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Abstract

A vaccine is defined as a biologic preparation that trains the immune system, boosts immunity, and protects against a deadly
microbial infection. They have been used for centuries to combat a variety of contagious illnesses by means of subsiding the
disease burden as well as eradicating the disease. Since infectious disease pandemics are a recurring global threat, vaccina-
tion has emerged as one of the most promising tools to save millions of lives and reduce infection rates. The World Health
Organization reports that immunization protects three million individuals annually. Currently, multi-epitope-based peptide
vaccines are a unique concept in vaccine formulation. Epitope-based peptide vaccines utilize small fragments of proteins or
peptides (parts of the pathogen), called epitopes, that trigger an adequate immune response against a particular pathogen.
However, conventional vaccine designing and development techniques are too cumbersome, expensive, and time-consuming.
With the recent advancement in bioinformatics, immunoinformatics, and vaccinomics discipline, vaccine science has entered
a new era accompanying a modern, impressive, and more realistic paradigm in designing and developing next-generation
strong immunogens. In silico designing and developing a safe and novel vaccine construct involves knowledge of reverse
vaccinology, various vaccine databases, and high throughput techniques. The computational tools and techniques directly
associated with vaccine research are extremely effective, economical, precise, robust, and safe for human use. Many vaccine
candidates have entered clinical trials instantly and are available prior to schedule. In light of this, the present article pro-
vides researchers with up-to-date information on various approaches, protocols, and databases regarding the computational
designing and development of potent multi-epitope-based peptide vaccines that can assist researchers in tailoring vaccines
more rapidly and cost-effectively.
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Introduction

A vaccine is an immunobiological substance from a dis-
ease-causing pathogen that triggers the immune system to
elicit an effective immune response against that specific
pathogen (Khan et al. 2022a). They destroy the lethal-
ity of an infectious microorganism analogous to natural
immunity (Dey et al. 2022a). Infectious diseases caused
by microbial pathogens like viruses, bacteria, and fungi
are globally responsible for increased morbidity and mor-
tality (Mahapatra et al. 2022a). To date, over 6.8 million
people have already died of COVID-19 (Coronavirus
Disease 2019) pandemic caused by SARS-CoV-2 (Severe
Acute Respiratory Syndrome Coronavirus 2) (Sahoo et al.
2022), and the death toll is increasing day by day (Sha-
wan et al. 2021a, b). Other viruses, such as HIV (Human
Immunodeficiency Virus), Ebola, Zika, Dengue, etc., have
a horrendous death rate and are walking on the same track
(Xin et al. 2023). Besides viruses, deadly bacteria are
also responsible for numerous infectious diseases (Dey
et al. 2022a, b; Khan et al. 2022a, b). Upon getting the
chance, commensal bacteria like Staphylococcus aureus
may become slaughterous (Oh et al. 2016). In this con-
text, vaccines are a blessing through medicine and act as a
game changer by offering protection against various deadly
infectious diseases, saving millions of lives. They have
raised life expectancy in developed and underdeveloped
countries (Xin et al. 2023).

At present, multi-epitope-based peptide vaccine
design and development is an emerging area of research
that focuses on using specific components of a pathogen,
known as epitopes, to create a vaccine (Abass et al. 2022).
Epitopes are short amino acid sequences recognized by
the immune system and trigger an immune response. By
using epitopes, vaccines can be designed to target spe-
cific parts of a pathogen, leading to a more targeted and
effective immune response (Shawan et al. 2014). Epitope-
based peptides are desired vaccine candidates due to their
simpler production, non-infectious property, and chemical
stability (Obaidullah et al. 2021). One of the main prom-
ises of epitope-based peptide vaccine design is its poten-
tial for relatively quick, cheap, and rapid development,
as it only requires the production of a small number of
antigenic peptides rather than the entire pathogen, mak-
ing them ideal for use in response to emerging infectious
diseases. Another advantage of this type of vaccine is its
potential for improved safety (Dey et al. 2022a). Tradi-
tional vaccines use either inactivated or attenuated forms
of the pathogen, which can cause adverse reactions and/
or autoimmune responses in some individuals. On the
other hand, epitope-based peptide vaccines are biologi-
cally harmless and highly effective at eliciting the desired
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immune response (Purcell et al. 2007; Kar et al. 2020;
(Mahapatra et al. 2022a). The molecular mechanism of
action of an epitope-based peptide vaccine is depicted in
Fig. 1 (Kar et al. 2020).

The natural immune response can be triggered/evoked
by entire or parts of microorganisms that may act as anti-
gens, which can elicit a host’s immune response and pro-
duce antibodies against those antigens. Antigenicity is the
capacity of an antigen to react with a particular antibody
and is linked to immunoreactivity and/or immunogenicity.
Immunoreactivity and/or immunogenicity is a complex net-
work of antigen-specific biological reactions mediated by
the humoral immunity of the host’s adaptive immune system
(Shawan et al. 2014). During the exposure of an antigen to
the immune system, B-cells are stimulated and differentiated
into plasma cells with the aid of CD4 + helper T-cells, pro-
ducing antigen-specific antibodies (Nicholson et al. 2016).
In addition, the immune system also relies on CD8 + cyto-
toxic T-cells and IFN (Interferons, a group of cytokines)
along with CD4 + helper T-cells to neutralize the antigen.
The T-cell-mediated immune response deeply relies on the
MHC (Major Histocompatibility Complex) molecules and
is analogous to the binding of an antigen with its specific
antibody. The human leukocyte antigen (HLA) gene encodes
MHC peptide molecules. Every HLA allele stands for a pep-
tide set found on the infected cell surface and identified by
the receptors on T-cells (TCRs). Thus, both T-cell and B-cell
subsequently provide cellular and humoral immunity, which
are critically needed to evoke an effective immune response
(Rakib et al. 2020).

The conventional approach to designing and develop-
ing an efficient vaccine candidate requires identifying target
antigens, conducting in-depth research, and establishing an
immunological correlation with the vaccine construct (Rap-
puoli et al. 2019). Traditional/experimental approach toward
vaccine development is time-consuming, expensive, fraught
with challenges, and requires the cultivation of large amounts
of the pathogen. The process typically takes significant time
to construct a commercially viable vaccine and involves a high
rate of failure. That is why researchers are extremely interested
in designing and developing vaccines using computer-assisted
tools and techniques (Obaidullah et al. 2021). Recent research
has shown that in silico approaches toward vaccine design are
much more effective than earlier methods (Pyasi et al. 2021).
Using novel resources (computational tools, techniques, and
databases) and similar bioinformatics strategies, this process
successfully establishes potent vaccine candidates that can
induce strong immune responses against different types of
human infectious pathogens like viruses [i.e., SARS-CoV-2
(Srivastava et al. 2022), mammarenavirus (Khan et al. 2022b)
etc.], bacteria [i.e., Achromobacter xylosoxidans (Khan et al.
2022a), Enterococcus faecium (Dey et al. 2022a), Klebsiella
pneumoniae (Dey et al. 2022b), Acinetobacter baumannii
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Fig. 1 Molecular mechanism of action of epitope-based peptide vac-
cine triggering cellular and humoral immunity. (A) The vaccine is
taken up, processed, and presented by antigen-presenting cells (APC)
with the help of the MHC I receptor to the T-cell receptor (TCR) of
CD8* cytotoxic T-cell (Tc-cell). This interaction activates the Tc-
cell development and elicits the production of IFN/Th1 cytokines by
CD4" helper T-cell (Th-cell). IFN/Th1 cytokine results in the activa-
tion of Tc-cells to divide and attack the infected cell. The activated

(Mahapatra et al. 2022a) etc.], as well as fungi [i.e., Candida
auris (Khan et al. 2022c). Creating a safe and new vaccine
using in silico design and development requires expertise in
reverse vaccinology, multiple vaccine databases, and high-
throughput methods. Databases such as Cytomegalovirus-db,
Mammarenavirus-db, Hantavirus-db etc., are the repository
of valuable information regarding experimentally validated
vaccine components ((Khan et al. 2021a; (Khan et al. 2021a;
(Khan et al. 2021a). In contrast, high-throughput methods are
potent bioinformatics protocols to anticipate novel vaccine
candidates (Srivastava et al. 2022). Furthermore, peptide can-
didates as potent epitope vaccines having improved expression
patterns can be detected by in silico models that use various
computational algorithms. These robust and more sophisti-
cated algorithms are the hub for identifying immune epitopes
against T and B cells. Various high-throughput screening

Te-cells are also converted to memory Tc-cells. (B) Likewise, the
antigenic vaccine is taken up, processed, and presented by MHC II
of APC to TCR of Th-cell. This causes Th-cell activation, resulting
in the secretion of IFN/Th2 cytokines. IFN/Th2 cytokine activates
B-cells which differentiate into activated plasma cells and memory
B-cells. Activated plasma cells and memory B-cells are capable of
producing antigen-specific antibodies that can neutralize an infection.
This figure was generated using BioRender.com

approaches have already been developed to evaluate a vac-
cine construct’s efficacy (Abass et al. 2022).

In this article, we provide an outline for designing and
developing multi-epitope-based peptide vaccines with the aid
of different bioinformatics/immunoinformatics tools, database
repositories, and computational algorithms in a simple, basic,
and straightforward fashion. We expect that developments in
bioinformatics and computational technologies will make vac-
cinology protocols more effective and accessible for research-
ers, enhancing the future of immunology.

Materials and methods
The complete step-by-step methodology for the in silico

designing and developing a multi-epitope-based peptide
vaccine is visualized in a flow chart in Fig. 2. All the web
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«Fig.2 A schematic illustration exhibiting the overall systematic
immunoinformatics strategy/approach adopted for the in silico
epitope curation, designing, and development of a multi-epitope-
based peptide vaccine. Initially, an antigenic target protein sequence
from a desired microbe (virus, bacteria, fungi etc.) is extracted to
select promiscuous T-cell (Tc and Th) and B-cell (LBL) epitopes.
Appropriate linkers can then join these novel epitopes to construct
a multi-epitope-based peptide vaccine candidate. After the evalua-
tion (BLAST, disulfide engineering, CBL epitope prediction, NMA,
and immune simulation) and structural assessment (2D and 3D), the
newly formulated vaccine construct can be subjected to molecular
docking analysis with TLR4 immune receptor. A molecular dynamics
simulation is carried out to predict the stability of the docked com-
plex. This flowchart is generated using Microsoft Office (PowerPoint)
2019

addresses with additional comments on different servers/
databases and software that are used in the vaccinomics
approach are listed in Tables 1 and 2.

Retrieval of Target Protein Sequence

The amino acid sequence of the target protein from desired
pathogenic microbes can be acquired using different protein
databases like National Center for Biotechnology Informa-
tion (NCBI) (Database resources of the NCBI 2016) or Uni-
Prot (The UniProt Consortium 2021). This retrieved amino
acid sequence is used to generate a novel vaccine construct.
The NCBI and UniProt databases provide a huge amount of
biological protein information (Narang et al. 2021; Panda
et al. 2022). The amino acid sequence of the target protein
can be extracted in FASTA format (Shawan et al. 2014,
2018).

Target Protein Sequence Analysis

Considering the default threshold value, the target protein’s
antigenicity can be determined using the VaxiJen v2.0 web
server (Shawan et al. 2014). Afterward, allergenicity of the
target protein can be detected using AllergenFP v1.0 server
(Dimitrov et al. 2014b). Later, the TMHMM v2.0 server
can be used to predict the target protein’s transmembrane
(TM) helices (Doytchinova and Flower 2007). Ultimately,
non-allergic and highly antigenic amino acid sequences with
less TM helicase are selected for further evaluation (Dey
et al. 2022a).

Prediction and Analysis of CTL (Cytotoxic T
Lymphocyte) Epitopes

CTL Epitopes Prediction
Within the immune system, CTLs interact and kill the infec-

tious cell, thus playing a crucial role in the host’s defense
mechanism. To detect the CTL epitopes within a target

protein, NetCTL v1.2 server can be used, which anticipates
9-mer epitopes against 12 HLA antigen allele class I super-
types (A1, A2, A3, A24, A26, B7, B§, B27, B39, B44, B58,
and B62). Taking the default threshold values (C terminal
cleavage- 0.15, epitope identification- 0.75, and antigen pro-
cessing transport efficiency- 0.05) in consideration, this tool
detects epitopes with great precision, and the CTL epitopes
having the highest combined score are then selected for fur-
ther analysis (Larsen et al. 2007).

Identification of MHC | Binding Allele

After the detection of CTL epitopes, the MHC I binding
allele for each of the epitopes can be identified using MHC
I binding module within IEDB (Immune Epitope Database)
server. A consensus percentile rank score of less than or
equal to 2.0 is usually considered to choose effective CTL
epitopes, as a lower rank score represents higher affinity
(Moutaftsi et al. 2006).

Predicted CTL Epitopes Analysis

Afterward, each of the refined CTL epitopes can be analyzed
for antigenicity, allergenicity, toxicity, and immunogenic-
ity through VaxiJen v2.0, AllerTOP v2.0, ToxinPred, and
IEDB MHC I Immunogenicity tool of IEDB server respec-
tively (Doytchinova and Flower 2007; Gupta et al. 2013;
Calis et al. 2013; Dimitrov et al. 2014a). The CTL epitopes,
which are highly antigenic, non-toxic, non-allergenic,
and extremely immunogenic, are considered for vaccine
preparation.

Prediction and Analysis of HTL (Helper T
Lymphocyte) Epitopes

HTL Epitopes Prediction

HTLs are a crucial part of the adaptive immune system as
they can identify foreign antigens and stimulate B-cell pro-
liferation and CTLs to eliminate the infectious entity. HTL
epitopes within a desired protein sequence can be forecasted
through the MHC II binding tool from the IEDB server. This
module detects 15-mer epitopes against HTLs, while a con-
sensus percentile rank score equal to or less than 2.0 can be
used as a threshold to anticipate efficient HTL epitopes. As
for MHC I binding module, a lower percentile score suggests
a higher binding affinity in this module (Wang et al. 2010).

Predicted HTL Epitopes Analysis
Each of the selected HTL epitopes can then be scrutinized

for antigenicity, allergenicity, and toxicity using VaxiJen
v2.0, AllerTOP v2.0, and ToxinPred server, respectively
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Alam et al. 2019

Reference

The freely available JCat database is integrated
with the PRODORIC server.

Additional comment

Web address
http://www.jcat.de/

Table 1 (continued)
Server/Database

JCat

(Doytchinova and Flower 2007; Gupta et al. 2013; Dimitrov
et al. 2014a). Later on, extremely antigenic, non-allergic,
and non-toxic epitopes against HTLs can further be consid-
ered to check their cytokine-inducing capacity.

Cytokine-inducing Capacity Analysis of Predicted HTL
Epitopes

In microbial infection, interferon-gamma (IFN y) plays a
pivotal role in specific and innate immune responses with
the activation of macrophages and natural killer cells. IFNe-
pitope server can be applied to predict and design potent IFN
y inducing MHC II binding HTL epitopes with an accuracy
of 81.39% (Wang et al. 2008; Ashrafi et al. 2019). The inter-
leukin-4 (IL-4) and interleukin-10 (IL-10) inducing ability
of the selected HTL epitopes can be evaluated by IL4pred
and IL10pred servers, respectively, with a threshold value
of 0.2 and — 0.3 (Dhanda et al. 2013; Nagpal et al. 2017).
After the analysis, HTL epitopes having all three cytokine-
inducing capacities are chosen to construct the final vaccine
candidate.

Prediction and Analysis of LBL (Linear B
Lymphocyte) Epitopes

LBL Epitopes Prediction

Antigens having epitopes capable of eliciting B-cell
response are critical mediators for antibody-associated
humoral immunity. ABCpred server is the most popular
one to identify LBL epitopes within a given set of protein
sequences with a threshold of 100 for sensitivity, specificity,
and accuracy (Saha and Raghava 2007). Subsequently, the
probability score of each of the LBL epitopes can be pre-
dicted using iBCE-EL server considering default parameters
(Manavalan et al. 2018).

Predicted LBL Epitopes Analysis

The predicted LBL epitopes’ antigenicity, allergenicity, and
toxicity can be assessed through VaxiJen v2.0, AllerTOP
v2.0, and ToxinPred server, respectively, accepting default
parameters (Doytchinova and Flower 2007; Gupta et al.
2013; Dimitrov et al. 2014a). LBL epitopes having good
scores are then chosen for vaccine construction.

Conservancy Analysis of the Predicted CTL and HTL
Epitopes

The conservancy (conservation across antigens) of the previ-
ously selected MHC I and MHC II epitopes can be analyzed
with the help of the epitope conservancy analysis tool under
the hood of the epitope analysis tool in the IEDB server. For

@ Springer


http://www.jcat.de/
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Table2 Web addresses with additional comments on different software that are implemented in in silico vaccine discovery process

Software Web address

Additional comment Reference

Swiss-Pdb Viewer v4.1.0
informer.com/4.1/

UCSF Chimera v1.11.2
download.html

OpenBabel https://sourceforge.net/projects/

openbabel/

AutoDock Vina v1.2.0 https://vina.scripps.edu/

BIOVIA DS (Discovery Studio) v4.5 https://discover.3ds.com/discovery

-studio-visualizer-download

YASARA Dynamics (v22.9.24)

SnapGene v6.1 https://www.snapgene.com/

https://swiss-pdb-viewer.software.

https://www.cgl.ucsf.edu/chimera/

http://www.yasara.org/downloads.htm YASARA Dynamics (v22.9.24) is

Swiss-Pdb Viewer calculates and mini- Guex and Peitsch 1997
mizes a protein molecule’s energy
in addition to restoring distorted
geometries utilizing GROMOS 43B1
force field.

The program UCSF Chimera is
developed to study supramolecular
assemblies, density maps, docking
scores, sequence alignments, and
MD (Molecular Dynamics) trajecto-
ries of biological macromolecules.

Pettersen et al. 2004

OpenBabel is an open-access software
that helps search, analyze, convert,
and store various chemical and
biochemical data using the SMARTS
method.

AutoDock Vina v1.2.0 is a docking
engine within the AutoDock suite
program suitable for efficient protein-
ligand interaction analysis. This tool
has another program called AutoGrid
which is valuable for calculating
grids within a docked structure.

O’Boyle et al. 2011

Trott and Olson 2009

Discovery Studio v4.5 is a program
that assists in simulating small and
macromolecular systems considering
CHARM, MODELLER, DELPHI,
and DMol3 algorithms.

Accelrys Software Inc:
San Diego 2012

Land and Humble 2018
authorized by PVL (Portable Vector

Language) and uses NOVA, YAM-

BER, and AMBER force fields to

conduct an MD simulation.

SnapGene v6.1 is a popular tool Solanki and Tiwari 2018
used for DNA letter evaluation and

manipulation.

sequence identity, this tool helps recognize the opening of
a single epitope in a range of strains with a threshold value
greater than or equal to 100 (Bui et al. 2007). MHC epitopes
with 100% maximum identity can be selected to construct
a vaccine candidate.

Human Homology Analysis of the Predicted CTL
and HTL Epitopes

Identifying homologous epitopes within human proteome
is vital to design a potent vaccine, as similar epitopes
with humans may hamper eliciting an adequate immune
response. The epitope homology to the human proteome
can be determined by BLAST (Basic Local Alignment
Search Tool) module, mainly blastp (protein BLAST)
within the NCBI database. In this analysis, a search for
homologous sequences can be done using default parame-
ters by selecting Homo sapiens (taxid: 9606) at a threshold

@ Springer

e-value of 0.05 (Altschul et al. 1990; Mehla and Ramana
2016). Non-homologous epitopes of humans with an
e-value below 0.05 can be selected for vaccine construc-
tion (Mehla and Ramana 2016).

3D Modeling and Molecular Docking Analysis
of the Selected CTL and HTL Epitopes with HLA
Antigens

CTL and HTL Epitopes Modeling

To design a reliable vaccine, evaluating the binding affinity
of HLA alleles with CTL and HTL epitopes is crucial and
can be done by exploiting molecular docking studies. For
that, the epitopes (CTL and HTL) must first be modeled with
the SOPEP scheme of the PEP-FOLD v3.5 server employing
200 simulations (Lamiable et al. 2016).


https://swiss-pdb-viewer.software
https://www.cgl.ucsf.edu/chimera/
https://sourceforge.net/projects/
https://vina.scripps.edu/
https://discover.3ds.com/discovery
http://www.yasara.org/downloads.htm
https://www.snapgene.com/
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Molecular Docking Between CTL and HTL Epitopes
with HLA Alleles

Before molecular docking simulation, the energy of each
modeled epitope can be computed and minimized with
Swiss-Pdb Viewer v4.1.0 software. The 3D structures
with the lowest energy are then considered (Guex and
Peitsch 1997). Two widely distributed alleles, namely
HLA-A*01:01 and HLA-DRB1*01:01, can be selected
to represent MHC I and MHC II alleles to examine the
binding affinity with CTL and HTL epitopes. To check
the molecular interaction, the 3D X-ray crystallographic
structure of HLA-A*01:01 and HLA-DRB1*01:01 can be
downloaded in pdb format from the RCSB protein data
bank bearing PDB ID of 6AT9 and 1QEW, respectively.
To validate the docking simulation, co-crystalized ligands
within the PDB structures can be considered the positive
control (Berman et al. 2002). The UCSF Chimera v1.11.2
is a freely available software for preparing large protein
molecules. The preparation can be done by eliminating
attached ligands from the co-crystalized structure and add-
ing hydrogens GM (Gasteiger-Marsili) charges (Pettersen
et al. 2004). Afterward, OpenBabel can be used to mini-
mize ligand energy and save both the structure (protein
and ligand) files into pdbqt format (O’Boyle et al. 2011).
AutoDock Vina v1.2.0 is a widely used, more reliable, and
cited software utilized for molecular docking simulation
(Rahman et al. 2016). Throughout the molecular interac-
tion analysis, all the parameters can be kept at default, and
the grid box for HLA-A*01:01 and HLA-DRB1*01:01 can
be set at (X)60.64 X (Y)73.76 X (Z)45.49 A and (X)61.25
X (Y)48.69 x (Z)72.95 A respectively. The results of dock-
ing studies are denoted as negative values (kcal mol™1!),
and a lower score indicates strong binding affinity (Trott
and Olson 2009). BIOVIA DS (Discovery Studio) v4.5 can
be utilized to visualize the molecular docking simulation
results, and the figure can be generated using UCSF Chi-
mera (Accelrys Software Inc: San Diego 2012).

Population Coverage Assessment of Selected CTL
and HTL Epitopes

The expression and the distribution pattern of HLA alleles
(class I and II) differ by ethnic groups and regions around
the globe. Population coverage analysis is pivotal for
developing an effective epitope-based peptide vaccine.
The population coverage of the selected CTL and HTL
epitopes can be assessed by the population coverage tool
in the IEDB server. After the calculation, predicted CTL
and HTL epitopes and their corresponding HLA binding
alleles (MHC I, MHC II, and combined) can be analyzed
(Bui et al. 2006).

Cluster Analysis for Class | and Class Il MHC
Molecules

In humans, the genes for both classes of MHC molecules
are highly polymorphic, and this extreme polymorphism in
HLA antigens encompasses hundreds of thousands of alleles.
MHC I and II molecules with similar binding affinity can be
recognized by MHC clustering analysis with the help of the
MHCcluster 2.0 server. Considering the default parameters,
this tool generates phylogenetic trees and excessively intuitive
heat-maps of the effective cluster between MHC class I and II
molecules (Thomsen et al. 2013).

Establishment of the Vaccine Construct

The effective vaccine construct can be formulated by combin-
ing previously selected CTL, HTL, and LBL epitopes that have
outperformed others based on different selection criteria with
each other. For this addition, CTL, HTL, and LBL epitopes
can be linked with AAY (Ala-Ala-Tyr), GPGPG (Gly-Pro-
Gly-Pro-Gly), and KK (Lys-Lys) linkers, respectively (Dorosti
etal. 2019). The AAY linker improves the immunogenicity of
a vaccine candidate by influencing protein stability and epitope
presentation capacity. The glycine-proline (GPGPG) and bi-
lysine (KK) linker facilitate immune processing and immuno-
genic activity of the newly constructed vaccine, respectively
(Nain et al. 2020). To achieve a stronger immune response,
an adjuvant like the 50 S ribosomal protein subunit L7/L12
(TLR4 agonist) can be linked at the starting end of the con-
struct with a bifunctional EAAAK linker (Glu-Ala-Ala-Ala-
Lys) (Olejnik et al. 2018).

Evaluation of the Newly Constructed Vaccine
Candidate

Physicochemical Property Analysis of the Vaccine Construct

The physicochemical properties, i.e., the number of amino
acids, molecular weight (MW), theoretical pH (pI), amino
acids composition, the total number of negatively charged
residues, the total number of positively charged residues,
atomic composition, formula, extinction coefficient, esti-
mated half-life, instability index (II), aliphatic index (AI),
and grand average of hydropathicity (GRAVY) of the formu-
lated vaccine can be assessed using ProtParam tool within
ExPASy proteomic server (Gasteiger 2003; Narang et al.
2021; Panda et al. 2022).

Allergenicity, Antigenicity, and Solubility Profile
Analysis of the Vaccine Construct

A newly designed vaccine construct must exhibit non-aller-
genicity, extreme antigenicity, and high solubility to elicit a
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strong immune response. The allergenicity profiling can be
determined by AllerTop v2.0, AllergenFP v1.0, and AlgPred
v2.0 server (Saha and Raghava 2006; Dimitrov et al. 2014b).
The antigenicity of the construct can be assessed with Vaxi-
Jen v2.0 and ANTIGENPro server (Doytchinova and Flower
2007; Magnan et al. 2010). The solubility of a vaccine can
be analyzed through the SOLpro tool, and a given peptide is
expected to be soluble if the calculated score is greater than
or equal to 0.5 (Magnan et al. 2009). For a better understand-
ing, another solubility prediction server, namely Protein-Sol,
can be utilized, and a protein with a solubility score greater
than 0.45 is considered highly soluble (Hebditch et al. 2017).
Next, the transmembrane helices and potential signal pep-
tides within the vaccine construct can be determined using
TMHMM v2.0 and SignalP 4.1 server (Krogh et al. 2001;
Nielsen 2017a; Panda et al. 2022).

BLAST and Human Homology Checking
of the Constructed Vaccine

To minimize an autoimmune response, relative homology
analysis between the final vaccine candidate and human
proteome can be done with the BLASTp module of the
PSIBLAST algorithm within the NCBI database (Altschul
et al. 1990; Altschul et al. 1997; Narang et al. 2022). In this
step, a search must be restricted to H. sapiens (taxid:9606),
and the query sequence must exhibit less than 40% human
homology.

Secondary Structure Analysis of the Vaccine
Construct

The secondary structure, as well as the peptide configura-
tion of the final vaccine, can be examined through PSIPRED
v4.0 and SOPMA applications (Geourjon and Deléage 1995;
Buchan et al. 2013). Considering default parameters, the two
servers calculate the percentage of 2D configurations such as
alpha helix, random coil, and beta-turn. The PSIPRED v4.0
and SOPMA servers generate the secondary structure of a
query protein sequence with a result accuracy of 78.1% and
80%, respectively (Montgomerie et al. 2006).

Development and Analysis of the Tertiary (3D)
Structure of the Vaccine Construct

Homology Modeling to Create the 3D Model
of the Constructed Vaccine

The RaptorX web server can be employed to build a 3D
model of the vaccine candidate. To predict the tertiary struc-
ture, this server applies a homology modeling technique,
and a 3D model having the lowest p-value is admitted as the
finest model (Wang et al. 2016).
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3D Model Refinement and Validation

A vaccine model’s tertiary (3D) structure can be refined
using the GalaxyRefine module on the GalaxyWEB server,
which generates five refined models as output. These refined
models are ranked according to the score of different param-
eters, including GDT-HA, RMSD, MolProbity, Clash score,
Poor rotamers, and Rama favored (Ko et al. 2012). After-
ward, the refined model can be validated with a ProSA-web
server that calculates the Z-score of that particular model.
This server can be used to analyze the stereochemical qual-
ity of a protein model by evaluating the geometry of both
individual residues and the overall structure (Wiederstein
and Sippl 2007). Then the validated model can be further
assessed using Verify3D and ERRAT web servers. Verify3D
algorithm assesses a query protein model with its three-
dimensional profile obtained from X-ray crystallographic,
NMR spectroscopic, and/or computational methods (Eisen-
berg et al. 1997). In contrast, the ERRAT program assesses
a 3D model by identifying imprecise regions within a pro-
tein structure based on the errors resulting from the ran-
dom distribution of atoms (Colovos and Yeates 1993). The
PROCHEK application can be used to assess the Ramachan-
dran plot, providing valuable information about the over-
all quality of the refined vaccine model. Based on dihedral
angles [psi (y) and phi (¢)], the Ramachandran plot visual-
izes the percentage of amino acid residues within the most
favored, generously allowed, additionally allowed, and disal-
lowed regions. A good quality model should have over 90%
of amino acid residues in its most favored region (Morris
et al. 1992).

Engineering Disulfide Bonds Inside the Constructed
Vaccine Candidate

Disulfide bonds within a protein molecule are critical to
stabilizing the tertiary/quaternary structure, interactions,
and dynamics. Next to the refinement, the vaccine construct
can be submitted to Disulfide by Design v2.12 server for
disulfide engineering. For disulfide bridging, default values
(in°) can be kept for x 3 and Ca-Cp-Sy angles. The angle of
x 3 ranging between — 87 to +97° and the energy score of
less than 2.2 kcal/mol suggests an effective disulfide bridg-
ing (Craig and Dombkowski 2013).

Scanning for CBL (Conformational B Lymphocyte)
Epitopes Within the Newly Formulated Vaccine

The CBL epitopes within the formulated vaccine construct
can be predicted with the help of the ElliPro: Antibody
Epitope Prediction tool within the IEDB analysis resource.
The discontinuous B-cell epitopes can be detected by
allowing a minimum protein index (PI) score of 0.5 and a
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maximum distance between the residue’s center of mass (R)
6 A as the default value. A larger value for R and PI indicates
a larger conformational B-cell epitope and greater solvent
accessibility, respectively (Ponomarenko and Bourne 2007).

Normal Mode Analysis (NMA) of the Vaccine
Construct

NMA is highly required to understand the spontaneous
functional motion of a protein complex in its internal (dihe-
dral) coordinates. The iMODS server can be used to ana-
lyze the normal mode of the designed vaccine candidate.
This quicker and cost-effective MD (Molecular Dynamic)
simulation analysis technique facilitates the prediction of
the eigenvalues, deformability, B-factors, and covariance
(Lopez-Blanco et al. 2014) .

Computational Inmune Simulation Analysis
of the Constructed Vaccine

A vaccine candidate’s immunogenicity and immune
response can be understood by exploiting the C-ImmSim
web server. This server applies an immune simulation tech-
nique, setting the parameters as defaults (Dellagostin et al.
2017).

Molecular Docking Simulation Study Between
Vaccine Construct and TLR4 (Toll-Like Receptor)
Complexes

Computer-assisted molecular docking assessment can pre-
dict the molecular interaction and binding affinity of TLR
and vaccines. TLRs are extremely associated with strong
immunity (Rafi et al. 2022).

TLR Preparation

For docking analysis, the X-Ray crystallographic structure
of the human TLR4 complex with MD-2 and LPS (PDB ID
4G8A) can be downloaded from the RCSB protein data bank
bearing a resolution of 2.4 A. The ligands, along with B, C,
and D chains, can be removed by BIOVIA DS (Discovery
Studio) v4.5. Later on, the energy of the protein structure
can be minimized with Swiss-Pdb Viewer v4.1.0 applying
GROMOS 43B1 force field (Guex and Peitsch 1997; Berman
et al. 2002; Accelrys Software Inc: San Diego 2012).

Docking Simulation Analysis

Next, the vaccine candidate and the prepared TLR4 can be
docked by a protein-protein docking server, i.e., ClusPro
v2.0 (Land and Humble 2018). The TLR4-vaccine docked
complex with the lowest docking score can be considered

to have high-affinity binding, and the molecular interaction
can be observed using BIOVIA DS (Discovery Studio) v4.5
(Mahapatra et al. 2022b).

MD (Molecular Dynamics) Simulation Study
of the Vaccine Construct and TLR4 Docked Complex

Molecular dynamics simulation allows researchers to exam-
ine the potential vaccine’s molecular and atomic motions.
The molecular dynamics simulation is employed to analyze
the association between the receptor proteins (TLRs) and
the vaccine candidate (multi-epitope-based subunit vac-
cine) (Kozakov et al. 2017). The molecular docking tech-
nique initially determines the stability between the vaccine-
receptor complex, which is further supported and verified
by molecular dynamics simulation (Mahapatra et al. 2022b).
The process generally suggests whether the developed vac-
cine would trigger TLR stimulation which could support
higher immune reactions inside the human body (Kozakov
etal. 2017). The YASARA (Yet Another Scientific Artificial
Reality Application) Dynamics (v22.9.24) software pack-
age may be adopted to analyze the MD simulation of the
vaccine-TLR4 complex. During the simulation, AMBER 14
forcefield can be employed (Chatterjee et al. 2018). Before
the MD simulation, the complex is cleaned by deleting
unknown ligands, water molecules, and metal ions. Simi-
larly, H-bonded networks are optimized to reorder hydrogen
bonds and add the missing ones (Pyasi et al. 2021). A simu-
lation cell can solvate the protein complex using the TIP3P
solvation model, where the solvent density value may be
maintained at 0.997gL.-1 (Harrach and Drossel 2014). The
AMBER force fields are generally integrated with the most
regularly utilized TIP3P solvent model. While the TIP3P
framework has no impact on the thermodynamic charac-
teristics of the solutes, it dramatically lowers the distances
among these stages, speeding up the dynamics and thereby
improving testing in the computations (Krieger et al. 2012).
The protonation arrangement of proteins is critical for
their structural rigidity. Before initiating a traditional MD
simulation, the protonation stages should be established
and assigned (Florova et al. 2010). The SCWRL algorithm
manages the protonation state of every amino acid within a
protein molecule which helps calculate each amino acid’s
pKa (acid dissociation constant) value. Furthermore, Na*
and CI™ can be added to preserve the physiological envi-
ronment at pH 7.4 and 298 K temperatures (Krieger et al.
2012; Pyasi et al. 2021).The Particle Mesh Ewald (PME)
approach can be used to calculate the long-range interac-
tions, short-range Coulomb, and vdW contacts (Varma
et al. 2006). When utilizing PME to handle electrostatic
interactions, molecular dynamics simulations of protein in
specified water are significantly impacted by adding Cl and
Na* particles (Alam et al. 2019). When the ionic solution
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equilibrates, the protein’s flexible regions’ overall archi-
tecture and movements are influenced by the presence of
salt ions and charge-stabilizing opposite ions (Alam et al.
2019). The steepest descent is preferable for reducing the
high-energy characteristics of the starting configuration
(Hsieh et al. 2009). Using the simulated annealing meth-
ods, the energy of the TLR4-vaccine docked complex can
be minimized with the steepest gradient approaches. For the
simulation process, the time step can be set as 2.0 fs, where
long-range electrostatic interactions can be calculated with
a cut of radius 8 A (Grote et al. 2005). The simulation may
be conducted for 100 ns and the trajectories can be stored
following 100 fs intervals. The data within trajectory files
can be used to analyze RMSD (Root Mean Square Devia-
tion), RMSF (Root Mean Square Fluctuation), Rg (Radius
of Gyration), SASA (Solvent Accessible Surface Area), and
H-bonds (Solanki and Tiwari 2018). Despite several suc-
cesses, MD simulation incorporates challenges like a lack
of more refined force fields or superior computational power
demanding more than a microsecond simulation time (Dur-
rant and McCammon 2011).

Insilico Codon Optimization and Molecular Cloning
of the Constructed Vaccine

Highly efficient cloning and expression properties of a
multi-epitope-based peptide vaccine construct are needed
to develop an effective vaccine. Therefore, effectual codon
adaptation, optimization, and vaccine cloning can be carried
out in E. coli K12 (Solanki and Tiwari 2018). Since human
codons differ from E. coli, JCat (JAVA Codon Adaptation
Tool), an online application, can be employed to reverse
translate and optimize the final vaccine construct. This step
increases the expression of the final vaccine construct into
the E. coli host. JCat output for the adapted and optimized
construct exhibits the nucleotide sequence, CAI (Codon
Adaptation Index), and % of GC content, which are essential
for proper expression in a particular host (Grote et al. 2005).
For the effective expression of a vaccine construct, the CAI
value must range from O to 1, while % of GC content must
be within 30-70%. Finally, BglII and Apal restriction sites
can be added at the newly formulated vaccine’s N and C
terminal end. The freshly prepared vaccine codon sequence
can be cloned into the pET-28a (4) vector using SnapGene
v6.1 software (Solanki and Tiwari 2018).

Conclusion and Future Scope

Developing a swift and highly effective vaccinology tech-
nique is critical for responding to unexpected health catas-
trophes and lowering infection-related death rates. Vacci-
nation via sparking the immune response offers protection
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against infectious diseases, reducing morbidity and mortal-
ity. Vaccine development must be efficient and prompt to
tackle emergent health crises. However, conventional vac-
cine design and development procedures are time-consum-
ing and expensive. On the contrary, computational vacci-
nology supported by vaccinomics and immunoinformatics
strategies from that perspective has placed the world in an
advantageous stage to screen and detect antigens of interest
in an economically friendly and time-saving manner and
develop vaccine candidates to combat the emergent patho-
genic invasion. The wealth of genomics and proteomics data
allows informatics to effectively expand its contribution to
medical innovation, especially in vaccine science. In the
post-genomic age, the construction of multi-epitope-based
peptide vaccines has emerged as a unique concept. The
availability of the entire microbial genome and proteome
sequences and the applicability of bioinformatic tools/tech-
niques for analyzing these sequences can be used to design
multi-epitope-based peptide vaccines, which unleash the
detection of top immunogenic protein candidates for vaccine
development. Thus, designing a multi-epitope-based pep-
tide vaccine offers a promising avenue for efficient and cost-
effective therapy and generating a robust immune response
against infectious disease.

This review delivers a modest, elementary, and typical
procedure/protocol for designing and developing multi-
epitope-based peptide vaccines with the aid of different
databases, computational tools, and algorithms. Interested
researchers/immunologists might utilize the information in
this article to guide designing multi-epitope-based peptide
vaccine candidates for subsequent pre-clinical and clinical
studies. This concise and comprehensive review encom-
passes a range of essential resources and databases needed
to identify the most potent as well as novel antigenic pro-
tein sequences (CTL, HTL, and LBL epitopes), assess MHC
(both class I and II) binding, create a putative vaccine con-
struct through homology modeling, analyze the interaction
between the constructed vaccine and immune receptors
(TLR4) using molecular docking and dynamics simulation,
compute normal mode and immune simulation analysis of
the vaccine candidate and finally molecular cloning of the
newly constructed vaccine (Fig. 3). We hope that this sum-
marized review may offer a more effective and accessible
vaccinology protocol for future researchers allowing them
to design vaccines according to the pathogen of interest
computationally.

In the near future, multi-epitope-based peptide vac-
cine design and development will likely become the
fastest-growing field of biological science, particularly
in response to combatting infectious diseases. With
bioinformatics and computational modeling advance-
ments, researchers can predict epitopes more easily and
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Fig.3 Concise and comprehensive representation showing different applications employed for the vaccinomics/immunoinformatics governed
multi-epitope-based peptide vaccine developmental process. This illustration is generated using Microsoft Office (PowerPoint) 2019

accurately, which are most likely to elicit a potent and
effective immune response, making the development of
new vaccines much more economically, rapid and efficient.
Using multi-epitope-based peptide vaccines may help
reduce the global burden of infectious diseases by provid-
ing a safe and effective means of preventing and treating
those illnesses. Additionally, as our understanding of the
immune system and the mechanisms of antigen recogni-
tion and presentation continues to grow, new strategies for
enhancing the immunogenicity of epitopes and improving
the efficacy and durability of epitope-based peptide vac-
cines are likely to emerge. Overall, multi-epitope-based
peptide vaccine designing and development holds great
promise for preventing and controlling infectious diseases
in the years to come.
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