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Abstract
Appetite is controlled by a complex system of central and peripheral signals interacting to modulate the ingestion response. 
Several brain mediators with complex networks adjust food intake in birds. Based on the available literature, these media-
tors have interactions with a number of other neurotransmitters  (NTS) involved in feed intake. It means that,  NTS regulate 
feeding behavior through mediating other peptide and NTs activity. In birds, insulin known as a hypophagic hormone that is 
interplaying with neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and corticotropin-releasing factor (CRF) in brain. 
Another hormone ghrelin, inhibits food intake in birds and other mediators, such as glutamate, endocannabinoid system 
(ECS), serotonin (5-hydroxytryptamine, 5-HT), and norepinephrine (NE), which play a key role in ghrelin-induced hypopha-
gia. Another involved peptide on feeding behavior in chickens called nociceptin/orphanin FQ (N/OFQ) is modulated by 
histamine, glutamate, dopamine (DA), gamma-aminobutyric acid (GABA), agouti-related protein (AgRP), and cocaine and 
amphetamine-regulated transcript (CART). Some of the  NTS such as opioid have both orexigenic and anorexigenic effects in 
birds while has interaction with NE, glutamate, histamine, DA, and cannabinoids (CBs). Thus, interaction among mediators 
is a prominent process needs to be considered in order to understanding the mechanisms underlying feed intake regulation 
in birds. This review aims to investigate the role of major regulators and their mediatory interactions with one another in 
poultry feeding behavior. According to mentioned interactions, it seems that dopamine, serotonin, and glutamate have the 
most interactions with other NT systems. Therefore, they play an axial role in the central regulation of food intake in CNS.
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Introduction

Appetite modulation is a complicated physiologic 

phenomenon that is made of various central and periph-
eral signal integration at the CNS. Different CNS compart-
ments such as hypothalamus, nucleus accumbens (NAcc), 
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amygdala, ventral tegmental area (VTA), and nucleus of the 
tractus solitaries have effect on appetite modulation (Barnes 
et al. 2006). In this view, the hypothalamic subregions the 
arcuate nucleus (ARC), paraventricular nucleus (PVN), dor-
somedial hypothalamus (DMH), ventromedial hypothalamus 
(VMH), and lateral hypothalamic area (LHA) have under-
pinning role in regulate food consumption (Fig. 1) (Wynne 
et al. 2005; Yousefvand and Hamidi 2021). Cerebral mecha-
nisms by neural mediators control food intake in the hypo-
thalamus (Zendehdel et al. 2014). It has been demonstrated 
that the mediators in the CNS, have different stimulatory, 
inhibitory, and modulatory roles in order to regulate various 
physiologic behaviors, such as perception, pleasure, excite-
ment, memory, and learning.

It is worth mentioning that appetite is adjusted by a vast 
scattered network of neurons via different  NTS (Alizadeh 
et al. 2015; Hassanpour et al. 2015).  NTS are kinds of media-
tors secreted by neuronal terminals, influencing pre-/post-
synaptically. Some of them, such as DA, 5-HT, and ghre-
lin, decrease food intake in birds, while N/OFQ, CBs, and 
GABA increase it (Denbow et al. 2000; Bungo et al. 2009; 
Zendehdel et al. 2014a, 2017c, 2020, 2013c, 2019, 2017a, 
2008). Among the  NTS involved with the food intake regu-
lation, epinephrine, NE, DA, 5-HT, and histamine belong 
to the subgroup of biogenic amines; however, GABA and 
glutamate are amino acids, NPY and opioids are recognized 
as neuropeptides. Given the importance of food consumption 
in several physiological processes, such as growth, immu-
nity, and production, realizing the NTS effect on ingestion 
behavior has been one of the interesting fields of study over 
the last decades. On this line, the interaction between  NTS is 
a noticeable research field in which different investigations 
have revealed its significant effect on the modulation of food 
intake. For instance, the previous studies have shown that 
the hypophagic effect induced by the melanocortin recep-
tors (MCRs) is modulated by the serotonin and glutamate in 

the chicken’s brain (Khodadadi et al. 2017; Zendehdel et al. 
2016; Shiraishi et al. 2008). In this aspect of view, the cross-
talk between above-mentioned  NTS and the other mediators 
such as leptin and insulin is a remarkable subject which is 
under evaluation. Considering the importance of interactions 
regulating feed intake, this review intends to study the role 
of mediators and the interactions between them in the central 
regulation of food intake in birds.

Study Methodology

In this review, various valid papers from electronic sources 
have been used in order to investigate the crosstalk between 
brain mediators regulating food intake behavior in birds. 
Authentic articles were indexed in the Web of Science, Sco-
pus, PubMed, SID, Google scholar, and ISI databases by 
using of the key words: Central regulation of food intake, 
Brain neurotransmitters, Bird food intake, and Feeding 
behavior studied.

Biogenic Amines

Dopamine (DA)

DA is the primary catecholamine neurotransmitter in the 
central nervous system (CNS), controlling several physi-
ological operations, such as emotion, locomotor activity, 
cognition, and food intake. DA is an important anorexi-
genic neurotransmitter regulating reward function through 
its projections from VTA into NAcc and ARC (Volkow et al. 
2011). Nowadays, five different subtypes of DA receptors 
are recognized  (D1–5), appertain to G protein-coupled recep-
tor subtypes (GPCRs).  D1, like receptor subtypes  D1 and 
 D5, connects to the stimulatory G protein (Gs) by adenylyl 

Fig. 1  Schematic figure contain-
ing the special nuclei which reg-
ulate appetite. AM amygdala, 
ARC arcuate nucleus, CCX 
cerebral cortex, DMN dorso-
medial nucleus, FX fornix, CC 
corpus callosum, HI hippocam-
pus, LHA lateral hypothalamic 
area, ME median eminence, 
PFA perifornical area, OC optic 
chiasm, PVN paraventricular 
nucleus, 3 V third ventricle, TH 
thalamus, VMN ventromedial 
nucleus, SE septum (Yu and 
Kim 2012)
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cyclase pathway, whereas  D2, like subfamily  D2,  D3, and 
 D4, performs via inhibiting adenylyl cyclase and activating 
K channels (Ikemoto 2007).  D1 and  D2 receptors are ampler 
than the other DA receptors in the brain areas (Cadet et al. 
2010). It has been revealed that DA decreases food intake via 
the  D1 receptor (Bungo et al. 2010; Zendehdel et al. 2014a). 
Also, it has been reported that D2 has a mediatory role in 
appetite regulation (Khodadadi et al. 2017). The mediatory 
function of D1 and D2 receptors in food desire, induced 
by other central systems, has been confirmed (Mahzouni 
et al. 2016). Previous studies have shown DA interaction 
with other brain mediators. In this regard, Taherian et al. 
(2016) have reported that DA-induced hypophagia is medi-
ated via NMDA and  mGlu1 receptors in chicken. Also, 
Zendehdel et al. (2014a) have shown that DA performs its 
effect through the 5-HT receptor, 5-HT2c. Based on recent 
studies, yohimbine (α2 receptor antagonist) and ICI 118,551 
(β2 adrenergic receptor antagonist) amplify and inhibit DA-
induced hypophagia, respectively (Zanganeh et al. 2020). 
The anorexigenic effect of DA agonists is enhanced by 
the precursor of Nitric oxide (NO), showing a connection 
between them (Zendehdel et al. 2017a). Besides, there is a 
neurological interplay between µ and  D1 receptors in appe-
tite regulation (Zendehdel et al. 2016). Pretreatment with 
the cannabinoid receptor agonist increases feed consumption 
mediated through the DA receptor antagonist (Khodadadi 
et al. 2017). Moreover, the interplay between GABA and 
DAergic systems in feeding behavior has been demonstrated. 
Accordingly, research on birds has shown that the  GABAA 
receptor agonist-hyperphagic effect amplifies by  D1 recep-
tor antagonization (Hashemzadeh et al. 2018). In addition, 
GhandForoushan et al. (2017) have indicated that  H1 and 
 H2 receptors antagonist respectively attenuates and ampli-
fies the DA hypophagic effect on food intake. All above-
mentioned results accentuate the interconnection between 
DA and the glutamate, 5-HT, NE, NO, opioid, CBs, GABA 
and histamine systems in regulation of food intake behavior 
in birds.

Serotonin (5‑Hydroxytryptamine, 5‑HT)

5-HT acts as a mediator in many processes in both the 
peripheral and central nervous systems and has various 
effects on food desire, general metabolism, and sleep (Cali-
endo et al. 2005). Based on our knowledge, 5-HT receptors 
can be categorized into seven subtypes (5-HT1-5-HT7), con-
sidering amino acid sequence, pharmacological property, 
signal transduction, and molecular cloning (Hoyer et al. 
2002). Almost all 5-HT receptors, except for the 5-HT3 
subtype as a ligand-gated ion channel, form a subset of G 
protein-coupled receptors (GPCRs) (Bikker et al. 1998). 
In CNS, 5-HT originates mainly from the midbrain raphe’ 
nuclei (Ciranna 2006; Takahashi et al. 2010). Further, 5-HT 

is known to regulate mood, although 5-HT affects the central 
regulation of feeding behavior in mammals and avian species 
(Bechtholt et al. 2007; Fang et al. 2013). Reduction effect 
and mediatory contribution of 5-HT in food intake have 
been reported through different researches; 5-HT reduces 
food desire by connecting to POMC neurons (Zendehdel 
et al. 2012a). Also, an interplay has been observed between 
DA and 5-HT; hypophagic effect of  D1 was attenuated by 
5-HT2C antagonist (Zendehdel et al. 2014a). Besides, ano-
rexigenic effect of this ligand is amplified by  GABAA recep-
tor antagonist and α2 receptor antagonist whereas attenu-
ated by NMDA, AMPA/Kainate receptor antagonist, and 
β2 receptor antagonist (Zendehdel et al. 2017c; Mortezaei 
et al. 2013). Additionally, some receptors of 5-HT (5-HT2a 
and 5-HT2c) can decrease the anorexigenic effect of harma-
line on food desire (Zendehdel et al. 2013b). The receptors 
of 5-HT (5-HT2c) and glutamate (NMDA) diminished the 
hypophagic effect of lipopolysaccharides (LPS) regulated 
via CRF (Zendehdel et al. 2012b; Jonaidi et al. 2019).

Norepinephrine (NE)

Norepinephrine (NE), as a catecholamine, plays a significant 
role in response to the stressful stimuli in chicken. Based on 
the studies, catecholamines have a regulatory role by adjust-
ing appetite in birds’ production. Also, the regulatory activ-
ity of NE in the brain-gut-microbiome axis has been empha-
sized in chicken (Dennis et al. 2016). In overall, it has been 
well documented that this ligand intracranioventricularly 
changes food desire in birds similar to mammals (Denbow 
and Sheppard 1993). Although the ICV injection of this cat-
echolamine increases food intake in chicken (Denbow 1983), 
the same treatment in turkey shows controversial results; 
interestingly, the same study in leghorn does not show any 
effect on appetite in this strain (Denbow et al. 1983). NE 
has also a mediatory role in food intake in relation with the 
other brain mediators. For example, the effect of ghrelin and 
leptin is adjusted by this ligand receptor. In this respect, the 
significant attenuating effect of β2 antagonist on hypophagia 
induced by ghrelin and leptin has been detected in broiler 
chickens (Zendehdel and Hassanpour 2014a, b; Zendehdel 
et al. 2020). Moreover, as mentioned earlier, NE interacts 
with opioid, 5-HT, oxytocin (OT), and DA (Nayebzadeh 
et al. 2020; Zendehdel et al. 2017c; Mirnaghizadeh et al. 
2017; Zanganeh et al. 2020).

Histamine

Histamine is a biogenic amine with a central function in 
the Nervous System. Its receptors include  H1,  H2,  H3, and 
 H4 (Masaki et al. 2005). The central histaminergic system 
is implicated in adjusting several physiological aspects, 
e.g., food consumption, thermos-regulation, and locomotor 
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activity (Swiergiel et al. 1999). According to studies, his-
tamine diminished food desire in birds and also it has 
regulatory effect in feeding (Zendehdel et al. 2008); the 
anorexigenic effect of LPS is lessened by the  H1 receptor 
of this amine (Zendehdel et al. 2015a). Further, the effect 
of nesfatin-1, an endogenous anorectic peptide, and GABA 
is attenuated by  H1 and  H3 receptors antagonist (Heidar-
zadeh et al. 2018; Morteza et al. 2013).

Amino Acids

Glutamate

One of the major stimulative NTs in the CNS, playing 
an important role in reward processes and hypothalamic 
centers, is glutamate (McFadden et al. 2014). According 
to pharmacological properties of the glutamate receptors, 
they can be divided into two categories, including the iono-
tropic and metabotropic receptors (mGluRs). Main glu-
tamate receptors called N-methyl-D-aspartate (NMDA), 
Kainate, AMPA, and the metabotropic receptors (mGluRs) 
with different subtypes (Charles et al. 2014). Glutamate 
has hypophagic effect, as well as many interactions with 
other mediators, showing its significant role in food intake 
regulation in birds. Based on studies, feed intake in pigeon 
is affected by the injection of NMDA and AMPA-kainite 
receptor antagonists (Da Silva et al. 2003). It has been 
well documented that the receptor antagonist of NMDA 
increases food intake (Taati et al. 2011). In chickens, DA 
performs its effect via some receptors of glutamate (Tahe-
rian et al. 2016). Also, the glutamate hypophagic effect 
is mediated through melanocortin system, CRF, GABA, 
and histamine. As reported, receptor antagonist of  MCRS 
and  CRFS adjust the effect of glutamate on feed desire in 
a manner that the administration of the receptors  MC3,4 
antagonists, similar to that of in  CRF1,2 receptors, attenu-
ated the hypophagic effect of glutamate. These results 
suggested that the hypophagic effect of glutamate medi-
ates via  CRF1,2 and  MC3,4 receptors in chickens (Ahmadi 
et al. 2019). Moreover, it has been shown that the effect 
of glutamate on feeding behavior is enhanced through 
the  GABAA receptor antagonist (Zendehdel et al. 2009). 
Recently, an interplay between glutamate and receptors of 
histamine  H1,3 has been observed. Accordingly, in contrary 
to  H3 antagonist,  H1 antagonist can reduce the hypophagic 
influence of glutamate in layer chicken (Mobarhan et al. 
2020). In addition, previous studies have demonstrated 
that the anorexigenic properties of ghrelin and leptin is 
modulated through the glutamic system (Taati et al. 2011; 
Adeli et al. 2020).

Gamma‑Aminobutyric Acid (GABA)

GABA is an important neurotransmitter with many physi-
ological roles such as respiration and appetite control, 
anti-convulsion, memory and sleep regulation beside the 
pain modulation (Chen et al. 2015).  GABAA,  GABAB, and 
 GABAC are three receptors that the GABAergic system 
acts through (Stratford and Wirtshafter 2013).  GABAA 
and  GABAC belong to a macromolecular complex cou-
pled to a Cl-ionophore, whereas  GABAB, a metabotropic 
receptor, is a member of G-protein-coupled receptors 
(GPCRs). Feeding behavior by proposed receptors is the 
subject of many studies. Based on previous studies, feed-
ing is enhanced by  GABAA and  GABAB agonists (Zende-
hdel et al. 2017c; Bungo et al. 2003). However,  GABAB 
agonist does not affect broiler food desire (Zendehdel and 
Hassanpour 2014a, b). In addition, GABA stimulates food 
intake in the turkey (Denbow 1991). It has been shown 
that  GABAA has orexigenic effect on appetite in birds 
and this effect is adjusted by Nitrol-arginine methyl ester 
(L-NAME) and N/OFQ (Mokhtarpouriani et al. 2016a, b; 
Tajalli et al. 2006); orexigenic effect of  GABAA decreased 
by  CB1 receptor antagonist and amplified by  D1 recep-
tor antagonist (Hashemzadeh et al. 2018; Zendehdel et al. 
2017c).

Glycine

Glycine is an inhibitory neuronal mediator in the CNS where 
several functions are accomplished by this ligand such as 
synaptic transmission (Colin et al. 1998; Scain et al. 2010), 
important role in motor control (Rees et al. 2003), pain per-
ception (Harvey et al. 2004), and food intake (Rahimi et al. 
2021; Reidelberger et al. 2011; Sorrels and Bostock 1992). 
Research on chicken has revealed that glycine decreases food 
intake and this effect is amplified by DA. Also, recently, it 
has been reported that this interaction is exerted through  D1 
receptors (Rahimi et al. 2021).

Peptides

In the bellow chapters, the effects of well-known peptides 
and their interactions with different NTs systems on regu-
lation of feeding behavior will be described. According to 
the fact that these peptides may have anorexigenic and/or 
orexigenic effects in avian and other species, the follow-
ing classification is considered in which the peptides with 
hypophagic, hyperphagic, and both hypo- and hyperphagic 
properties have been categorized in anorexigenic, orexi-
genic, and orexigenic/anorexigenic subtypes respectively.
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Anorexigenic Peptides

Corticotropin‑Releasing Factor (CRF)

CRF is a 41 amino acid neurotransmitter which acts on the 
anterior pituitary to stimulate the secretion of corticotropin 
and regulates the synthetic/secretory activity of the adre-
nal cortex (Vale et al. 1981). This peptide in the central 
nervous system and in the periphery, has various actions 
such as regulating anxiety, mood, feeding, inflammation, 
gastric emptying, and blood pressure (Dautzenberg and 
Hauger 2002). Regarding its effect on feeding, feed intake 
in mammals and chickens is affected and decreased by ICV 
injection of CRF (Contarino and Gold 2002; Furuse et al. 
1997; Denbow et al. 1999; Zhang et al. 2001). From the 
interactional perspective, it has been documented that CRF 
has interplay with LPS, ghrelin, RFamide-related peptide-3 
(RFRP-3), and glutamate and adjusts their effects on feeding 
in chicken. As a result of these interactions, anorexigenic 
effect of LPS, ghrelin, RFRP-3, and glutamate is attenuated 
by central injection of CRF receptors antagonist. Moreover, 
as mentioned earlier, there is an interplay between 5-HT 
(5-HT2c) and CRF (Kooshki et al. 2019; Saito et al. 2005; 
Moosadoost et al. 2020; Ahmadi et al. 2019).

Melanocortins

The melanocortins include adrenocorticotropic hormone 
(ACTH), and α-, β-, and γ-melanocyte-stimulating hormones 
(α-, β-, γ-MSHs) which are derived from the cleavage of the 
precursor POMC (Wang et. al. 2019). ACTH is an impor-
tant component of the hypothalamic–pituitary–adrenal axis 
and is often produced in response to biological stress. It has 
shown that this peptide changes food intake and can induce 
anorexia in animals (Stevenson et al. 1970; Van Putten et al. 
1953; Schulz et al. 2010; Deviche and Delius 1981). α-MSH 
performs a similar role to ACTH in feeding behavior and 
energy homeostasis (Kawakami et  al. 2000; Zendehdel 
et al. 2012a); in avian, α-MSH has five subtypes of MCR 
expressed throughout the body which are a family of G pro-
tein-coupled receptors (Dores et al. 2013). In this relevant, 
MCR subtypes 3 and 4  (MC3,4) are presented more abundant 
in the brain (Shojaei et. al. 2020) and perform a hypophagic 
effect in chicken (Zendehdel et al. 2012a). In terms of the 
studying the role of brain mediators interaction in poultry 
food intake behavior, several lines of studies have revealed 
the interplay between melanocortin receptors and various 
mediators such as 5-HT, glutamate, insulin, leptin, RFRP-3, 
and Neuropeptide FF (NPFF). In this view, there is a neuro-
logical interaction between serotoninergic and melanocortin 
systems, affecting the feeding behavior. It is further reported 
that the 5-HT anorexigenic effect is mediated by receptors 
of melanocortin (Zendehdel et al. 2012a). Moreover, the 

hypophagic effect of glutamate is decreased through  MC3,4 
receptors antagonist (Ahmadi et al. 2019; Shiraishi et al. 
2008). Besides, it has been depicted that, central injection of 
insulin in chicks significantly increased expression of POMC 
mRNA which leads to diminish food intake (Shiraishi et al. 
2008). Also, previous research on broiler chickens has dem-
onstrated that the expression of hypothalamic gene of MCR 
subtypes 4 and 5 was significantly reduced by the infusion 
of leptin (Dridi et al. 2005). This, in turn, postulated that the 
crosstalk between melanocortin system and leptin can regu-
late food intake in birds through inducing hypophagia. In 
addition, it has been proved that the anorexic neuropeptide 
RFRP-3, which belongs to arginine-phenylalanine-amide 
(RFamide) peptide family, decreases food intake in chicken, 
and its effect is mediated via  MC4 and  CRF2 receptors. Also, 
authors have suggested a modulatory role for receptors of 
the Neuropeptide FF (NPFF), a member of RFamide family, 
in food intake induced by RFRP-3 in chickens brain (Moo-
sadoost et al. 2019, 2020).

Oxytocin (OT)

OT is synthesized in supraoptic and PVN nuclei, as well 
as hypothalamic magnocellular accessory neurons (Adan 
et al. 1995). Receptors of OT are located in the PVN and 
VMH nucleus, the stria terminals, and the dorsal part of 
the supraoptic nucleus (Adan et al. 1995). The OT injection 
declines food desire in mammals and birds (Jonaidi et al. 
2003; Arletti et al. 1990). Further, OT performs its effect 
through receptors of opioid (μ and κ opioidergic receptors) 
and glutamate (NMDA and AMPA receptors) (Jalali et al. 
2019; Raji-Dahmardeh et al. 2019). Finally, its effect on food 
consumption is adjusted via receptors of histamine  (H1 and 
 H3 receptors) and NE (β2 receptors) in birds (Mirnaghizadeh 
et al. 2017).

Leptin

Leptin, known as an obesity gene product, is a small 
(16 kDa) peptide hormone secreted from adipose tissue. 
Its central injection reduces food intake and enhances 
energy expenditure. In CNS, leptin has a significant role 
in food desire (Valassi et al. 2008). Chicken’s leptin cDNA 
(CLEP) (Genebank AF 012727, AF082500) is cloned and 
sequenced in birds. Sequencing the leptin gene in chicken 
has confirmed 145 amino acids instead of 146 in mammals. 
It is noted that leptin is in chicken even before its sequenc-
ing in this species (Ashwell et al. 1999). Farkašová et al. 
(2016) confirm the presence of the LEP gene in birds after 
long-term debates on the absence (Lovell et al., 2015) or the 
presence of CLEP sequence in the chicken genome. Similar 
to mammals, the leptin reduction effect on feed intake in 
avian is reported (Denbow et al. 2000). As mentioned above, 
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previous research on feeding regulation demonstrated the 
crosstalk between leptin and the melanocortin system. In 
this view, under stimulation of leptin, hypothalamic gene 
expression of MC4/MC5 has significantly become down-
regulated (Dridi et al. 2005). Remarkably, the recombinant 
chicken leptin has also decreased the gene expression of the 
orexigenic neuroprptides NPY, orexin and orexin receptor 
in broiler chicken hypothalamus (Dridi et al. 2005). This 
latter demonstrates the leptin interaction with NPY and 
orexin system. Interestingly, leptin and ghrelin in a wild 
bird decrease hoarding behavior (Henderson et al. 2018). In 
addition, it has been well documented that the anorexigenic 
effect of leptin is attenuated by β2-selective adrenoceptor 
antagonist displaying the interaction between leptin and NE 
system (Zendehdel et al. 2020). Furthermore, in terms of the 
interplay between leptin and other brain mediator systems, 
recently the receptors of glutamate (NMDA and AMPA) 
have been shown to modulate the effect of leptin (Adeli et al. 
2020).

Insulin

Insulin is a hormone secreted from Beta cells of the pan-
creas that controls blood sugar. In the brain, it affects the 
central regulation of food desire and energy consumption 

(Plum et  al. 2005). A number of studies have shown 
the effect of insulin on appetite adjustment. In general, 
insulin mainly has anorexigenic properties through hav-
ing interaction with different peptides with orexigenic or 
anorexigenic effects. In this view, it is stated that mRNA 
levels of POMC, CART, and CRF are upregulated by insu-
lin. To have more explanation, it has been reported that 
α-MSH known as an anorexigenic peptide, forms from 
the post-translational cleavage of POMC at the hypothala-
mus, CART and CRF have hypophagic effect on ingestion 
behavior in birds (Honda et al. 2007). Interestingly, it has 
been demonstrated that the antagonization of melanocortin 
receptors can prohibit the hopophagia induced by insulin 
in chicks (Shiraishi et al. 2008). Therefore, as in mam-
mals, the central melanocortin system mediates insulin-
induced hypophagia in birds (Fig. 2). In another aspect, 
the central injection of this hormone, namely insulin, 
in chicks decreases NPY mRNA (Shiraishi et al. 2008). 
Also, its ICV injection affecting food intake is mediated 
via the interaction with the receptors of NPY (Yousefvand 
et al. 2018, 2019).  NPY1 receptor antagonist potentiates 
decreasing effect of insulin on food consumption; while, 
this decreasing effect of insulin is prevented by antagoniz-
ing  NPY2 receptor (Yousefvand et al. 2020).

Fig. 2  The POMC and NPY neurons situated in ARC nucleus as well 
as receptors of insulin found on these neurons. Also, CRF, recep-
tors of POMC  (MC3,4) and  NPY1 are located on the PVN. The ICV 
administration of insulin stimulated neurons of CART and POMC 
along with suppressing NPY neurons. Consequently, increased level 
of α-MSH resulted from POMC neurons stimulated the melanocortin 
receptors and resulted hypophagia. In another aspect, insulin-induced 

decreased level of NPY in synaptic space caused reduction activity of 
 NPY1 receptor. Besides, there is an interaction between insulin and 
CRF neuron in PVN. Consequently, anorexigenic output is exported 
by PVN, and caused a hypophagic effect on food consumption in bird 
under effect of insulin and mentioned interactions (Honda et al. 2007; 
Shiraishi et al. 2008; Yousefvand et al. 2018 and 2019)
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Orexigenic Peptides

Agouti‑Related Peptide (AgRP)

AgRP is a peptide which is made up of 112 amino acids and 
synthesized in the ARC, projects to other key hypothalamic 
nuclei and sites involved in feeding (Bagnol et al. 1999; 
Haskell-Luevano et al. 1999; Lu et al. 1994). AgRP potenti-
ates food intake behavior and this orexigenic effect of AgRP 
has documented in birds and mice (Boswell and Dunn 2017; 
Takahashi and Cone 2005). Functionally, AgRP binds to the 
melanocortin receptors  MC3,4 and therefore is considered 
as a member of central melanocortin system (Boswell and 
Dunn 2017). Research on mammals has revealed that AgRP 
exerts its effect through agonizing Gi protein- coupled  MC4 
which results in inversing the effect of Gs protein- coupled 
MC4 agonists (i.e., α-MSH); subsequently, decreasing the 
levels of cAMP and the synthesis of CRF and Thyroid releas-
ing hormone (TRH) in hypothalamus (Baldini and Phelan 
2019; Sarkar et al. 2002). This inverse agonistic effect of 
AgRP leads to increase in food intake behavior (Baldini and 
Phelan 2019). The biased agonism of AgRP is also reported 
toward  MC3 (Yang and Tao 2017). Beside of the decreasing 
effect of CRF on feeding, which was mentioned before, the 
similar effect is also produced by subcutaneous and ICV 
administration of TRH in rodents (Choi et al. 2002; Vijayan 
and McCann 1977). It has been proposed that this effect is 
independent of hypothalamus-pituitary-thyroid, HPT, axis 
and is exerted via central mechanisms (Yoo et al. 2021). In 
this respect, TRH increases the histamine turnover in tub-
eromammillary, PVN, VMH nuclei, and activates GABAe-
rgic neurons in lateral hypothalamic area resulting melanin-
concentrating hormone, an orexigenic peptide, expressing 
neurons suppression (Zhang et al. 2012; Gotoh et al. 2007). 
Interestingly, in another aspects of view, it has been shown 
that AgRP neurons in ARC can be excited by glutamatergic 
projections originated from TRH expressing neurons in PVN 
introducing TRH orexigenic effects (Krashes et al. 2014). 
Reciprocally, NPY/AgRP neurons along with POMC neu-
rons in ARC develop synaptic inputs to PVN TRH neurons 
(Yoo et al. 2021). Since the most of TRH neurons in PVN 
express  MC4, and in consideration of the agonistic effect of 
α-MSH on Gs protein- coupled  MC4 along with agonistic 
effect of AgRP on Gi protein- coupled  MC4, the regulatory 
role of central melanocortin system consists of AgRP and 
α-MSH through  MC4 on TRH neurons is plausible. These 
mechanisms remain to be determined in the future studies 
on birds.

Moreover, there is interaction between AgRP and other 
mediators which have key role in food intake such as opioids 
and N/OFQ. For instance, the concentration of AgRP mRNA 
in the diencephalon increased after central injection of N/
OFQ (Hagan et al. 2001; Bungo et al. 2009).

Neuropeptide Y (NPY)

NPY is one of the amplest peptides in the nervous system 
affecting food intake. Structurally, it consists of 36 amino 
acids with a single different residue between avian and 
mammalian amino acid sequences. NPY gene regulates 
food consumption and reproductive activity (Fraley and 
Kuenzel 1993). NPY is the most potent orexigenic peptide 
functioning through  NPY1 and  NPY2 receptors. The ARC 
is well presented as the major center for controlling appetite 
at the hypothalamus in mammalian. Further, it is shown to 
be almost permeable to NPY and able to receive periph-
eral inputs from lateral ventricle fluid. It has been indicated 
that the first-order orexigenic neurons located in the Arc 
are responsible for NPY secretion. NPY has been reported 
to have the orexigenic effect in broiler and Leghorn (Den-
bow et al. 1988; Cline and Furuse 2013). It increases food 
intake in chicken, while the injection of anti-chicken NPY 
antibody reduces it in early hatched chickens (Chen et al. 
2016). Research on rodents has unraveled that the stimu-
lation of the NPY receptor subtype 1 potentiates feeding 
activity; in contrary, agonizing the  NPY2 receptor presents 
hypophagic behavior. For sake of clarity,  NPY2 receptor 
exerts its action as an autoreceptor resulting the inhibition of 
NPY biosynthesis and release (Ortiz et al. 2007). Likewise, 
the extracted data of further studies on chickens are in agree-
ment with mentioned results (Yousefvand et al. 2019). The 
mediatory role of NPY and related receptors in adjusting 
food desire in birds has been documented. NPY has inter-
action with insulin so that the hypophagic effect of insulin 
are regulated by the receptors of NPY,  NPY1 and  NPY2 
(Yousefvand et al. 2018, 2019). In another aspect, insulin 
can reduce the mRNA expression of NPY highlighting the 
interplay between NPY system and insulin (Shiraishi et al. 
2008). Moreover, research work on chickens has shown that 
somatostatin has orexigenic properties. Interestingly, on this 
line, somatostatin has interaction with the receptor  NPY1 
(Yousefvand et al. 2018).

Nociceptin/Orphanin FQ (N/OFQ)

N/OFQ is an endogenous ligand for the opioid-like  GPCR1 
or nociceptin receptor (NOP) (Alt et al. 2012). As reported 
in earlier researches, food desire is increased under effect of 
N/OFQ (Zendehdel et al. 2013a; Abbasnejad et al. 2005). 
This ligand involves GABA-induced hyperphagia through 
receptors of GABAA in birds (Tajalli et al. 2006). 5-HT 
amplifies the influence of this neuropeptide in chicken by 
receptors of  5HT2C (Zendehdel et al. 2013a). Also, based 
on findings, the orexigenic effect of N/OFQ is mediated 
through CART, AgRP, glutamate, NE, DA, and histamine in 
chicken. It is stated that this ligand increases the concentra-
tion of AgRP mRNA while declines CART mRNA. α-MSH 
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blocks this neuropeptide effect, indicating that the AgRP 
and the CART neurons may mediate such a hyperphagic 
effect, as in mammals (Bungo et al. 2009). The receptor of 
NE (β2) and glutamate (NMDA and AMPA) can increase 
the hyperphagic effect of N/OFQ (Zendehdel et al. 2017b; 
Abolghasempour et al. 2019); the N/OFQ effect is enhanced 
by receptors of DA (D1 and D2) and histamine  (H1), but it is 
attenuated by  H3 (Zendehdel et al. 2019, 2015b).

Somatostatin

Another peptide which consists of 14 amino acids and was 
isolated from the ovine hypothalamus in 1973 for the first 
time, is somatostatin (Stengel et al. 2015). It acts as an 
inhibitory neurotransmitter, distributed in the brain espe-
cially in the ARC and the PVN nuclei (Stengel et al. 2015), 
plays an important role in stimulating food intake in animal 
(Schneeberger et al. 2014; Stengel et al. 2010b, 2010a; Kara-
sawa et al. 2014). It has shown that this peptide has interplay 
with other madiators. For instance, somatostatin, in chickens 
through opioidergic-μ and adrenergic α-2-receptors, stimu-
lates food intake (Tachibana et al. 2009). Also, the soma-
tostatin- induced hyperphagia is significantly declined by 
 NPY1 antagonist in chicken (Yousefvand et al. 2019).

Anorexigenic/Orexigenic Peptides

Ghrelin

As an endogenous ligand for growth hormone (GH), ghrelin 
was isolated from rat and human’s stomach about 15 years 
ago. It, as one of the most important appetite-regulating pep-
tides, has shown a stimulatory effect on food intake and GH 
release in the brain. Gene expression of ghrelin and its recep-
tor GHS-R1a in the hypothalamus, liver, and abdominal fat 
of chicken’s body has been measured recently. Although 
ghrelin is a stimulant factor for the secretion of human and 
avian GH in the brain, it prevents food intake in avian (Kaiya 
et al. 2011). In addition, it is confirmed that ghrelin has a 
reduction effect in avian (Taati et al. 2011; Zendehdel et al. 
2013c). According to previous research, ghrelin-induced 
hypophagia is mediated via glutamate, CBs, 5-HT, NE, DA, 
CRF, and GABA. When it comes to the mediatory role of 
glutamate, NMDA receptor antagonist enhances the anorexi-
genic effect of ghrelin (Taati et al. 2011). Concerning the 
ghrelin interaction with CBs, the receptor antagonist of CBs 
can modulate its anorexigenic effect (Taherian et al. 2019). 
In mediation with 5-HT receptors, it has been demonstrated 
that the 5-HT2C receptor antagonist attenuates the effect of 
ghrelin (Zendehdel et al. 2013c). Besides, ghrelin performs 
its effect by interacting with the receptor of NE, namely β2 
(Zendehdel and Hassanpour 2014a, b). Based on recent stud-
ies, cannabinoid receptor antagonists enhance the influence 

of ghrelin on appetite, and its impact is mediated by the 
DA receptor (Farrokhi et al. 2020). Ghrelin may diminish 
food desire in chicks by declining GABA synthesis due to its 
reduction effect on glutamate decarboxylase 2 (GAD2) gene 
expression (Jonaidi et al. 2012). Also, the effect of ghrelin is 
modulated via CRF, which has anorexic effect (Saito et al. 
2005). In this regard, it has been concluded that the ICV 
administration of ghrelin in chickens accentuates the release 
of CRF; subsequently, HPA axis and corticosterone release 
(Saito et al. 2005). This illustrated the interplay between the 
anorexigenic peptides ghrelin and CRF in birds.

Opioids

Opioids form a well-known subgroup of inhibitory NTs. Its 
receptors consist of µ, δ, and k, being homologous to GPCRs 
(Fichna et al. 2007; Erbs et al. 2015). There is a plethora of 
endogenous opioid peptides in CNS, playing a key role in 
controlling respiration, pain mechanism, and the immune 
system (Le Merrer et al. 2009; Bodnar and Klein 2006). 
According to studies, the endogenous opioidergic system 
contributes to food intake regulation in birds. For example, 
the ICV injections of DAMGO (µ-opioid receptors ago-
nist) reduce appetite, whereas DPDPE (δ-opioid receptors 
agonist) and U-50488H (κ-opioid receptor agonist) boost 
feeding behavior in chicks (Bungo et al. 2004, 2005). The 
µ receptor of opioid declines food consumption in chicken; 
however, other receptors enhance food desire (Zendehdel 
et al. 2016). There are some interactions between opioids 
and other brain mediators such as 5-HT (Shojaei et al. 2015), 
histamine (Jaefari et al. 2018), NE (Nayebzadeh et al. 2020), 
CBs (Zendehdel et al. 2015c), glutamate (Torkzaban et al. 
2018), nitric oxide (NO) (Alimohammadi et al. 2015), and 
OT (Raji-Dahmardeh); given this, the reduction effect of 
DAMGO (µ-opioid receptor agonist) is amplified by  CB1 
and  CB2 receptors antagonist,  H3 receptor antagonist, and 
L-arginine (the precursor of NO) whereas that is diminished 
by NMDA and mGlu1 receptors antagonist, OT antagonist, 
β2 receptor antagonist,  H1 receptors antagonist, and 5-HT2c 
receptor antagonist. Also, DPDPE (δ-opioid receptors ago-
nist) induced hyperphagia is decreased by α1 receptor antag-
onist, while that is increased by AMPA glutamate recep-
tors antagonist. In addition, orexigenic effect of U-50488H 
(κ-opioid receptor agonist) is attenuated by α2 receptor 
antagonist and has no interaction with the other drugs men-
tioned above (Raji-Dahmardeh et al. 2019).

RFamide Peptides

RFamide-related peptide-1 (RFRP-1) and RFamide-related 
peptide-3 (RFRP-3) belong to the arginine-phenylalanine- 
amide (RF amide) family and 5 peptide groups of this family 
such as Neuropeptide FF, (PQRFa) PrRP, LPXRFamides 
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(RFRPs), Kisspeptin and QFRP (26RFa) have been rec-
ognized yet, playing a crucial role in food intake, puberty, 
and reproduction activity (Tsutsui et al. 2010). These pep-
tides have hyperphagic and hypophagic effects in animals; 
it has been reported that an increasing trend in food intake 
occurs in mice after administration of 26RFamide (Char-
trel et al. 2003) whereas NPFF and PRrP decrease feeding 
(Murase et al. 1996; Lawrence et al. 2000). Also, RFRP-3 
increases food intake in mammals (Johnson et al. 2007; 
Murakami et al. 2008; Dockray 2004), but has hypophagic 
effect in chicken (Moosadoost et al. 2020). Some interac-
tions between this family members and other mediators 
have been shown. For example, NPFF has crosstalk with 
DAMGO (μ-opioid receptor agonist), which regulates ano-
rexigenic effect of this ligand in rats (Murase et al.1996; 
Nicklous and Simansky 2003). Also, in chicken, RFRP-3 
induced hypophagia is mediated via corticotropin  (CRF2) 
and melanocortin receptors  (MC4) (Moosadoost et al. 2020).

Cocaine and Amphetamine‑Regulated Transcript (CART)

CART is a neuropeptide distributed in the central nervous 
system including hypothalamus nuclei, PVN and ARC (Dou-
glass and Daoud 1996; Gautvik et al. 1996; Couceyro et al. 
1997). Previous studies documented that CART not only 
plays a significant role in feeding, but also it has different 
effects on it; ICV administration of CART reduces appe-
tite (Kristensen et al. 1998; Larsen et al. 2000) while its 
administration directly into the PVN increases food intake 
(Smith et al. 2008; Yousefvand and Hamidi 2020). Also, 
in chickens, ICV injection of CART peptide is reported to 
inhibit food intake (Tachibana et al. 2003; Honda et al. 2007; 
Cai et al. 2015). Studies have also reported that this peptide 
has a mediatory role in food intake (Kristensen et al. 1998; 
Lambert et al. 1998; Vrang et al. 1999); in chicken, CART 
interacts with NPY in the central nervous system which 
leads to regulate feeding through the attenuation of NPY 
hyperphagic effects (Tachibana et al. 2003). Also, increasing 
CART/TRH through injection of CCK and leptin decreases 
food intake (Akieda-Asai et al. 2014).

Endocannabinoid System (ECS)

Marijuana (9-tetrahydrocannabinol, THC) or psychoac-
tive ingredients of the Cannabis sativa plant is called CBs 
(Novoseletsky et al. 2011). It has been confirmed that glu-
cose homeostasis, eating behaviors, lipogenesis, and energy 
balance all are controlled by the ECS in humans, rodents, 
and poultry (KEYSHAMS et al. 2016; Alizadeh et al. 2015). 
Two cannabinoid receptor proteins, i.e.,  CB1 and  CB2, 
belong to the G-protein-coupled family of receptors. Gen-
erally, in mammals and birds,  CB1 receptors are situated 

in presynaptic terminals of the inhibitory and excitatory 
nerves in the CNS (Sharkey et al. 2014a, b; Novoseletsky 
et al. 2011). In contrast,  CB2 receptors are mainly related 
to the immune cell function located in the brain (Sharkey 
et al. 2014a, b). Risen food intake via the  CB2 receptor has 
been reported in layer-type chickens (Alizadeh et al. 2015). 
In addition, both mentioned receptors have shown increased 
food intake in mammals and layer-type chickens (Alizadeh 
et al. 2015; Pertwee 2005). In broilers,  CB1 has shown a 
different trend since its injection has no effect, while  CB2 
remains increasing as in previous cases (Emadi et al. 2011). 
The CBs interact with glutamate and DA in chicken;  CB1 
agonist- induced hyperphagia is increased by NMDA antag-
onist whereas is decreased by  D2 antagonist. Also, orexi-
genic effect of  CB2 is amplified through the antagonization 
of  D2 and AMPA/kainate receptors (Keyshams et al. 2016; 
Khodadadi et al. 2017).

Nitric Oxide (NO)

NO which has important physiological functions in the CNS, 
is produced from L-arginine by NO synthase (NOS). It has 
been reported that the central inhibition and stimulation of 
NO synthesis change feeding behavior in both meat- and 
layer-type chicken in different manners (Zendehdel et al 
2015a, 2015b, 2015c; Khan et al. 2007; Choi et al. 1994; 
Clonidine Choi et al. 1995). In comparison with layers, the 
broiler chicks have genetically higher food consumption and 
energy expenditure in which the decremental alteration in 
feeding behavior has been observed through ICV injection 
of L-NNA but not L-NAME, the inhibitors of NO synthe-
sis (Khan et al. 2007; Choi, et al. 1994). This effect was 
attenuated by the precursor of NO, namely L-arginine (Choi 
et al. 1994). Interestingly, ICV administration of L-NAME 
in layer chicks, has induced hyperphagia in dose dependent 
fashion. On this line, the hypophagic properties of L-argi-
nine have been detected in layers (Alimohammadi et al. 
2015). These controversial results extracted from different 
avian species can be ascribed to the effect of genetic diver-
sity on the responsiveness of feeding regulatory pathways 
(Denbow, 1994). In this way, the precise mechanisms need 
to be elucidated in the future studies.

The interaction of NO with several brain mediators and 
neuronal pathways have been discussed in different litera-
tures. Choi et al., have been shown that increased appetite 
induced by α2-receptor agonist, has been weakened by inhi-
bition of NO synthesis in neonatal broiler chicks (Choi et al. 
1995). In addition, an interplay between NO and cannabinoi-
dergic systems has been accompanied by an increasing effect 
of L-NAME on  CB1 agonist- induced hyperphagia in layer- 
type chickens (Hassanpour et al. 2015). Also, during several 
studies on layers, hypophagia- induced by OT, amphetamine 
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Table 1  Various studies conducted on interactions between brain mediators in central regulation of food intake in birds

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Zendehdel et al. 
(2017c)

Layer chicken Amphetamine
(Indirect DA agonist

Hypophagia ICV L-NAME
(NG-nitro-L-argi-

nine methyl ester)

Decreasing
effect

Choi et al. (1995) Broiler
chickens

Clonidine
(α2-receptor agonist)

Hyperphagia ICV L-NNA
(NO synthesis 

inhibitor)

Decreasing effect

Zendehdel et al. 
(2020)

Broiler
chickens

Leptin Hypophagia ICV ICI118, 551
(Selective β2 adr-

energic receptor 
antagonist)

Decreasing effect

Ahmadi et al
(2019)

Broiler
chickens

Glutamate Hypophagia ICV astressin-B
(CRF1/CRF2 recep-

tors antagonist)
SHU9119  (MC3,4 

receptor
antagonist)

Decreasing effect

Shojaei et al. (2015) Layer chicken DAMGO
(μ-opioid receptor 

agonist)

Hypophagia ICV SB2420
(5HT2C
Selective antago-

nist)

Decreasing effect

Abolghasempour 
et al

(2019)

Broiler
chickens

N/OFQ Hyperphagia ICV MK-801 (NMDA
receptor antagonist)
CNQX (AMPA 

receptor
Antagonist)

Increasing effect

Adeli et al. (2020) Broiler
chickens

Leptin Hypophagia ICV MK-801 (NMDA
receptor antagonist)
CNQX (AMPA 

receptor
Antagonist)

Decreasing effect

Ahmadi et al. (2019) Broiler
chickens

MTII
(MC3,4 receptors 

agonist)

Hypophagia ICV MK-801 (NMDA
receptor antagonist)

Decreasing effect

Alimohammadi 
et al. (2015)

Layer chicken DAMGO
(μ-opioid receptor 

agonist)

Hypophagia ICV L-arginine Increasing effect

Zanganeh et al. 
(2020)

Layer chicken NA Hypophagia ICV AMI-193
(D2 dopaminergic 

receptor antago-
nist)

SCH23390
(D1 dopaminergic 

receptor antago-
nist)

Decreasing effect

Taati et al
(2011)

Broiler
chickens

Ghrelin Hypophagia ICV DL-AP5
(NMDA receptor 

antagonist)

Decreasing effect

Zendehdel et al. 
(2016)

Layer chicken DAMGO
(μ-opioid receptor 

agonist)

Hypophagia ICV SCH23390
(D1 dopaminergic 

receptor antago-
nist)

Decreasing effect

Taherian et al. 
(2016)

Broiler
chickens

DA Hypophagia ICV MK-801 (NMDA 
glutamate recep-
tors antagonist)

AIDA (mGLUR1 
glutamate recep-
tors antagonist)

Decreasing/Increas-
ing effect
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Table 1  (continued)

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Hashemzadeh et al. 
(2018)

Layer chicken Gaboxadol
(GABAA
receptor agonist)

Hyperphagia ICV SCH23390
(D1 dopaminergic 

receptor antago-
nist)

Increasing effect

Zendehdel et al. 
(2014)

Broiler
chickens

DA Hypophagia ICV SB242084
(5HT2C
Selective antago-

nist)

Decreasing effect

Zendehdel et al. 
(2019)

Broiler
chickens

N/OFQ Hyperphagia ICV SCH23390  (D1 
receptors antago-
nist)

AMI-193  (D2
receptors antago-

nist)

Increasing effect

Zendehdel et al. 
(2017a, b, c)

Layer chicken 2-AG
(selective  CB1 

receptors
Agonist)

Hyperphagia ICV picrotoxin
(GABAA antagonist)

Decreasing effect

Hassanpour et al. 
(2015)

Layer chicken 2-AG) (a  CB1 recep-
tor

Agonist)

Hyperphagia ICV L-NAME (a nitric 
oxide synthesis 
inhibitor)

Increasing effect

Heidarzadeh et al. 
(2018)

Broiler
chicken

nesfatin-1 Hypophagia ICV Astressin-B (
CRF1/
CRF2 receptors 

antagonist)
α-FMH (inhibitor 

of histidine decar-
boxylase

)
Chlorpheniramine 

(histamine  H1
receptors antago-

nist)

Decreasing effect

GhandForoushan 
et al. (2017)

Broiler
chicken

Histamine Hypophagia ICV SCH23390
(D1 dopaminergic 

receptor antago-
nist)

Decreasing effect

Taherian et al. 
(2019)

Layer chicken Ghrelin Hypophagia ICV SR141716A (selec-
tive

CB1 receptors 
antagonist)

AM630 (selective 
 CB2 receptors 
antagonist)

Increasing effect

Zendehdel et al. 
(2013b)

Broiler
chicken

Harmaline Hypophagia ICV SB242084(5-HT2c 
receptor antago-
nist)

Ketanserin
(5HT2a receptor 

antagonist)

Decreasing effect

Jaefari-Anari et al. 
(2018)

Broiler
chicken

DAMGO Hypophagia ICV Chlorpheniramine 
(histamine  H1 
receptors antago-
nist)

Thioperamide (his-
tamine  H3 recep-
tors antagonist)

Decreasing/Increas-
ing effect
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Table 1  (continued)

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Jalali et al
(2019)

Broiler chicken OT Hypophagia ICV MK-801
(NMDA receptor 

antagonist)
CNQX (AMPA 

glutamate receptor 
antagonist)

Decreasing

Keyshams et al. 
(2016)

Layer chicken 2-AG
(CB1
receptors agonist)
CB65
(CB2 receptor 

agonist)

Hyperphagia ICV MK-801(NMDA 
receptor antago-
nist)

CNQX
(AMPA/kainate 

receptor antago-
nist)

Increasing effect

Khodadadi et al. 
(2017)

Layer chicken 2-AG
(CB1
receptors agonist)
CB65
(CB2 receptor 

agonist)

Hyperphagia ICV AMI-193
(D2 receptor antago-

nist)

Increasing/Decreas-
ing effect

Mahzouni et al. 
(2016)

Broiler
chicken

Methylamine Hypophagia ICV AMI-193  (D2 recep-
tor antagonist)

SCH23390  (D1 
receptor

antagonist)

Decreasing effect

Mirnaghizadeh et al. 
(2017)

Broiler
chicken

OT Hypophagia ICV Chlorpheniramine
(histamine  H1 recep-

tors
antagonist)
Thioperamide
(histamine  H3 recep-

tors antagonist)
ICI 118,551
(β2 adrenergic 

receptor antago-
nist)

α-FMH
(histidine decar-

boxylase
inhibitor)

Decreasing/Increas-
ing effect

Mokhtarpouriani 
et al. (2016a, b)

Layer chicken L-arginine Hypophagia ICV gaboxadol
(GABAA
Agonist)

Decreasing effect

Mortezaei et al. 
(2013)

Cockerel 5-HT Hypophagia ICV MK- 801
(NMDA receptor
antagonist)
CNQX
(AMPA/kainate 

receptor
antagonist)
picrotoxin
(GABAA receptor
antagonist)

Decreasing/increas-
ing effect
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Table 1  (continued)

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Nayebzadeh et al. 
(2020)

Layer chickens DAMGO
(μ-opioid receptors 

agonist)
DPDPE
(δ -opioid receptors 

agonist)
U-50488H
(κ opioid receptors 

agonist)

Hypophagia/Hyper-
phagia

ICV ICI 118,551 (β2 
receptor antago-
nist)

parazosin (α1 recep-
tor antagonist)

yohimbine (α2 
receptor antago-
nist)

Decreasing effect

Moosadoost et al. 
(2019)

Broiler
Chicken

PG-931
(MC4R agonist)

Hypophagia ICV RF9
(NPFF receptor 

antagonist)

Decreasing effect

Raji-Dahmardeh 
et al. (2019)

Layer chicks OT Hypophagia ICV U-50488H (κ recep-
tor agonist)

DAMGO (μ recep-
tor agonist)

Decreasing/increas-
ing effect

Zendehdel et al. 
(2012b)

Chicken LPS Hypophagia ICV SB 242084
(5-HT2c receptor
Antagonist)
DL-AP5
(NMDA receptor
Antagonist)

Decreasing effect

Zendehdel et al. 
(2017b)

Layer chicken 5-HT Hypophagia ICV ICI 118.551
(β2 receptor antago-

nist)
Yohimbine
(α2 receptor antago-

nist)

Decreasing/Increas-
ing effect

Torkzaban et al. 
(2018)

Broiler
Chicken

DAMGO (μ-opioid 
receptor agonist)

DPDPE (δ-opioid
receptor agonist)

Hypophagia/
Hyperphagia

ICV AIDA (
mGLU1 receptors 

antagonist)
MK-801 (NMDA 

glutamate recep-
tors antagonist)

CNQX (AMPA glu-
tamate receptors

antagonist)

Decreasing/Increas-
ing effect

Yousefvand et al. 
(2019)

Broiler
Chicken

Somatostatin Hyperphagia ICV B5063 (selective 
 NPY1 receptor

antagonist)

Decreasing effect

Yousefvand et al. 
(2018)

Broiler cockerel Insulin Hypophagia ICV B5063 (selective 
 NPY1 receptor

antagonist)
SF22 (selective 

 NPY2 receptor 
antagonist)

Decreasing/Increas-
ing effect

Zendehdel et al. 
(2012a)

Broiler cockerel 5-HT Hypophagia ICV SHU9119
(a nonselective
melanocortin 

receptor (McR) 
antagonist)

MCL0020 (a
selective McR 

antagonist)

Decreasing effect
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Table 1  (continued)

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Zendehdel et al. 
(2009)

Broiler cockerel Glutamate Hypophagia ICV bicuculline
(GABAA receptor 

antagonist)
muscimol  (GABAA
receptor agonist)

Increasing/Decreas-
ing effect

Zendehdel et al. 
(2013c)

Chicken Ghrelin Hypophagia ICV PCPA
(a brain’s 5-HT 

depletion)
SB242084
(selective
antagonist for the 

5-HT2C receptor)
fluoxetine
(selective 5-HTreup-

take inhibitor–
SSRI)

Decreasing /
Increasing effect

Zendehdel et al. 
(2013a)

Broiler cockerel N/OFQ Hyperphagia ICV para-chlorophenyla-
lanine

(PCPA) (cerebral 
serotonin deple-
tive)

SB 242,084
(5-HT2c receptor 

antagonist)

Increasing
effect

Zendehdel et al. 
(2015b)

Broiler
Chicken

N/OFQ Hyperphagia ICV a-Fluoromethylhis-
tidine

(a-FMH; histidine 
decarboxylase 
inhibitor)

Chlorpheniramine
(histamine  H1 recep-

tor antagonist)
Thioperamide (his-

tamine  H3 receptor
antagonist)

Increasing /
Decreasing effect

Zendehdel et al. 
(2015c)

Chicken DAMGO
(µ-opioid receptors 

agonist)
DPDPE (δ -opioid 

receptors agonist)

Hyperphagia/
Hypophagia

ICV SR141716A  (CB1
receptors antago-

nist)
AM630  (CB2 recep-

tors
Antagonist)

Decreasing /
Increasing effect

Zendehdel et al. 
(2015d)

Broiler
chicken

LPS Hypophagia ICV Chlorpheniramine
(histamine  H1 recep-

tor antagonist)

Decreasing effect

Zendehdel et al. 
(2017c)

Broiler
chicken

N/OFQ Hyperphagia ICV ICI 118,551 (β2 
adrenergic

receptor antagonist)

Increasing effect

Zendehdel and Has-
sanpour. (2014a, 
b)

Cockerel Ghrelin Hypophagia ICV ICI 118,551 (β2 
adrenergic

receptor antagonist)

Decreasing effect

Yousefvand et al. 
(2020)

5-day-old chicken Insulin Hypophagia ICV NPY1/NPY2 Decreaing /Increas-
ing effect

Zendehdel et al
(2008)

Broiler cockerel Muscimol
(BABAA agonist)

Hyperphagia ICV Chlorpheniramine
(histamine  H1 recep-

tor antagonist)

Decreasing effect
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(an indirect agonist of DA), and DAMGO (μ-opioid receptor 
agonist) significantly decreased by the central inhibition of 
NO synthesis which highlighted the crosstalk between cen-
tral nitrergic system with OT, DA, and opioidergic systems 
(Zendehdel et al. 2021, 2017a; Alimohammadi et al. 2015).

Conclusion

Central interaction between mediators is a process which 
has underpinning role in regulation of appetite and feed-
ing behavior. In above- mentioned chapters the interaction 
between different mediators in brain modulating food intake 

behavior in birds has been described. In this respect, the 
interplay between the most important mediators in different 
classes including biogenic amines, aminoacids, peptides, 
ECS, nitrergic systems and different relevant subclasses 
were under debate. In terms of peptides, according to the fact 
that the well-known peptides and the relevant subtypes have 
anorexigenic and/or orexigenic effects in avian and other 
species, the mentioned classification is considered in this 
review. In conclusion, the interactions between NTs involved 
in food intake regulation in birds have been documented; 
among them the biogenic amines dopamine and seroto-
nin, and also the amino acid glutamate have more notable 

Table 1  (continued)

Reference Animal Modulation of neu-
ronal activity by

Feed intake behavior Route of 
administra-
tion

Interaction with Outcome

Mobarhan et al. 
(2020)

Layer chicken Glutamate Hypophagia ICV a-Fluoromethylhis-
tidine

(a-FMH; histidine 
decarboxylase 
inhibitor)

chlorpheniramine
(histamine  H1 recep-

tors antagonist)
thioperamide (hista-

mine  H3 receptors
antagonist)

Decreasing /
Increasing effect

Moosadoost et al. 
(2020)

Broiler chicken RFRP-3 Hypophagia ICV Astressin-B (
CRF1/
CRF2 receptors 

antagonist)
SHU9119 (melano-

cortin antagonist)
MCL0020
(a
selective McR 

antagonist)

Decreasing
effect

Tajalli et al. (2006) Broiler
chicken

N/OFQ Hyperphagia ICV bicuculline
(GABAA receptor 

antagonist)

Decreasing effect

Bungo et al. (2009) Layer chicks N/OFQ Hyperphagia ICV α- MSH Decreasing effect
Shiraishi et al. 

(2008)
Layer chicks Insulin Hypophagia ICV SHU9119 (melano-

cortin antagonist)
Decreasing effect

Farrokhi et al. 
(2020)

Broiler
chicken

Ghrelin Hypophagia ICV D1 receptor antagonist

CB1 receptore antagonist

Decreasing /
Increasing effect

Saito et al
(2005)

chicks Ghrelin Hypophagia ICV Astressin (CRF 
receptor antago-
nist)

Decreasing effect

Rahimi et al
(2021)

Broiler
chicken

Glycine Hypophagia ICV SCH23,390
(D1 antagonist)

Inccreasing effect

Zendehdel et al
(2021)

Layer- chicken OT Hypophagia ICV L-NAME
(NOS inhibitor)

Decreasing effect

Jonaidi et al. (2019) chicks LPS Hypophagia ICV Astressin (CRF 
receptor antago-
nist)

Decreasing effect
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mediatory role due to the further interactions they have with 
other NT systems.

In consideration of developing global food demands, 
poultry industry and chicks breeding is one of the most 
important processing to fulfill of food requirements. Increas-
ing food intake behavior in chickens can improve the poultry 
industry; understanding the neuronal pathways and related 
crosstalk affecting chicks appetite leads to have a better out-
line of feeding behavior in birds which is effective factor to 
progress poultry industry.

During studying the interplay of neuronal pathways in the 
control of food consumption, several variations have been 
demonstrated not only among different animal species but 
also within different strains of birds (Table 1). It seems that 
these noticeable differences detected among different bird 
strains are dependent on genetical diversity resulted in vari-
ations in central neuronal pathways and their dominancy in 
appetite and feeding regulation. The exact molecular mecha-
nisms underlying the relevant variations remains to be elu-
cidated in the future studies.

In the field of surveying the interactions between neuronal 
pathways intervening poultry food intake, most research 
works have employed the ICV administration of different 
drugs in order to inducing the alterations in feeding behav-
ior. In consideration of the rout of drug administration in 
these studies, the identification of the regions in CNS and 
the neuron locations, which have role in feeding regulation, 
is not possible. To fix this issue, the use of intranuclear drug 
injection is being recommended to be applied as a research 
method in the future studies in this field. Moreover, the most 
of conducted models have induced the alterations in neu-
ronal activity via pharmalogical agonizing and antagonizing 
procedures (Table 1). Although, the useful and applicable 
data has been extracted out of pharmacological methods, it 
is suggested that the new neurological techniques such as 
chemogenetics and optogenetics be widely employed to con-
trol the firing of specific neuronal pathway more precisely. 
Undoubtedly, these precise methods are capable of simulat-
ing the research models closer to the physiological status in 
more controlled condition.
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