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Abstract
Antimicrobial peptides (AMPs) are small peptides playing a lead role in the innate immune system of organisms. Marine 
organisms have a plethora of AMPs that have been widely explored due to their multitude of functions. This review focuses 
on shrimp derived AMPs and details their versatile nature from an application perspective. It highlights the applications of 
shrimp AMPs, such as their role in stress regulation and ontogeny, as alternative sexually transmitted diseases drugs, anti-
cancer agents, immunomodulators, and biomarkers. Ultimately, we are trying to emphasize that shrimp AMPs are beyond 
mere antimicrobials.
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Introduction

Shrimp farming is one of the fastest-growing sectors of 
aquaculture, which has drawn global attention due to its 
broad scope in employment, food sector, and its inevitable 
contribution to the national economy of developing coun-
tries by contributing to the overall reduction of world’s pov-
erty (Béné et al. 2015). The rampant antimicrobial resistance 
(AMR) and environmental damages associated with it has 
put the minds of researchers in agony (Páez-Osuna 2001; 
Primavera 1997; Thornber et al. 2020). In the recent past, we 
can see a shift in the trend of global shrimp production from 
wild captured shrimps to cultured shrimps. Of the worldwide 
shrimp production in 2016, farmed shrimps contributed to 
67%, and the rest by wild-caught shrimps. Penaeus van-
namei (White leg shrimp) and Penaeus monodon (Giant tiger 
prawn) make up the majority of the species (FAO 2016). 
Among the various challenges in shrimp aquaculture, AMR 
is on the verge of destroying the whole aquaculture industry 

and should be handled immediately to save the aquaculture 
sector (Thornber et al. 2020).

AMPs are small peptides, mostly amphipathic and are 
essential components of the innate immunity of organ-
isms. They were initially considered as the controllers of 
immune response in organisms that lacked adaptive immu-
nity. But later they were found ubiquitous in all organisms 
with a complex immune system (Hancock 2006; Nguyen 
et al. 2011). The antibacterial property of AMP is due to 
the interaction between positively charged peptides with 
the negatively charged bacterial membranes, forming pores 
on them (Yeaman and Yount 2003). Exploration of shrimp 
AMPs was initially carried out to study the antibacterial 
potency. The scope of AMPs has outreached mere antibac-
terial activity to various multidimensional aspects. AMPs 
from shrimp combines the benefits of immunomodulators, 
stress regulators, anti-viral agents and anti-tumour agents 
(Chen et al. 2019; Havanapan et al. 2016; Huang et al. 2015; 
Sruthy et al. 2019) (Fig. 1). AMPs potentially evolve signifi-
cantly less resistance in microbes, making them stand out 
from the antibiotics (Spohn et al. 2019). Penaeidin, crustin, 
stylicin, anti-lipopolysaccharide factors (ALFs), histone-
derived AMPs, and haemocyanin-derived AMPs are among 
the shrimp AMPs listed to date.

Penaeidins, crustins, and ALFs make up the cationic 
AMPs in penaeid shrimps, which come in a variety of 
classes or isoforms and have antibacterial and antifungal 
properties against various types of bacteria and fungi. 
Penaeidins, a unique AMP family said to be found only 
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in penaeid shrimp, are distinguished by two unique active 
domains: a proline-rich N-terminal region and a cysteine-
rich C-terminal domain with six cysteine residues. The 
antibacterial and chitin-binding activities are relied upon 
the six cysteine-rich motifs in the C-terminal region 
(Bachère et al. 2000; Destoumieux et al. 2000a). Cationic 
cysteine-rich AMPs present in crustaceans with a single 
whey acidic protein domain at the C-terminus are crustins 
(Smith et al. 2008). ALFs are a large and diverse fam-
ily of proteins found in shrimp. There are five different 
subgroups of ALFs: ALF-A, which includes anionic and 
cationic polypeptides of 11.4–11.5 kDa, ALF-B groups 
includes cationic polypeptides of 10.6–11.2 kDa, ALF-C 
cationic polypeptides of 11–11.3 kDa, and ALF-D ani-
onic polypeptides of 10.7–10.8 kDa, ALF- E anionic and 
cationic polypeptides of 11.4–12.5 kDa (Jiang et al. 2015; 
Rosa et al. 2013). Stylicins are 8.9 kDa multi-domain ani-
onic (pI5) peptides that are identified in penaeid shrimps. 
They consist of a proline/arginine-rich N-terminal domain 
followed by a 13 cysteine residue C-terminal domain (Rol-
land et al. 2010). The C-terminus of respiratory proteins 
haemocyanins present in penaeid shrimps are found to 

release anti-fungal peptides (Destoumieux et al. 2001). 
The histidine-rich AMP released by crustacean haemocya-
nins are found to selectively bind to the fungal cell wall 
by adopting an amphipathic alpha helical structure and 
permeabilize fungal membranes (Nakamura et al. 1988).

Understanding the versatile applications of shrimp 
derived AMPs in various sectors can be a better approach 
in reducing the AMR dissemination and a step towards 
sustainable aquaculture development. Bioinformatic tech-
niques are trending in AMP research to predict the poten-
tiality of peptides and have kept the high cost of produc-
tion and futile work at bay. This review enlists the recent 
shrimp derived AMPs with their potential applications 
categorized as anti-bacterial and anti-biofilm agents, anti-
fungal and anti-protozoan AMPs, AMPs as immunomodu-
lators, AMPs in stress resilience, anti-cancerous property 
of AMPs, AMPs as alternative drugs for STDs treatment 
and the ontogenetic applications. The present review out-
lines several applications of shrimp derived AMPs for an 
improved understanding of various potential peptides dis-
covered from shrimp during the past decade that can be 
leveraged into promising drugs.

Fig. 1   The multi-dimensional 
applications of shrimp AMPs
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Antibacterial and Antibiofilm Agents

The role of shrimp AMPs in antibacterial activity have 
been widely studied, and various shrimp derived peptides 
are discovered against both Gram-positive and Gram-
negative bacteria. The positively charged AMPs generally 
show more affinity towards the negatively charged bacte-
rial membranes inducing membrane disruption or can act 
in non-membrane disruptive mechanism by interrupting 
the intracellular functions (Huang et al. 2010; Jiang et al. 
2008). The most advanced LvBigPEN peptide, derived 
from Litopenaeus vannamei, exhibits notable antibacte-
rial activity against the Vibrio parahaemolyticus strains of 
Gram-negative bacteria with very low minimum inhibitory 
concentration (MIC). The V. parahaemolyticus bacteria 
that causes “early mortality syndrome” (EMS) is explicitly 
proved to be inhibited by the LvBigPEN peptide that binds 
the DNA and membranal components of the bacteria (Xiao 
et al. 2021). Since many articles have been published on 
the antibacterial application of AMPs, we focus our atten-
tion on applications other than antibacterial. Some of the 
recent antibacterial peptides of shrimp are listed for refer-
ence (Table 1).

Bacterial species make biofilms to become more 
resistant to conventional antibiotics (Sharma et al. 2019). 
Biofilms are a collection of numerous microorganisms 
found along with slimy extracellular polymer substance 
(EPS). Stress factors such as pH variation, atmospheric 
variations, antibiotics, host immune system, nutrient 
deprivation causes the microorganisms to produce bio-
film components as an adaptation. Biofilm comprises of 
DNA, proteins, lipids, water and polysaccharides (Attaran 
and Falsafi 2017; De la Fuente-Núñez et al. 2014, 2016; 
Flemming et al. 2016; Pletzer and Hancock 2016). Well, a 
cell that switches to the biofilm mode triggers a stringent 
response, that is, a stress control mechanism seen in both 
Gram-positive and Gram-negative bacteria, signalled by 
the alarmone nucleotide (p)ppGpp (De la Fuente-Núñez 
et al. 2014; Pletzer and Hancock 2016). A study about 
the mechanism of AMPs antibiofilm activity revealed that 
peptides can interact with the signalling nucleotide, (p)
ppGpp. The peptide binding leads to ppGpp degradation 
and thereby blocks the stringent control, which leads to 
biofilm prevention or eradication/dispersal of preformed 
biofilm. For understanding in detail, the mechanism of 
biofilm inhibition by AMPs, the reader is referred to read 
(Raheem and Straus 2019).

Biofilm based novel immunostimulants are used for 
high-health pacific white shrimp, P. vannamei farming. 
The implications of the oral administration of inactivated 
biofilm cells of V. harveyi embedded on a chitin substrate 
was that the biofilm-based immunostimulants effectively 

triggered an immune response through the expression of 
antigenic proteins and AMPs. Peptides such as penaei-
din, crustin and lysozyme impacted the immune response 
bringing improved growth, survival and health status of 
the shrimp (Vinay et al. 2019). A recent example described 
a bio peptide (crustin) isolated from P. semisulcatus that 
exhibited an effective resistance to Gram-positive bac-
teria Bacillus thuringiensis and B. pumilis and was also 
influential in complete inhibition of biofilm formation at 
a concentration of 40 μg/ml (Sivakamavalli et al. 2020). 
Haemocyanin derived peptide, a component of innate 
immunity with a wide range of antimicrobial activity, was 
also found to be potential in biofilm inhibition. The pep-
tide displayed antibacterial activity against both Gram-
positive and Gram-negative bacteria and exhibited high 
efficiency of inhibition at 100 μg/ml concentration. Also, 
the peptide minimized the viability of the bacterial cells 
(Ishwarya et al. 2020).

Antifungal and Antiprotozoal Applications

AMPs act on fungi and protozoans through membrane inter-
actions or intercellular targets (Matejuk et al. 2010). Fungal 
diseases frequently hit the shrimp industry, even then mini-
mal studies had done on shrimp derived antifungal peptides 
and very few on antiprotozoal peptides. And recently, fungal 
diseases and protozoan parasites are causing much trouble 
to humankind, causing hard-to-heal diseases such as black 
fungus and white fungus, wreaking havoc and killing thou-
sands of people. Future research recommends more work in 
this application to fill the information gap and combat the 
short availability of antifungal and anti- protozoan drugs.

A tropical protozoan disease caused by Trypano-
soma cruzi called Chagas disease characterized by swell-
ing and fever seen to cause congestive heart failure when 
left untreated (Pittella 2009). Peptides Hmc666-678 and 
Hmc364-382 outperform benznidazole (BZ), a drug in use 
to treat Chagas disease, with a selective index > 50 and 77 
times lower half-maximal inhibitory concentration (IC50) 
of BZ for the trypomastigote form (Monteiro et al. 2020). 
Interestingly F. oxysporum, a pathogen of penaeid shrimp 
when treated with PvHCt, got permeabilized by the α-helical 
structure adopted by the peptide. However, the peptide has 
failed to adopt the α-helical system in fully anionic SDS 
micelle of bacterial membrane showing its specificity 
towards fungal membranes (Petit et al. 2015). Fusariosis is 
an opportunistic fungal disease caused by F. solani, which 
causes melanization of the gill and locomotory difficulties 
due to mycelial growth. The fungus infection showed differ-
ential expression of AMP genes such as Farpau ALF-B and 
Fpau-Stylicin2 with an upregulated expression with the pro-
gression of the illness. The mechanism of action of peptides 
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Farpau ALF-B and Fpau-Stylicin2 are yet to be explored 
in detail, but proved to be inhibiting F. solani (Machado 
et al. 2021). Trichomonas vaginalis, another parasitic pro-
tozoan, generally infects the male and female reproductive 
tract accompanied by a sensation of burning, itching, and 
inflammation, seldom making them prone to human immu-
nodeficiency virus (HIV) type-1 infection (Kissinger et al. 
2008). The role of shrimp anti-lipopolysaccharide factor 
(SALF) in inhibiting T. vaginalis has been studied in detail 
to elucidate the mechanism behind the resistance and con-
cluded that the decreased expression of pro-inflammatory 
cytokines (tumour necrosis factor (TNF)- α, interleukin 
(IL)-1 α, IL-6, IL-8, and monocyte chemoattractant protein 
(MCP)-1) mediated it. In addition, the peptide blocks the 
interaction between a parasite’s adhesion protein AP65 with 
the cell membrane (Pan et al. 2009; Lin et al. 2012).

Antiviral Peptides

Rather than terrestrial agriculture, aquaculture is more prone 
to virus attacks than terrestrial agriculture due to the raised 
stock densities accompanied by stress levels in shrimp farms. 
The strained environment could facilitate more rapid infes-
tation and multiplication of the viruses (Kibenge 2019). 
Viral diseases account for a significant share of infectious 
diseases in shrimp aquaculture, while viral chemotherapies 
are not updated comparatively with the rising cases of viral 
infections. Examples of the most prevalent viral diseases 
in shrimp aquaculture are White spot syndrome (WSSV), 
Monodon Baculovirus (MBV), Infectious hypodermal and 
haematopoietic Necrosis Virus (IHHNV), Hepatopancreatic 
Parvo-like Virus (HPV) (Kibenge 2019). The emergence and 
prevalence of varied contagious viral diseases brought about 
a pressing need for finding a solution to these diseases.

Antiviral peptides (AVP) act by effectively targeting and 
interacting with viral envelopes, viral sub-particles, thereby 
preventing viral entry, and also through modulation of 
immune responses (Ahmed et al. 2021). Besides a pre-treat-
ment strategy, AVPs are modulators of immune responses 
in post-viral infectious conditions. Nervous necrosis virus 
(NNV), a virus that causes abnormal swimming patterns and 
brain and eye vacuolation in fishes spotted to get clumped 
by cyclic shrimp anti-lipopolysaccharide factor (cSALF) in 
a study carried out in grouper fin and barramundi brain cell 
lines. The study suggested that the hydrophilic to hydropho-
bic transformation caused by the cSALF to the capsid pro-
teins irreversibly agglutinate the virion instead of regulating 
immune responses, (Chia et al. 2010) whereas, in Marsupe-
naeus japonicus, Mj-sty displayed modulation of immune 
functions post-WSSV infection (Liu 2015).

The antimicrobial parts of the peptide LvSWD3, a sin-
gle whey acidic domain (SWD) holder peptide, seemed Ta
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to be viral specific wherein the peptide has decelerated 
the mortality rates in WSSV infected white shrimp and 
also aided in reducing the viral load in the tissues (Yang 
et al. 2018). Most recently, a WSSV challenged L. van-
namei produced an 8.9 kDa peptide named LvHcL48. It 
has significantly reduced the transcript level of wsv069 and 
wsv421 viral genes in the haemocytes of shrimp both in 
vivo and in vitro treatment. The underpinning mechanism of 
the inhibition was deduced to be its interaction with WSSV 
envelop protein VP28 (Zhan et al. 2019). In line with this, 
Xiao et al. (2020) also reported that the binding of penaei-
din peptide PEN 2 with VP24 caused the release of viral 
particles from the polymeric immunoglobulin receptors 
needed for the infection. Another unique penaeidin peptide 
BigPEN interferes with viral protein VP28 viral interac-
tion with Rab7 – the Rab GTPase that mediates the viral 
entry. Li et al. (2015) stated that LBD peptides of FcALFs 
(Fenneropenaeus chinensis) inhibit WSSV replication, and 
lysine residues replacement with other amino acids affected 
the antiviral property of LBD peptides. Consistent with this 
report, the interaction of ALFPm3 peptide with the com-
plex structural proteins of WSSV distorted the viral proteins' 
integrity, thereby preventing the attachment and acting as a 
solid antiviral agent (Methatham et al. 2017).

Role of AMPs in Shrimp Ontogenesis

Antimicrobial peptides and the modulation of these pep-
tides in relation to ontogeny was a much-preferred area of 
research that later shifted onto its other applications. Ontog-
eny studies are indispensable for shrimp aquaculture as both 
the hatchery techniques and culture processes need to be 
checked and appropriately regulated for the industry's suc-
cess. Various stressors affect the shrimp juveniles and larvae, 
such as abiotic factors, pathogenic microbes and infectious 
diseases (Dall et al. 1990). The circulating haemocytes with 
various immune factors like AMPs are sole immune regula-
tors during the developmental stages (Tassanakajon et al. 
2013). Several peptides from shrimp have been detected in 
synergy with different developmental stages. A few instances 
that demonstrated the influence of AMPs in various devel-
opmental stages were Fc-crus 1 and Fc-crus 2, expressed 
in the early developmental stages of F. chinensis (nauplii, 
mysis, and post-larvae). Indeed, Fc-crus 3 was exclusively 
detected from ovaries of adult shrimps, suggesting that it 
may be aiding ovary development (Sun et al. 2010). Another 
study demonstrated the expression of crustin-like Lv gene in 
all stages of development of L. vannamei and also seen in 
the fertilized eggs in 7–11 h post-spawning stage given the 
cue to the maternal contribution of immune transcripts to 
the progeny. The early expression of AMPs in the develop-
mental stages hint towards the critical role played by AMPs 

in immune regulation in the absence of a fully flourished 
immune system and the role of AMPs in building the natu-
ral microbiota that aids the premature immune system of 
shrimp (Barreto et al. 2018). Quispe et al. (2016) substanti-
ate the maternal contribution of immune genes in a study 
and detected the traces of AMPs such as Litvan PEN1/2, 
Litvan PEN4, Litvan ALF-A, Litvan ALF-D and Litvan 
ALF- B in the nauplius and protozoea stages with an even-
tually increased expression in the developmental stages. The 
expression profile of stylicin peptide Mj-sty hint at the role 
of AMPs in the metamorphosis of shrimp. It was noted that 
the peptide had been transcribed throughout the develop-
mental stages with significant differences in the pattern of 
expression, showing that the peptide plays a significant role 
in the immunity and metamorphosis of shrimp larvae (Liu 
et al. 2015).

Anticancer Agents

Despite the significant advances in medical science, cancer 
is a significant threat to humankind. Recent cancer thera-
pies include chemotherapy, endocrine therapies, surgery, 
radiotherapy and similar treatments. Metastatic cancer treat-
ment still resorts to conventional chemotherapy, where the 
major challenge is drug resistance (Housman et al. 2014; 
Miller et al. 2016). Studies on the anticancer properties of 
shrimp AMPs revealed several potential drug candidates and 
demanded proper prior trials and researches before com-
mercial usage. A cationic antimicrobial peptide LvHemB1, 
a haemocyanin gene derived from L. vannamei, has been 
shown to efficiently decrease the cell viability of the human 
cervical (HeLa), hepatocellular (HepG2), oesophageal 
(EC109), and bladder (EJ) cancer cells by 70.30%, 53.26%, 
49.01%, 78.44% respectively at 24 h treatment (Liu et al. 
2021). The defining trait to be considered anti-cancerous 
peptide (ACP) is killing cancer cells, sparing the normal 
cells selectively. Differences in the membrane interaction 
of the cancer cells with the ACP accounted for this selec-
tive toxicity (Hilchie et al. 2019). The net negative charged 
nature of the cancer cells due to the overexpression anionic 
molecules such as phosphatidylserine (PS) attracts the cati-
onic AMPs (Hoskin and Ramamoorthy 2008; Utsugi et al. 
1991). A recent report says cervical cancer is the most com-
mon death cause for women in 55 countries (Bray et al. 
2012). Cisplatin, an antitumour agent, widely used for 
cervical cancer treatment, upshot deleterious outcomes: 
intrinsic and acquired drug resistance and toxicity (Siddik 
2003). Interestingly, when cisplatin-treated in combina-
tion with SALF, an enhanced effect was reported than its 
solitary usage. SALF is non-toxic to normal cells, admin-
istrated in cooperation with cisplatin (in vitro), has shown 
a maximum tumour growth inhibition compared to 10 µM 
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cisplatin treatment alone (Lin et al. 2010). Furthermore, 
SALF is an efficient peptide as a cancer vaccine adjuvant 
in treating bladder tumours. Co-treatment with inactivated 
murine bladder carcinoma cells MBT-2 Lysate promoted 
innate IL-1β production in mice macrophages, indicating 
an enhanced immunity (Huang et al. 2015). Haemocyanin 
caused the up-regulation of 10 apoptosis-associated proteins 
suggesting it as a potential peptide triggering mitochondria-
dependent apoptosis. In contrast, another peptide, B11, 
an in silico predicted protein designed from the hemocya-
nin of shrimp L. vannamei caused the loss of mitochondria 
membrane potential, resulting in mitochondrial-dependent 
apoptosis (Liu et al. 2018; Zheng et al. 2016). In addition, 
Fi-Histin, a histone derived AMP, from Fenneropenaeus 
indicus displayed anticancer activity against lung cancer cell 
lines (NCI–H460) and pharyngeal cancer cell lines (HEp-2). 
In vitro analysis results briefed that the up-regulated expres-
sion of cancer controlling genes (Bax, Caspase 3, Caspase 
9 and Rb1) and cytokine related immune genes mediated 
anticancer activity (Sruthy et al. 2019).

Intestinal Microbiota and AMPs

The gut microbiome is a dynamic microbial community that 
works naturally with the body in a mutualistic way shap-
ing the host immunity (Moossavi and Bishehsari 2019). It 
comprises different viruses, bacteria, and fungi, produc-
ing molecular metabolites that benefit the host (Chen et al. 
2018; Focà et al. 2015). Recently the trend of amping up the 
gut microbiome for better health of the organisms has been 
widespread. Cullen et al. (2015) explained the mechanism 
by which the AMPs selectively aids the commensal microbi-
ome growth while inhibiting the pathogens. The commensal 
microbes produce a particular enzyme (LpxF) capable of 
dephosphorylating the lipid A portion of lipopolysaccharide 
(LPS). This action results in reduced expression of nega-
tively charged components on the cell membrane, thereby 
displaying less affinity towards the cationic AMPs. AMPs 
regulate the gut microbiome either through direct antibac-
terial activity or by modulating the immune functions in 
the intestinal environment (Bevins and Salzman 2011). 
Microbial dysbiosis can negatively affect immunological 
processes, and any dysregulation in AMP production can 
exacerbate the conditions leading to many diseases.

It was recently reported that stylicins from  L.  van-
namei  named Lvan-Stylicins was produced in response 
to Vibrio infections in the midgut columnar epithelial cells. 
The peptide displayed pronounced expression in the ante-
rior caecum region of the midgut, where a cuticular layer 
is absent, giving the insight that AMPs can act as the first 
line of defence. Continued study on the peptide revealed 
that it responded to the homogenate of WSSV infected 

shrimp muscle but were not displaying any modulation 
on WSSV challenge, suggesting the role of the peptide in 
earlier wound healing and inflammation processes (Farias 
et al. 2019). Indeed, two genes of study (LitvanALF-A and 
LitvanALF-C) displayed no modulation in expression dur-
ing Vibrio infection indicative of the microbe-associated 
molecular patterns (MAMP) triggered gene expression 
instead of tissue damage (Silveira et al. 2018). Another study 
demonstrated PmALF7, an ALF isoform expression on the 
stomach during Acute Hepatopancreatic Necrosis Disease 
(AHPND). V.  parahaemolyticus,  the pathogenic strain 
causing AHPND, colonizes the stomach initially. PmALF7 
exhibited upregulated expression for 6 and 12 h post-infec-
tion in the stomach and lymphoid organ during V. para-
haemolyticus strain 3HP (VP3HP) infection (Soonthornchai 
et al. 2016).

Immunomodulatory Functions of AMPs

Recently the versatile functions of AMPs have been explored 
with great interest resulting in the characterization and iden-
tification of numerous peptides with potentials beyond mere 
antimicrobial ability. The varied roles of AMPs emphasiz-
ing their roles in immune regulations have recoined them 
as HDPs (Radek and Gallo 2010). Earlier researches inter-
preted the mechanism of actions of AMPs to be membrane 
permeabilization. Still, new trends are discovering, such as 
the control of the internal biochemical processes of microbes 
and recent finding of their involvement in boosting the 
host immunity to combat the foreign organisms. Gener-
ally, AMPs mediate the immunomodulatory activities by 
recruiting macrophages and mast cells, inducing chemokine 
production and modulating the NF-κB signalling pathways 
(Otvos 2016). Targeting the immune system to treat infec-
tious and deadly diseases is a trending approach in medical 
research. Recently, researchers have been researching how 
these peptides work to boost innate immunity to overcome 
various hard-to-treat diseases. Due to their ability to reduce 
inflammation and their role in pain modulation, biopeptides 
are becoming increasingly important in the field of biophar-
maceuticals (Monge-Fuentes et al. 2018). Anti-inflammatory 
action has been demonstrated even in the peptides found in 
arthropod venom. AMPs are essential for immune control in 
shrimps since their only defense against intruders are innate 
immunity (Santos et al. 2021).

Antibacterial peptides from crustaceans with cysteine-
rich ends have chitin binding properties that enhance their 
antimicrobial action and also contribute to their ability to 
promote wound healing. (Destoumieux et al. 2000a, 2000b). 
The chitin binding property of AMPs aided the process of 
molting in penaeid shrimps illustrated by Bachère et al. in 
the activity of penaeidins (Bachère et al. 2004). Penaeidins 
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act as pro-inflammatory cytokines through the aggregation 
of haemocytes to the wound cites (Li and Song 2010). In 
shrimps, host–pathogen interaction recognized by the Toll 
and immune deficiency (IMD) pathways activates nuclear 
factor-κB (NF-κB) and facilitates the release of AMPs (Oku-
mura et al. 2008; Okun et al. 2005; Pan et al. 2009). Li 
et al. (2010) featured penaeidin with cytokine features that 
promote an integrin-mediated hemocyte adhesion of granu-
locyte and semi-granulocyte that exhibited the immunomod-
ulatory function of penaeidin apart from its bactericidal 
properties. SALF mediates the proinflammatory cytokine 
expressions in T. vaginalis infection, which down-regulated 
the expression of interleukin (IL)-1α, IL-6, IL-8, MCP-1 
and tumour necrosis factor (TNF)- α secreted through the 
NF-κB and MAPK pathways (Lin et al. 2012). SALF was 
reported to act as adjuvants in cancer vaccines against blad-
der associated tumours. Evidence from the enhanced pro-
duction of T-helper cells, macrophages, and natural killer 
(NK) cells followed by the vaccine application implied the 
peptide's potential in secondary tumours suppression (Huang 
et al. 2015). Another peptide, MjPen-II, with the phagocytic 
property has been identified to promote bacterial inhibition 
through agglutination and phagocytosis property (An et al. 
2016).

AMPs against STDs

Synthetic peptides of ALF, csSALF55–76 and lsSALF55–76, 
of the P. monodon species were proven to be effective 
against Propionibacterium acnes and T. vaginalis (Pan 
et al. 2009). T. vaginalis infection is one among the fre-
quently hit sexually transmitted diseases that causes itch-
ing, burning and inflammation of the vaginal epithelium 
(Alderete and Garza 1985; Munson et al. 2008). T. vagi-
nalis infection increases the vulnerability towards human 
immunodeficiency virus (HIV) type-1 and cervical cancer 
(Kissinger et al. 2008; Zhang and Begg 1994). Indeed, 
shrimp ALF through the down-regulation of proinflamma-
tory cytokines release, inhibits T. vaginalis-induced HeLa 
cells. Proinflammatory cytokines such as TNF- α, IL-1 
α, IL-6, IL-8, and MCP-1, secreted by the infected cells 
are inhibited through the MAPK and NF-kB pathway (Lin 
et al. 2012). It is to our surprise that bacterial vaginosis 
increases the risk of associated sexually transmitted dis-
eases whereas vulvovaginal candidiasis has shown much 
weaker chance. And it was found that, compared to the 
vaginal fluid from healthy or women with vulvovaginal 
candidiasis, bacterial vaginosis infected person shows less 
presence of antimicrobial polypeptides and antimicrobial 
activity (Valore et al. 2006). Its high time to look for more 
natural and resistance free drugs as there is a rising tides 

of debates on how far we can run with the available drugs 
like azithromycin and metronidazole (Bangura et al. 2021; 
Okun et al. 2005).

AMPs in Stress Resilience

Stress mitigation in aquaculture has become a growing con-
cern for researchers due to the demand driven growth and 
associated emergence of diseases in shrimp culture system. 
Environmental stress triggers the innate immune system of 
shrimps (Engel and Barton 2010) and also stresses make 
them susceptible to diseases such as WSSV (He et al. 2000; 
Chen et al. 2010). AMPs are not only known for its immune 
properties, but have shown explicit role in stress manage-
ment. Few of the humoral immune signalling genes are seen 
to be differentially expressed during environmental stress 
(Chen and He 2019). Under unfavorable conditions, the 
Unfolded Protein Response (UPR) trade off unvital proteins 
for the vital ones causing a decrement in immune factors 
(Walter and Ron 2011). LvCruU from L. vannamei, a novel 
crustin gene has shown enhanced antibacterial function 
under ER-stress. The LvCruU gene, a downstream effec-
tor of shrimp UPR gets induced by transcription factor 3 
(LvATF3) of UPR and compensate for the reduced immune 
level providing antibacterial protection under UPR activa-
tion (Chen et al. 2019). Heavy metal pollution is a growing 
stress to aquaculture organisms causing stunted growth and 
increased mortality rates. Furthermore, copper (Cu) stress 
decreases total hemocyte count (THC), anti-oxidative capac-
ity of the shrimp and increases the vulnerability to V. algi-
nolyticus infection (Guo et al. 2017; Qian et al. 2020; Yeh 
et al. 2004). iTRAQ-based quantitative proteomics profil-
ing of white shrimp L. vannamei exposed to copper stress 
and ammonia stress revealed 385 and 202 differentially 
expressed proteins (DEPs) wherein ALF and hemocyanin 
peptides were identified as modulators of immune functions 
(Guo et al. 2021; Lu et al. 2018). And in P. monodon under 
ammonia stress showed upregulated transcription ALF 6 
isoforms (Li et al. 2018). Moreover, cold stress homeostasis 
involves upregulated expression of histone peptides (H2B, 
H3, H4), which are known for their antimicrobial activity 
(Fan et al. 2019; Patat et al. 2004). The evidence of dif-
ferently expressed Crustin, Penaeidin-2a, and Penaeidin-4a 
genes in the hepatopancreas of L. vannamei under acute 
ammonia-nitrogen stress merely stemming the fact that 
AMPs are crucial in stress management (Lu et al. 2016). 
All these instances hint towards the ability of AMPs to be 
deployed as biomarkers for stress. The role of AMPs in opti-
mizing stress resilience have to be investigated in detail to 
bring out possible stress mitigation strategies in aquaculture 
sectors.
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•	 AMPs in regulating intestinal microbiota: The appli-
cations of AMPs are widening into new grounds like 
regulating intestinal microbiota homeostasis. A novel 
crustin LvCrustin I-1 has exhibited microorganism 
binding property but then failed to show antimicro-
bial property, is believed to be aiding the intestinal 
microbiota homeostasis. Subsequently, the LvCrustin 
I-1 knockdown increased the Demequina and Nautella 
bacteria, picturized the chaotic unhealthy intestinal 
environment thereafter (Lv et  al. 2020). Intestinal 
microbiota homeostasis is an indicator of good health 
as it serves as a “virtual endocrine organ”, controlling 
the host nutrient assimilation and pathogen invasion 
(Clarke et al. 2014).

•	 AMPs aiding ectosymbiosis: The symbiotic shrimp 
Rimicaris exoculate has undergone extensive research 
to understand the hidden theory behind the nature of 
hosting highly specialized ectosymbiotic community, 
in its cephalothoracic cavity (Guri et al. 2012; Petersen 
et al. 2010). Astonishingly, a novel anti-Gram-positive 
type II crustin (Re-crustin), was identified molecularly 
from the inner surfaces of the cephalothoracic cavity 
and its appendages. Extrapolating the spatio-temporal 
correlation between the Re-crustin production and the 
ectosymbiosis-related life-cycle events hint towards the 
potential role of AMP, in the establishment of vital 
ectosymbioses (Le Bloa et al. 2020). The theme of 
AMPs and ectosymbiotic relationship was diametri-
cally opposite of the kind of function, mostly AMPs 
was doing. It is considered as a latent potential of 
AMPs and there should be more studies to decipher the 
exact mechanism behind these applications of shrimp 
AMPs.

•	 Shrimp AMPs into feedstock industry: Penaeidin 3–2 
expressing transgenic rice bran was used to feed Tilapia 
species. Aside from being a microbe free feed, it has 
stimulated the micro flora of fish intestine and have 
shown lesser mortality rates when challenged with 
Aeromonas hydrophila. It was noted that the affected 
individual fed with the transgenic rice bran maintained 
an intact intestine structure to the ones not fed with a 
damaged villi and epithelium of intestine. Moreover, 
this finding illustrates the wider possibilities of using 
plant production system for generating AMPs that are 
difficult to produce with yeast and bacterial systems 
(Liu et al. 2014).

•	 Shrimp AMPs as biomarkers for disease: Variations in 
the AMP level associated with disease has been sensed 
as a potential biomarker for diseases and infections 
that would otherwise be difficult to diagnosed easily. 

Hepatopancreatic level of ALF, penaeidin, and stylicin 
were found to be substantially increased with V. para-
haemolyticus. Acute hepatopancreatic necrosis disease 
strain (VpAHPND) infection highlighted the scope of 
developing AMPs as biomarkers (Chiew et al. 2019). 
Another recent study identified multigene biomarkers 
for the shrimp white faeces syndrome (WFS). WFS is 
a wreaking havoc to shrimp industries causing huge 
loss and there found a connection between the WFS 
and dysbiosis. Antimicrobial genes ALFs, PENs, and 
crustin were seen to be upregulated during the course 
of infection and proposed as potential biomarkers for 
the disease (Zeng et al. 2020).

•	 Edible antimicrobial food coatings: Novel idea of using 
active packaging is gaining interest in recent years. 
Recently, active shrimp concentrate (SC) from L. van-
namei acted as antimicrobial agents when used in com-
bination with chitosan–gelatin matrix as edible packag-
ing covers for fish sausages. The authors suggest that the 
active ingredients inhibited and delayed the growth of 
fish pathogens and could potentially be due to the pres-
ence of antimicrobial peptides, protein-lipid concentrate 
present in shrimp concentrate (Alemán et al. 2016).

Conclusion

This review aims to provide a comprehensive overview 
of the shrimp derived peptides and their interdisciplinary 
applications that could be deployed for the health and bet-
terment of both humans and animals. Marine organisms are 
rich sources of various AMPs with more excellent activ-
ity. The growing threat of antimicrobial resistance (AMR) 
calls for an immediate alternative for antibiotics. The broad-
spectrum activity of the peptide and the delayed resistance 
makes them eligible candidates in place of antibiotics. The 
present review envisaged peptides derived from shrimp 
are the best fit in replace of antibiotics. Exploring the vast 
opportunity of the global shrimp aquaculture sector for dis-
covering and commercializing AMPs will benefit both the 
aquaculture and health sectors. Numerous studies have taken 
place concerning the identification and characterization of 
AMPs from shrimp, nevertheless less focus has given to the 
studies related to the mechanism of action of these peptides. 
There is plenty more to discover and research to mold these 
peptides into a commercial applicable form.
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