λ-calculus, which means that the
active redex must be at the very beginning of the λ-term. Thus, computation stops if there
is no redex at the head of the λ-term. In fact, we reduce at once a whole chain λx1 . . . λxn.
Therefore, execution also stops if there are not enough arguments.

The first example of a λ-calculus machine is P. Landin’s celebrated SECD-machine [8].
The one presented here is quite different, in particular because it uses call-by-name. This
needs some explanation, since functional programming languages are, most of the time,
implemented through call-by-value. Here is the reason for this choice:

J.-L. Krivine (�)
C.N.R.S., University Paris VII, 2 place Jussieu, 75251 Paris cedex 05, France
e-mail: krivine@pps.jussieu.fr

200 Higher-Order Symb Comput (2007) 20: 199–207

Starting in the sixties, a fascinating domain has been growing between logic and the-
oretical computer science, that we can designate as the Curry-Howard correspondence.
Succinctly, this correspondence permits the transformation of a mathematical proof into
a program, which is written:

in λ-calculus if the proof is intuitionistic and only uses logical axioms;
in λ-calculus extended with a control instruction, if one uses the law of excluded mid-

dle [4] and the axioms of Zermelo-Frænkel set theory [6], which is most often the case.
Other instructions are necessary if one uses additional axioms, such as the Axiom of

Choice [7].
The programs obtained in this way are indeed very complex and two important problems

immediately arise: how should we execute them and what is their behaviour? Naturally,
these questions are not independent, so let us give a more precise formulation:

(i) How should one execute these programs so as to obtain a meaningful behaviour?
(ii) Assuming an answer to question (i), what is the common behaviour (if any) of the

programs obtained from different proofs of the same theorem?

It is altogether surprising that there be an answer to question (i); it is the machine pre-
sented below. I believe that is, in itself, a strong reason for being interested in it.

Let us give a very simple but illuminating example, namely the following theorem of
Euclid:

There exists infinitely many prime numbers.
Let us consider a proof D of this theorem, using the axioms of classical analysis, or those of
classical set theory; consider, further, the program PD extracted from this proof. One would
like to have the following behaviour for PD :

wait for an integer n;
produce then a prime number p ≥ n.
That is exactly what happens when the program PD is executed by the present machine.

But it’s not true anymore if one uses a different execution mechanism, for instance call-by-
value. In this case one gets, in general, an aberrant behaviour and no meaningful output.

This machine was thus conceived to execute programs obtained from mathematical
proofs. It is an essential ingredient of the classical realizability theory developed in [6, 7]
to extend the Curry-Howard correspondence to analysis and set theory. Thanks to the re-
markable properties of weak head reduction, one can thus, inter alia, search for the spec-
ification associated with a given mathematical theorem, meaning the shared behaviour of
the programs extracted from the various proofs of the theorem under consideration: this is
question (ii) stated earlier. That problem is a very interesting one, it is also quite difficult and
has only been solved, up to now, in very few cases, even for tautologies (cf. [2]). A further
interesting side of this theory is that it illuminates, in a new way, the problem of proving
programs, so very important for applications.

2 Description of the machine

Terms of λ-calculus are written with the notation (t)u for application of t to u. We shall also
write tu if no ambiguity arise; (. . . ((t)u1)u2 . . .)uk will be also denoted by (t)u1 . . . uk or
tu1 . . . uk .

We consider three areas in the memory: the term area where are written the λ-terms to
be performed, the stack and the heap. We denote by &t the address of the term t in the term
area.

In the heap, we have objects of the following kinds:

Higher-Order Symb Comput (2007) 20: 199–207 201

– Environment: a finite sequence (e, ξ1, . . . , ξk) where e is the address of an environment
(in the heap), and ξ1, . . . , ξk are closures. There is also an empty environment.

– Closure: an ordered pair (&t, e) built with the address of a term (in the term area) and the
address of an environment.

The elements of the stack are closures.
Intuitively, closures are the values which λ-calculus variables take.

2.1 Execution of a term

The term t0 to be performed is written, in “compiled form” in the term area. The “compiled
form” of a term is obtained by replacing each occurrence of λx with λ and each variable
occurrence with an ordered pair of integers 〈ν, k〉 (it is a variant of the de Bruijn notation [3],
see the definition below). We assume that t0 is a closed term. Thus, the term area contains a
sequence of closed terms.

Nevertheless, terms may contain symbols of constant, which are performed with some
predefined programs. For example:

– A constant symbol which is the name of another closed term; the program consists in the
execution of this term.

– Constant symbols for programs in an input-output library.

The execution consists in constantly updating a closure (T ,E) and the stack. T is the address
of the current subterm (which is not closed, in general): it is, therefore, an instruction pointer
which runs along the term to be performed; E is the current environment.

At the beginning, T is the address of the first term t0 to be performed. Since it is a closed
term, E is the null pointer (which points to the empty environment).

At each moment, there are three possibilities according to the term pointed by T : it may
be an application (t)u, an abstraction λx t or a variable.

– Execution of (t)u.
We push the closure (&u,E) on the top of the stack and we go on by performing t : thus
T points now to t and E does not change.

– Execution of λx1 . . . λxn t where t does not begin with a λ; thus, T points to λx1.
A new environment (e, ξ1, . . . , ξn) is created: e is the address of E, ξ1, . . . , ξn are
“popped”: we take the n top entries off the stack. We put in E the address of this new
environment in the heap, and we go on by performing t : thus T points now to t .

– Execution of x (a λ-calculus variable).
We fetch as follows the value of the variable x in the environment E: indeed, it is a bound
occurrence of x in the initial term t0. Thus, it was replaced by an ordered pair of integers
〈ν, k〉. If ν = 0, the value we need is the k-th closure of the environment E. If ν ≥ 1, let
E1 be the environment which has its address in E, E2 the one which has its address in E1,
etc. Then, the value of x is the k-th closure of Eν . This value is an ordered pair (T ′,E′)
which we put in (T ,E).

Remark The intuitive meaning of these rules of execution is to consider the symbols
λx, (, x of λ-calculus as elementary instructions:

• “λx” is: “pop” in x and increment the instruction pointer.
• “(” is: “push” the address of the corresponding “)” and increment the instruction pointer.
• “x” is: go to the address which is contained in x.

202 Higher-Order Symb Comput (2007) 20: 199–207

It remains to explain how we compute the integers ν, k for each occurrence of a vari-
able x, i.e. how we “compile” a closed λ-term t . More generally, we compute ν for an
occurrence of x in an arbitrary λ-term t , and k when it is a bound occurrence in t . This is
done by induction on the length of t .

If t = x, we set ν = 0. If t = uv, the occurrence of x we consider is in u (resp. v).
We compute ν, and possibly k, in u (resp. v).

Let now t = λx1 . . . λxn u with n > 0, u being a term which does not begin with a λ. If
the occurrence of x we consider is free in t , we compute ν in t by computing ν in u, then
adding 1. If this occurrence of x is bound in u, we compute ν and k in u. Finally, if this occur-
rence is free in u and bound in t , then we have x = xi . We compute ν in u, and we set k = i.

3 Formal definitions and correction proof

Compiled terms or λB -terms (this notion is a variant of the de Bruijn notation) are defined
as follows:

• A constant a or an ordered pair 〈ν, k〉 (k ≥ 1) of integers is a λB -term (atomic term).
• If t, u are λB -terms, then so is (t)u.
• If t is a λB -term which does not begin with λi and if n ≥ 1, then λnt is a λB -term.

Let us consider, in a λB -term t , an occurrence of a constant a or of 〈ν, k〉 (ordered pair of
integers). We define, in an obvious way, the depth of this occurrence, which is the number
of λn symbols above it. The definition is done by induction on the length of t :

If there is no λi symbol in t , the depth is 0.
If t = (u)v, the occurrence we consider is either in u or in v. We compute its depth in

this subterm and do not change it.
If t = λnu, we compute the depth of this occurrence in the subterm u and we add 1 to it.
An occurrence of 〈ν, k〉 in t is said to be free (resp. bound) if its depth in t is ≤ ν

(resp. > ν).
Of course, each occurrence of a constant a is free. Thus, we could write constants as

ordered pairs 〈∞, k〉.
Consider a bounded occurrence of 〈ν, k〉 in a λB -term t ; then there is a unique λn in t

which bounds this occurrence. If k > n, we say that this occurrence of 〈ν, k〉 in t is dummy.
A λB -term without dummy bound occurrences will be called good. We can easily transform
a λB -term into a good one: simply substitute each dummy occurrence with a (unique) new
constant symbol d .

3.1 Alpha-equivalence

Let t be a closed λ-term, with constants. We define, by induction on t , its “compiled” form,
which is a λB -term denoted by B(t):

If a is a constant, then B(a) = a; if t = uv, then B(t) = B(u)B(v).
If t = λx1 . . . λxn u where u does not begin with λ, consider the λB -term:

B(u[a1/x1, . . . , an/xn]), where a1, . . . , an are new constants.
We replace in it each occurrence of ai with the ordered pair 〈ν, i〉, where ν is the depth

of this occurrence in B(u[a1/x1, . . . , an/xn]). We get in this way a λB -term U and we set:
B(t) = λnU .

Theorem 1 A λB -term τ is good iff there exists a λ-term t such that τ = B[t].

Higher-Order Symb Comput (2007) 20: 199–207 203

We omit the easy proof.
The compiled form B[t] of a λ-term t is a variant of the de Bruijn notation for t . Its main

property, expressed by Theorem 2, is that it depends only on α-equivalence class of t . This
property is not used in the following, but the simplicity of the proof below convinced me to
give it here.

Theorem 2 Two closed λ-terms t, t ′ are α-equivalent (which we denote by t �α t ′) if and
only if B(t) = B(t ′).

Proof The proof is done by induction on t . The result is clear if t = a or t = uv. So, we
assume now that t = λx1 . . . λxn u where u does not begin with λ. If t �α t ′ or if B(t) = B(t ′),
then t ′ = λx ′

1 . . . λx ′
n u′ where u′ does not begin with λ. Let a1, . . . , an be new constants; then,

by definition of α-equivalence [5], we have:

t �α t ′ ⇔ u[a1/x1, . . . , an/xn] �α u′[a1/x
′
1, . . . , an/x

′
n].

By induction hypothesis, this is equivalent to:

B(u[a1/x1, . . . , an/xn]) = B(u′[a1/x
′
1, . . . , an/x

′
n]).

If B(u[a1/x1, . . . , an/xn]) = B(u′[a1/x
′
1, . . . , an/x

′
n]), we obviously have B(t) = B(t ′). But

conversely, we get B(u[a1/x1, . . . , an/xn]) from B(t), by removing the initial λn and re-
placing 〈ν, i〉 with ai for every occurrence of 〈ν, i〉 the depth of which is precisely equal
to ν.

Therefore, we have B(u[a1/x1, . . . , an/xn]) = B(u′[a1/x
′
1, . . . , an/x

′
n]) ⇔ B(t) = B(t ′)

and finally t �α t ′ ⇔ B(t) = B(t ′). �

3.2 Weak head reduction

Consider a λB -term of the form (λnt)u1 . . . up with p ≥ n. Then, we can carry out a weak
head reduction step: we get the λB -term t ′un+1 . . . up (or t ′, if n = p); the term t ′ is obtained
by replacing in t each free occurrence of 〈ν, i〉 with:

〈ν − 1, i〉 if ν is strictly greater than the depth of this occurrence;
ui (resp. d) if ν is equal to the depth of this occurrence and i ≤ n (resp. i > n); d is a

fixed constant, which replaces dummy bound occurrences in λnt .
We write t
 u if u is obtained from t by a finite (possibly null) number of weak head

reduction steps.
It is clear that the weak head reduction of a λ-term t corresponds to the weak head

reduction of its compiled form B(t).

3.3 Closures, environments and stacks

We now define recursively closures and environments:
∅ is an environment (the empty environment); if e is an environment and φ1, . . . , φn are

closures (n ≥ 0), then the finite sequence (e,φ1, . . . , φn) is an environment.
A closure is an ordered pair (t, e) composed with a λB -term t and an environment e.
A stack is a finite sequence π = (φ1, . . . , φn) of closures.
We denote by φ.π the stack (φ,φ1, . . . , φn) obtained by “pushing” the closure φ on the

top of the stack π .

204 Higher-Order Symb Comput (2007) 20: 199–207

3.3.1 Execution rules

A state of the machine is a triple (t, e,π) where t is a λB -term, e an environment and π a
stack. We now give the execution rules, by which we pass from a state (t, e,π) to the next
one (t ′, e′,π ′):

• If t = (u)v, then t ′ = u, e′ = e and π ′ = (v, e).π .
• If t = λnu, the length of the stack π must be ≥ n, otherwise the machine stops. Thus, we

have π = φ1 . . . φn.π
′, which defines π ′. We set t ′ = u and e′ = (e,φ1, . . . , φn).

• If t = 〈ν, k〉: let e0 = e and let ei+1 be the environment which is the first element of ei , for
i = 0,1,

If ei = ∅ for an i ≤ ν, then the machine stops.
Otherwise, we have eν = (eν+1, (t1, ε1), . . . , (tp, εp)).
If k ≤ p, we set t ′ = tk , e′ = εk and π ′ = π .
If k > p, then the machine stops.

3.3.2 The value of a closure

Given any closure φ = (t, e), we define a closed λB -term which is denoted by φ̄ or t[e]; it
is defined by induction on the environment e as follows:

If e = ∅, we obtain t[∅] by replacing in t each free occurrence of 〈ν, i〉 (i.e. its depth
is ≤ ν) with the constant d .

If e = (ε,φ1, . . . , φn), we set t[e] = u[ε] where u is the λB -term we obtain by replacing
in t each free occurrence of 〈ν, i〉 with:

〈ν − 1, i〉 if ν is strictly greater than the depth of this occurrence;
φ̄i (resp. d) if ν is equal to the depth of this occurrence and i ≤ n (resp. i > n); d is a

fixed constant.

Remark We observe that t[e] is a closed λB -term, which is obtained by replacing in t the
free occurrences of 〈ν, i〉 with suitable λB -terms. These closed λB -terms are recursively
provided by the environment e; the constant d (for “dummy”) is used as a “wild card”,
when the environment e does not provide anything.

Theorem 3 Let (t, e,π), (t ′, e′,π ′) be two consecutive states of the machine, with π =
(φ1, . . . , φm) and π ′ = (φ′

1, . . . , φ
′
m′).

Then, we have: t[e]φ̄1 . . . φ̄m
 t ′[e′]φ̄′
1 . . . φ̄′

m′ .

Proof Recall that the symbol
 denotes the weak head reduction. We shall use the notation
t[e]π̄ for t[e]φ̄1 . . . φ̄m when π is the stack (φ1, . . . , φm).

There are three possible cases for t :

• t = (u)v: we have t[e] = u[e]v[e], t ′[e′] = u[e] (since e′ = e) and π ′ = (v, e).π . There-
fore t[e]π̄ = t ′[e′]π̄ ′.

• t = 〈ν, k〉: let e0 = e and ej+1 the environment which is the first element of ej , if ej �= ∅.
Then, by the reduction rules of the machine, we have (t ′, e′) = ψk where ψk is the k-th
closure of the environment eν = (eν+1,ψ1, . . . ,ψp) (and k is necessarily ≤ p). Now, by
definition of t[e], we have t[e] = ψ̄k . Therefore, t[e]π̄ = ψ̄kπ̄ = t ′[e′]π̄ ′, since π ′ = π .

• t = λnu: then we have n ≤ m and
t ′ = u, e′ = (e,φ1, . . . , φn), π ′ = (φn+1, . . . , φm). We must show that (λnu)[e]φ̄1 . . . φ̄n

u[(e,φ1, . . . , φn)].

Higher-Order Symb Comput (2007) 20: 199–207 205

By the very definitions of the value of a closure and of the weak head reduction,
we have u[(e,φ1, . . . , φn)] = v[e], where v is obtained by one step of weak head re-
duction in (λnu)φ̄1 . . . φ̄n. We denote this by (λnu)φ̄1 . . . φ̄n
1 v, and we now show that
(λnu)[e]φ̄1 . . . φ̄n
1 v[e] (which will give the result).

We obtain v[e] by replacing, in u, the free occurrences of 〈ν, i〉 (i) with φ̄i (or d if i > n)
if ν = the depth of this occurrence; (ii) with 〈ν − 1, i〉 if ν > the depth of this occurrence;
and after that, we replace this occurrence of 〈ν − 1, i〉 with the closed term given by the
environment e.

Now, we obtain (λnu)[e] (which is closed) by the substitution (ii) on the free occurrences
of 〈ν, i〉 in u such that ν > the depth of this occurrence in u. Indeed, they are exactly the
free occurrences in λnu.

Then, one step of weak head reduction on (λnu)[e]φ̄1 . . . φ̄n performs the substitution (i)
on the occurrences of 〈ν, i〉 in u such that ν = the depth in u of this occurrence. This shows
that this step of reduction gives v[e]. �

This theorem shows that the machine which has been described above computes cor-
rectly in the following sense: if t
 at1 . . . tk , where t is a closed λ-term and a is a constant,
then the execution of B(t), from an empty environment and an empty stack, will end up in
aB(t1) . . .B(tk). In particular, if t
 a, then the execution of B(t) will end up in a.

4 Control instruction and continuations

We now extend this machine with a call-by-name control instruction, and with continuations.
There are two advantages: first, an obvious utility for programming; second, in the frame of
realisability theory (see the introduction), this allows the typing of programs in classical
logic and no longer only in intuitionistic logic. Indeed, the type of the instruction call/cc
is Peirce’s law ((A → B) → A) → A (see [4]).

We insist on the fact that we use a call-by-name version of call/cc, which is rather
unusual. The reason for this was explained in the introduction.

An interesting study of the connection of such a machine with context sensitive calculi
(calculi of explicit substitutions) is done in [1].

As we did before, we give first an informal description of the machine, then mathematical
definitions.

4.1 Description of the machine

We describe only the changes. Terms are the same but there is one more constant, which is
denoted by cc. There are still three memory areas: the stack and the term area, which are
the same as before, and the heap which contains objects of the following kinds:

– Environment: same definition.
– Closure: it is, either an ordered pair (&t, e) built with the address of a term (in the term

area) and the address of an environment (in the heap); or the address &γ of a continuation.
– Continuation: it is a sequence γ = (ξ1, . . . , ξn) of closures (the same as a stack).

4.1.1 Execution of a term

The execution consists in constantly updating the current closure � and the stack. There are
now two possible forms for the current closure: (&τ, e) (where τ is a term) or &γ (where γ

is a continuation).

206 Higher-Order Symb Comput (2007) 20: 199–207

Consider the first case: � = (&τ, e). There are now four possibilities for the term τ : an
application (t)u, an abstraction λx t , a variable x or the constant cc. Nothing is changed
during execution in the first two cases.

– Execution of x (λ-calculus variable).
As before, we fetch the value of the variable x in the environment e, which gives a closure
ξ which becomes the current closure �. The stack does not change.

– Execution of cc.
We pop a closure ξ which becomes the current closure �. We save the current stack in a
continuation γ and we push the address of γ (this address is a closure) on the top of the
stack.
Therefore, the stack, which was of the form (ξ, ξ1, . . . , ξn), has become (&γ, ξ1, . . . , ξn)

with γ = (ξ1, . . . , ξn).

Consider now the second case, when the current closure � is of the form &γ . Then,
the execution consists in popping a closure ξ , which becomes the current closure and in
replacing the current stack with γ .

4.2 Formal definitions

λB -terms are defined as before, with a distinguished constant, which is denoted by cc.
We define recursively the closures, the environments and the stacks (which are now also

called continuations):
∅ is an environment (the empty environment); if e is an environment and φ1, . . . , φn are

closures (n ≥ 0), then the finite sequence (e,φ1, . . . , φn) is an environment.
A closure is either a stack, or an ordered pair (t, e) composed with a λB -term t and an

environment e.
A stack (or continuation) is a finite sequence γ = (φ1, . . . , φn) of closures. We denote by

φ.γ the stack (φ,φ1, . . . , φn) which is obtained by “pushing” the closure φ on the top of the
stack γ .

4.2.1 Execution rules

A state of the machine is an ordered pair (φ,π) where φ is a closure and π is a stack. We
give now the execution rules, by which we pass from a state (φ,π) to the next one (φ′,π ′):

• If φ is a continuation (i.e. a stack), then φ′ is the closure which is on the top of the stack
π (if π is empty, the machine stops) and π ′ = φ.

• Else, we have φ = (t, e) and there are four possibilities for the λB -term t :
• If t = (u)v, then φ′ = (u, e) and π ′ = (v, e).π .
• If t = λnu, then the length of the stack π must be ≥ n, otherwise the machine

stops. Thus, we have π = φ1 . . . φn.π
′, which defines π ′. We set φ′ = (u, e′) with

e′ = (e,φ1, . . . , φn).
• If t = 〈ν, k〉: let e0 = e and let ei+1 be the environment which is the first element of

ei , for i = 0,1, If ei = ∅ for an i ≤ ν, then the machine stops. Else, we have
eν = (eν+1, φ1, . . . , φp).
If k ≤ p, we set φ′ = φk and π ′ = π . If k > p, the machine stops.

• If t = cc, then φ′ is the closure which is on the top of the stack π (if π is empty, the
machine stops). Thus, we have π = φ′.ρ where ρ is a stack. Therefore, ρ is also a
closure, which we denote by φρ . Then, we set π ′ = φρ.ρ.

Higher-Order Symb Comput (2007) 20: 199–207 207

Acknowledgements Many thanks to Olivier Danvy for organizing this special issue of HOSC, and for
several helpful remarks and suggestions about this paper.

References

1. Biernacka, M., Danvy, O.: A syntactic correspondence between context-sensitive calculi and abstract ma-
chines. Theor. Comput. Sci. 375(1–3), 76–108 (2007). Extended version available as the research report
BRICS RS-06-18

2. Danos, V., Krivine, J.-L.: Disjunctive tautologies and synchronisation schemes. In: Computer Science
Logic’00. Lecture Notes in Computer Science, vol. 1862, pp. 292–301 (2000)

3. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the Church-Rosser theorem. Indag. Math. 34, 381–392 (1972)

4. Griffin, T.: A formulæ-as-type notion of control. In: Conference Record of the 17th A.C.M. Symposium
on Principles of Programming Languages (1990)

5. Krivine, J.-L.: Lambda-Calculus, Types and Models. Ellis Horwood, Chichester (1993)
6. Krivine, J.-L.: Typed λ-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log. 40(3), 189–205

(2001)
7. Krivine, J.-L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308, 259–276 (2003)
8. Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6, 308–320 (1964)

	A call-by-name lambda-calculus machine
	Abstract
	Introduction
	Description of the machine
	Execution of a term

	Formal definitions and correction proof
	Alpha-equivalence
	Weak head reduction
	Closures, environments and stacks
	Execution rules
	The value of a closure

	Control instruction and continuations
	Description of the machine
	Execution of a term

	Formal definitions
	Execution rules

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

