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Abstract
Antimicrobial peptides (AMPs) are short molecules produced by almost all organisms. Fish AMPs contain innate immune 
components as their primary immune molecules. The fish AMPs include piscidins, hepcidins, defensins, cathelicidins and 
histone-derived peptides. Piscidin is potent and broad-spectrum; this peptide was conserved among Acanthopterygii super-
order and is therapeutically important among other AMPs. It was present mainly in the tissues of gills, muscle, head-kidney, 
skin and intestine of teleost. Piscidin AMP family includes piscidin, moronecidin, pleurocidin, epinecidin, gaduscidin, 
misgurin, dicentracin, chrysophsin and myxinidin. This review reports the structural properties of various piscidin and their 
mode of action as it is important to know their mechanism how the peptide involved in antimicrobial activity. In addition, 
the gene expression of piscidin which influenced the immune responses, their pharmaceutical importance and biological 
applications were described. Overall, the review explains a broad spectrum of knowledge on piscidin, its classes and types, 
structure, cytotoxicity, membrane permeabilization, properties and therapeutical implications.
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Abbreviations
AMPs  Antimicrobial peptides (AMPs)
AMPPs  Antimicrobial peptides and proteins
SGIV  Singapore grouper iridovirus
VNNV  Viral nervous necrosis virus
MHC  Major histocompatibility complex
TLR  Toll-like receptor
EST  Expressed sequence tag (EST)
LPS  Lipo poly saccharide
NMR  Nuclear magnetic resonance
DPC  Dodecyl phosphocholine
DMPC  1,2-Dimyristoyl-sn-glycero-3-phosphatidylcho-

line
DMPG  1,2-Dimyristoyl-sn-glycero-3-phosphatidylg-

lycerol
POPE  1-Palmitoyl-2-oleoyl-sn-glycerophosphatidyle-

thanolamine

POPG  1-Palmitoyl-2-oleoyl-sn-glycero-phosphoglyc-
erol

PAMPs  Pathogen-associated molecular patterns
PRRs  Pattern recognition receptors
HNF  Hepatocyte nuclear factor
cBB  Cured barramundi brain
PEDV  Porcine epidemic diarrhea virus
PRV  Pseudorabies virus
TGEV  Transmissible gastroenteritis virus
PRRSV  Porcine reproductive and respiratory syndrome 

virus
RV  Rotavirus
QCM-D  Quartz crystal microbalance with dissipation 

monitoring

Introduction

Antimicrobial peptides are ribosomally synthesized peptides 
less than 10 KDa molecular weight and having a positive 
net charge. These are evolutionarily preserved components 
(Arockiaraj et al. 2012; Shabir et al. 2018) which have a 
key role in the first line of defense mechanism (Han-
cock 2000; Arockiaraj et al. 2013) and play a major role 
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in innate immunity (Campagna et al. 2007; Moon et al. 
2007; Kumaresan et al. 2015). AMPs are derived from pro-
tein sequence by hydrolytic degradation which includes a 
signal sequence. AMPs are classified into five, based on 
their secondary structure which includes α-helical (Zasloff 
2002; Arockiaraj et al. 2014a), β-sheet, (Andreu and Rivas 
1998; Chaurasia et al. 2014) loop, extended coil and cyclic 
peptides (Hu et al. 2006; Arasu et al. 2017a; Shabir et al. 
2018). AMPs have been derived from various vertebrates 
and invertebrates and even from plants (Lee et al. 2007; 
Katzenback 2015; Arockiaraj et al. 2015). They are very 
sensitive against different pathogenic microbes such as bac-
teria, fungi, viruses and parasites (Jenssen et al. 2006; Sung 
et al. 2008; Niu et al. 2013; Arasu et al. 2017b). It has a 
potential value as it is active against multi-drug resistant 
and biofilm-forming microorganisms (Hiemstra et al. 2016; 
Ravichandran et al. 2016), thus can replace antibiotics (Lee 
et al. 2007; Arockiaraj et al. 2014b).

The AMPs are short sequences present in mucosal, skin 
surfaces and mast cells of different aquatic organisms (Sil-
phaduang et al. 2006; Arasu et al. 2014). As the surround-
ing environment of fish contains a wide range of patho-
genic organisms, the innate immune system of fish has its 
importance (Bulet et al. 2004; Sathyamoorthi et al. 2017). 
The major route for entry of pathogenic microorganisms is 
through the epithelial cells of skin, gills and gastrointestinal 
tract, which provide the first line of defense by producing 
host defense peptides. The healthy fish can limit these infec-
tions by the presence of AMPs as well as other short defense 
proteins (Salger et al. 2016; Ravichandran et al. 2018). The 
AMPs present in the fish mucus prevents the colonization 
of bacteria, fungi, parasites and other pathogenic organisms 
(Pálffy et al. 2009; Shabir et al. 2018; Sannasimuthu et al. 
2018). The presence of MHC I loci and the unique organiza-
tion of the Toll-like receptor (TLR) in Atlantic cod (Gadus 
morhua L.) helps the innate immune mechanism, thus pre-
venting pathogenic infection (Star et al. 2011; Ravichandran 
et al. 2017). The peptides with antimicrobial properties play 
a major role in such a preventive mechanism (Ruangsri et al. 
2012a; Marimuthu et al. 2015). Along with antimicrobial 
property, these peptides also have anti-inflammation, wound 
healing, immune activation (Gordon et al. 2005; Sannasi-
muthu et al. 2019), antitumor, immune-modulatory and anti-
diabetic effects (Diamond et al. 2009; Conlon et al. 2014; 
Timalata et al. 2015), hence these fish-derived peptides can 
be used as a potent product for improving immunity as well 
as health-related matters for various organisms including 
human (Salger et al. 2016; Kumaresan et al. 2019). In 1990s, 
identification and analysis of fish AMPs were initiated; and 
based on their structure, they were classified into five differ-
ent families such as hepcidins, β-defensins, histone-derived 
peptides, cathelicidins and fish-specific piscidins (Katzen-
back 2015; Rajesh et al. 2018).

Apart from hepcidin present in human, it was also 
screened in fish species. It is a major component of innate 
immunity with antimicrobial activity. The gene expression 
showed that it is highly expressed in liver tissues (Wang et al. 
2009; Sathyamoorthi et al. 2019). It has a small cysteine rich 
region with antimicrobial property and also has a role in 
iron homeostasis (Rodrigues et al. 2006; Akila et al. 2018). 
Hepcidin were formerly called as LEAP (Liver Expressed 
Antimicrobial Peptide) that contains a disulphide (cysteine) 
bond with β sheets (Cuesta et al. 2008; Sannasimuthu and 
Arockiaraj 2019). The importance of hepcidin in pharma-
ceuticals are for its anticancer and antibacterial properties 
(Chen et al. 2009a, b; Thirumalai et al. 2014). Wang et al. 
(2010) reported that hepcidin can be used as antiviral agent 
against nervous necrosis virus.

Defensins are components involved in innate molecules 
which include antimicrobial peptides and proteins (AMPPs). 
It is a cationic peptide with β-sheet structure which has bio-
logical properties and are conserved among plant and ani-
mal kingdoms. Fish defensins were first found in zebrafish 
(Danio rerio), green-spotted pufferfish (Tetraodon nigro-
viridis) and tiger pufferfish (Takifugu rubripes) through 
gene mining and later it was found in other fish species too 
(Ruangsri et al. 2013; Purabi et al. 2020). Β-defensins were 
reported to be present in brain, pituitary and testis and pos-
sessed antibacterial and antiviral properties (Jin et al. 2010; 
Raju et al. 2020). Studies on antiparasitic property were also 
analyzed against Trypanosoma cruzi and Toxoplasma gondii 
by pore formation and mitochondrial DNA fragmentation 
(Masso-Silva and Diamond 2014). The antiviral activity of 
defensin was isolated from Epinephelus coioides and was 
used against two viral pathogens, Singapore grouper iri-
dovirus (SGIV), an enveloped DNA virus and viral nervous 
necrosis virus (VNNV), a non-enveloped RNA virus (Guo 
et al. 2012).

The histone derived peptides are a part of histone mol-
ecule with biological activities. Buforin I was isolated from 
Asian toad (Bufo bufo) and was the first histone H2A derived 
peptide. These histone derived peptide was found in many 
fish species with wide range of pathogenic activities (Masso-
Silva and Diamond 2014; Prabha et al. 2019). The histone-
derived AMPs were identified from fish species including 
catfish (Parasilurus asotus), Atlantic salmon (Salmon salar), 
rainbow trout (Oncorhynchus mykiss), and Atlantic halibut 
(Hippoglossus hippoglossus) and invertebrates pacific white 
shrimp (Litopenaeus vannamei) and Chinese scallop (Chla-
mys farreri) (Zoysa et al. 2009). The two major histones are 
core histones and linker histones such as H2A, H2B, H3, H4 
and H1. Parasin, hipposin, buforin I and II, abhisin, himan-
turin, sunettin, and molluskin are represent histone H2A-
derived peptides; and onchorhyncin II and SAM (Salmon 
antimicrobial protein) are represent histone H1 (Chaithanya 
et al. 2013).
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Cathelicidin peptide has four cysteine residues forming 
two disulphide bridges, which is cationic and amphipathic 
in nature. Maier et al. (2008) suggested that it has major role 
in both innate and adaptive immunity. In mammals, both 
immune and non-immune activities have been exhibited. The 
gene expression was induced by different bacterial species 
and the expression were high in gill, liver, spleen and intes-
tine (Masso-Silva and Diamond 2014). The major property 
of this peptide is its antimicrobial activity with no cytotoxic-
ity (Lu et al. 2011).

Piscidin are a linear cationic α-helical peptide with broad-
spectrum activity (Fernandes et al. 2010). These peptides 
were characterized in various species of teleost fish which 
comes under superorder Acanthopterygii (Ruangsri et al. 
2012b; Elumalai et al. 2019). Piscidin contains amino acid 
sequences in length between 18 and 46. The first cationic 
AMP of piscidin was isolated from hybrid striped bass 
(Morone saxatilis × M. chrysops) (Chinchar et al. 2004; 
Campagna et al. 2007; Lauth et al. 2001). It exhibits anti-
bacterial, antifungal and antiviral properties. This peptide 
is also showed an innate immune response against para-
sitic infections (Dezfuli et al. 2010; Niu et al. 2013). It was 
reported that piscidin was sensitive towards fish and human 
pathogens and multidrug-resistant bacteria such as MRSA 
¼ methicillin-resistant Staphylococcus aureus, vancomycin-
resistant Enterococci sp., etc., (Lauth et al. 2001; Noga et al. 
2009; Dezfuli et al. 2010). This review is especially dealing 
with the structure, types, mode of action, properties includ-
ing cytotoxicity and membrane permeabilization and thera-
peutical properties of fish-derived piscidin.

Distribution of Piscidin

Piscidins are present in different taxa of teleosts including 
the families of Moronidae, Siganidae, Sciaenidae, Percich-
thyidae, Belontidae, Latridae (Andrews et al. 2010), Cich-
lidae, Sygnathidae (Sun et al. 2012) and Sparidae (Corrales 
et al. 2009). There is an evidence that piscidin is also present 
in families including Gasterosteidae, Sebastidae, Adrian-
ichthyidae, Fundulidae, Cyprinodontidae and Anoplopo-
matidae, which was confirmed by Expressed Sequence Tag 
(EST) databases (Salger et al. 2017).

The piscidin gene transcript was present in striped bass 
(M. saxatilis), white bass (M. chrysops), mandarin fish (Sin-
iperca chuatsi), European seabass (Dicentrarchus labrax), 
Nile tilapia (Oreochromis niloticus), Gadus morhua (Salger 
et al. 2016), hybrid striped bass (Salger et al. 2011) and 
Dicentrarchus labrax belongs to Moronidae (Salerno et al. 
2007). The presence of piscidin gene transcript was also 
observed in Siganus rivulatus, Leiostomus xanthurus and 
Micropogonias undulates belongs to Siganidae family. There 
is an evidence for the presence of the same in Siniperca 

chuatsi and O. niloticus belongs to Percichthyidae and 
Cichlidae family, respectively (Acosta et al. 2013; Sun et al. 
2007; Peng et al. 2012b). Trichogoster leeri, a Belontidae 
family also has a piscidin amino acid sequence in common. 
Epinephelus niveatus, which belongs to Serranidae family 
has the piscidin sequence in it (Silphaduang et al. 2006). 
The sequence of chrysopsins isolated from Chrysophrys 
major, a member of Sparidae family, which is similar to 
piscidin (Iijima et al. 2003). The expressed sequence tag 
(EST) databases showed evidence that piscidin was also iso-
lated from Gasterosteus aculeatus, belongs to Gasterosteidae 
family (Brown et al. 2008). It is reported that piscidin was 
isolated from Sebastidae family which includes Sebastes 
caurinus and S. schlegelii (Heras et al. 2011). Moreover, 
presence of piscidin was reported in Oryzias latipes, belongs 
to Adrianichthyidae and Fundulus heteroclitus, belongs to 
Fundulidae family. Cyprinodon variegatus contains a pis-
cidin sequence that was belong to Cyprinodontidae family; 
a similar piscidin sequence was reported in Anoplopoma 
fimbria from Anoplopomatidae family (Iijima et al. 2003; 
Brown et al. 2008). The piscidin like peptide was also iso-
lated from orange-spotted grouper (Epinephelus coioides), 
red-spotted grouper (E. akaara), brown-marbled grouper 
(E. fuscoguttatus), sablefish (Anoplopoma fimbria), spotted 
seahorse (Hippocampus kuda), yellow croaker (Larimichthys 
crocea) (Ruangsri et al. 2012b) and Gadus morhua (Noga 
et al. 2009). Until now, it is reported that piscidin is only 
peptide present in superorder Acanthopterygii.

Other AMPs of Piscidin Family

Considering the piscidin family, it consists of many other 
peptides under its family including pleurocidin, moroneci-
din, dicentracin, epinecidin, chrysophsin, myxindin, mis-
gurin and gaduscidin (Salerno et al. 2007; Sun et al. 2007; 
Peng et al. 2012b; Acosta et al. 2013; Katzenback 2015). 
Table 1 shows the amino acid sequence, charge, expression 
pattern, presence and properties of different AMPs of pis-
cidin family.

Pleurocidin is a highly basic molecule and an amphip-
athic α-helical cationic peptide found in skin, gill and gut 
tissues of winter flounder (Pseudopleuronectes americanus) 
(Browne et al. 2011) and its antimicrobial activities was 
examined (Patrzykat et al. 2002). Piscidin has a similar-
ity with pleurocidin as well as a close genetic relationship 
which suggests that pleurocidin are the members of piscidin 
family. Pleurocidin and pleurocidin like peptides were also 
isolated from Atlantic halibut (Hippoglossus hippoglos-
sus), witch flounder (Glyptocephalus cynoglossus), Ameri-
can plaice (Hippoglossoïdes platessoïdes) and yellowtail 
flounder (Limanda ferruginea) (Heras et al. 2011; Ruangsri 
et al. 2012b). It has a broad spectrum of activity against 
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Gram-positive and Gram-negative bacteria. The sequence 
has been arranged as H−Gly-Trp-Gly-Ser-Phe-Phe-Lys-Lys-
Ala-Ala-His-Val-Gly-Lys-His-Val-Gly-Lys-Ala-Ala-Leu-
Thr-His-Tyr-Leu−OH (Yoshida et al. 2001). Pleurocidin has 
homology with dermaseptins (from skin of hylid frog) and 
ceratatoxins (from mediterrenean fruit fly) and is showing 
high antifungal activity (Jung et al. 2007). It is capable of 
causing dye leakage from liposomes, translocate across 
model membranes and pore-forming activity in planar lipid 
bilayers (Mason et al. 2006). The mode of action against the 
microbes was developed by membrane disruption mecha-
nism by binding pleurocidin on microbial membrane (Jung 
et al. 2007). It is reported to show membrane disruption 
and oxidative stress with no hemolysis against human eryth-
rocytes. The therapeutic application of pleurocidin against 
infectious diseases was reported by Choi and Lee (2012) 
with combination of other drugs and along with adjuvants. 
The pleurocidin were used for cancer treatment in zebrafish 
model (Morash et al. 2011). Thus, it was suggested to use 

in aquaculture as therapeutic agent and it is also used as a 
potential food preservative (Burrowes et al. 2006).

Moronecidin was isolated from gill, skin, intestine, 
spleen, head kidney and blood of hybrid striped bass and 
white bass (M. chrysops) (Browne et al. 2011); it is function 
against various bacterial pathogen. It is a novel helical AMP 
with 22 amino acid residue, which is C-terminally amidated 
(Lauth et al. 2001). This peptide have low toxicity and high 
salt tolerance (Shin et al. 2017). The moronecidin mRNA 
was upregulated in skin, heart, brain, gill, head kidney, kid-
ney, intestine and spleen due to the induction of Escherichia 
coli LPS as well as Streptococcus iniae (Browne et al. 2011). 
The membrane disruption of moronecidin on microbes is 
due to the formation of pores. As it has salt tolerance, it can 
be used for therapeutic applications in marine organisms as 
well as human medicines (Lauth et al. 2001). The toxicity 
of moronecidin were analysed in murine and human hepatic 
cells, which resulted no cytotoxicity, thus it can be used as 
a therapeutic agent at safe concentration (Bo et al. 2019).

Table 1  List of different antimicrobial peptides belong to piscidin family

The table describes the peptide sequence and other parameters including the charge, number of residues, expression site, source of presence and 
their properties

AMPs Sequence Charge No. of 
resi-
dues

Expression site Sources Properties References

Pleurocidin GWGSFFKKAAHVGKHVG-
KAALTHYL

4 25 Gills, skin, 
spleen, kidney 
and intestine

Pleuronectes 
americanus

Antibacterial, 
antifungal, 
antiviral, 
antiparasitic, 
immunomodu-
lation and 
chemotaxis

Shabir et al. (2018)

Moronecidin FFHHIFRGIVHVGKTIH(K/R)
LVTGT 

3 22 Skin, gills, blood, 
intestine, kid-
ney and spleen

Morone sp. Antibacterial, 
antifungal 
and causes 
necrosis.

Lauth et al. (2001) 
and Shabir et al. 
2018)

Epinecidin-1 GFIFHIIKGLFHAGKMIHGLV 3 21 Gills and intes-
tine

Epinephelus 
coiodes

Anti-bacterial, 
antifungal,

Anti-cancer, 
antiviral and

Wound healing

Lin et al. (2009a, 
b) and Shabir 
et al. (2018)

Misgurin RQRVEELSKFSKKGAA ARR 
RK

7 21 Skin Misgurnus sp. Anti-bacterial 
and antifungal

Yan and Wu 
(2012) and 
Shabir et al. 
(2018)

Chrysophin FFGWLIKGAIHAGKAIHGL-
HRRRH

5 22 Gills and skin Chrysophrys 
major

Antimicrobial Salerno et al. 
(2007)

Myxinidin GIHDILKYGKPS 2 12 Epidermal mucus Myxine glutinosa Antibacterial and 
antibiofilm

Han et al. (2016)

Dicentracin FFHHIFRGIVHVGKSI-
HKLVTG

3 22 Granulocytes, 
macrophages 
and monocytes

Dicentrarchus 
labrax

Antimicrobial Salerno et al. 
(2007)

Gaduscidin FIHHIIGWISHGVRAIHRAIH 3 21 Spleen, head, 
kidney and gill

Gadus morhua Antimicrobial 
and antibiofilm

Browne et al. 
(2011)
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Dicentracin belongs to the piscidin family derived from 
European seabass (Dicentrarchus labrax) (Family: Moroni-
dae) (Andrews et al. 2010; Rondeau et al. 2013). The novel 
amphipathic alpha helical peptide isolated from sea bass 
contains 22 amino acid residues and is having antibacterial, 
antiviral and antiparasitic activities (Meloni et al. 2015). It 
was also reported that dicentracin possessed antimicrobial 
activity in mandarin fish against microbial pathogen (Sun 
et al. 2007). Its expression was observed in macrophages, 
granulocytes and monocytes from head kidney, periph-
eral blood and peritoneal cavity (Salerno et al. 2007). As 
reported by Terova et al. (2009) Bio-Mos induced changes 
in the gene expression of dicentracin in seabass.

Epinecidin, cationic peptide with α-helical structure iso-
lated from grouper (E. coioides) which contains 67 amino 
acid residues; it shows growth inhibitory activities against 
a range of Gram-positive and Gram-negative bacteria and 
fungus (Pan et al. 2009). It interacts with phospholipids in 
bacterial membranes through membrane disrupting mecha-
nism (Chen et al. 2009a, b). It is responsible for pore for-
mation in membranes of bacteria leading to lysis and their 
subsequent death (Pan et al. 2007). It has an anionic prodo-
main COOH terminal with RRRH amino acid residue that 
forms a non-helical hydrophilic domain (Yin et al. 2006). It 
has multifunctional properties including antisepsis, antitu-
mor, antivirus and immunomodulatory activities (Narayana 
et al. 2015). The mature peptide showed sequence similari-
ties with chrysophsin, moronecidin, pleurocidin and pisci-
din 3 (Pan et al. 2007). The major advantage is that it has 
the ability to target cancer cells with minimum cytotoxicity 
(Lin et al. 2009a, b). It can also be used as cleaning agent 
to prevent pathogenic infections (Pan et al. 2010) due to tis 
antimicrobial properties (Chee et al. 2019).

Chrysophsin was isolated from red sea bream (Pagrus 
major) which is similar to piscidin, pleurocidins and epine-
cidin that present in various fishes (Brown et al. 2008; Salger 
et al. 2016). Chrysophsin-1, chrysophsin‐2 and chrysoph-
sin‐3 are present in the eosinophilic granule cells in gills; 
and has potent bactericidal activity against Gram‐negative 
and Gram‐positive pathogens of fish as well as crustaceans. 
The C-terminal region forms RRRH with a non-helical 
hydrophilic domain similar to epinecidin (Iijima et al. 2003). 
Costa et al. (2018) staed that chrysophin-1 peptide were 
covalently immobilized which result in higher antimicrobial 
activity than when the peptide is simply adsorbed. The dis-
ruption process of Chrysophin-3 were analyzed using Quartz 
Crystal Microbalance with Dissipation monitoring (QCM-
D) by membrane permeabilization through pore formation 
(Michel et al. 2017).

Myxindin was isolated from the mucus layer of Myxine 
sp. (Ebbensgaard et al. 2015). It has activity against both 
Gram-positive and Gram-negative bacteria and even multi-
drug-resistant strains. It has the ability to disrupt bacterial 

membrane by pore formation and can be used for therapeutic 
agent development. It is not toxic even at high concentra-
tions, thus has no significant hemolysis activity (Han et al. 
2016). Some of the report contradict the activities of chryso-
phin peptide too (Ebbensgaard et al. 2015).

Misgurin, a 21 amino acid peptide found in loach (Mis-
gurnus anguillicaudatus) with a broad spectrum of antimi-
crobial activity and has no significant hemolytic properties. 
It has activity against Gram positive bacteria, Gram negative 
bacteria and fungi species (Shabir et al. 2018). The sequence 
did not show any homology with other known AMPs. It acts 
as non-specific defense substance in fish skin. This peptide 
have a strong cationic tetrapeptide sequence ‘RRRK’ at the 
C-terminal region ‘Arg-Gln-Arg-Val-Glu-Glu-Leu-Ser-Lys-
Phe-Ser-Lys-Lys-Gly-Ala–Ala-Ala-Arg-Arg-Arg-Lys’ (Park 
et al. 1997; Iijima et al. 2003).

Gaduscidin has two isomers namely Gad-1 and Gad-2 
which was identified from the expressed sequence tag data-
base of an G. morhua; both isomers have potential antimi-
crobial properties (McDonald et al. 2015). Its expression 
was observed in head, spleen, kidney, gill, peripheral blood, 
pyloric caecum and brain. The high level of gene expression 
of gaduscidin are consistent with the immune functions of 
these tissues in teleosts. However, it was hardly induced in 
spleen due to intraperitoneal injection of bacterial antigens 
(Brown et al. 2008). The crude protein extracts of gaduscidin 
also contains high antimicrobial activities. This peptides has 
several histidine residues, for example, Gad-1 has five and 
Gad-2 has four (McDonald et al. 2015).

Isoforms and Classes of Piscidin

Piscidin was present as different isomers in various fish spe-
cies. Though they are structurally similar, they are function-
ally different. Piscidin 1 was first isolated from mast cells of 
the hybrid striped bass (Lee et al. 2014); it contains a potent 
AMP of 22 amino acid sequence which is conserved with 
other isoforms of piscidin in the amino terminus, where his-
tidine and phenylalanine are rich. It is active against fungi, 
yeast, viruses, parasites, Gram-positive and Gram-negative 
bacteria and even active against antibiotic-resistant bacteria. 
As it has some hemolytic and cytotoxic effects, its thera-
peutic usage has been limited (Lee et al. 2007). It has the 
highest antibacterial activity among other piscidins (Lauth 
et al. 2001; Noga and Silphaduang 2003). Piscidin 1 was 
reported to have potent antimicrobial activity against Methi-
cillin Resistant S. aureus (Menousek et al. 2012). It has the 
ability to permeabilize cancer cell membranes by interacting 
with a negative charge on their membranes. As lipids get 
through the alpha-helix of piscidin, it forms a toroidal hole 
lined by peptides and lipid groups (Lin et al. 2012).
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Piscidin 2, a 22 amino acid residue with a conserved 
amino-terminal, rich in histidine and phenylalanine (Sung 
et al. 2008). Piscidin 2 differs to piscidin 1 only by single 
amino acid substitution at its 18th position and has an identi-
cal antimicrobial property (Colorni et al. 2008). It showed 
activity against viruses, fungi and bacteria, even against anti-
biotic-resistant bacteria (Lauth et al. 2001; Sung et al. 2008). 
Piscidin 2 is active against infective stages of parasites and is 
a potent component of antimicrobial defense in various fish 
species (Lee et al. 2014). Piscidin 2 is a lytic peptide which 
disrupts the permeability of microbial membrane leading 
to lysis of the cell. The parasite, Ichthyophthirius multifiliis 
was sensitive towards the exposure of piscidin 2 showing a 
lethal effect. Due to low cation concentration in freshwater, 
the sensitivity is more. As seawater has high concentrations 
of monovalent and divalent cations, they are inhibitory to 
most of the antibiotics. Comparatively, the peptide is active 
in salt and it is active against marine parasites as well. It 
was also reported that piscidin 1 and 2 are highly active 
against S. aureus even in the presence of high concentration 
of monovalent and divalent cations (Colorni et al. 2008). 
Piscidin 1 and 2 were also derived from skin and gill tissues 
of striped bass (Campagna et al. 2007).

Piscidin 3 is 22 amino acid in length; also, it is a cationic, 
amphipathic and membrane disruptive peptide with high his-
tidine residues. It has shown anti-inflammatory properties 
both in in vitro and in vivo condition and can also be used 
as an anesthetic compound (Hayden et al. 2015). Piscidin 
3 has an antiparasitic activity in which the mechanism is 
undetermined, and it is inhibitory to all bacterial pathogens 
as like piscidin 1 and 2 (Colorni et al. 2008). Compared to 
piscidin 2 and piscidin 1, piscidin 3 showed low minimum 
inhibitory concentration and minimum bacterial concentra-
tion (Moon et al. 2007). It is also showed low amphipathicity 
as it has a glycine at its 17th position (Lee et al. 2007). The 
piscidin 1, 2 and 3 are highly basic with isoelectric points 
ranged between 11.27 and 12.3.

Piscidin 4 is a 44 amino acid length peptide (Salger et al. 
2011) with a molecular weight of 5329 Da and its N-terminus 
was highly homologous to other piscidins like Pis-1, Pis-2 
and Pis-3. Piscidin 4 has pI of 11.23, which is highly basic 
in nature and they form a large hydrophobic region due to the 
presence of  Phe2,  Leu5,  Phe6,  Ala9,  Ile12,  Phe13,  Ala16,  Trp20 
and  Val34 in the sequence; altogether these residues formed 
a helix and loop regions (Noga et al. 2009). It has antibacte-
rial activity against both Gram-negative and Gram-positive 
bacteria including pathogens causing pasteurellosis and lac-
tococciosis (Salger et al. 2011; Peng et al. 2012b) caused by 
Photobacterium damselae subsp., piscicida and S. iniae. They 
are also active against multi-antibiotic resistant strains of L. 
garviae and even against some human pathogens. Piscidin 4 
has a coil at the C-terminal end which separates two β-sheet 
(Lauth et al. 2001) and alpha-helix at the N-terminal, and it 

was present both in white bass and striped bass. This pep-
tide has a modified amino acid on its 20th position which is a 
hydroxylated tryptophan based on mass spectrometry analysis 
and the Schiffer-Edmunson plot; both the reports suggest that 
piscidin 4 has an amphipathic α-helix structure (Park et al. 
2011). As piscidin 4 has more glycine and proline residues 
than piscidin 1, it shows more α-helicity that causes flexibility 
and bending (Lee et al. 2007).

Piscidin 5 was reported from M. chrysops and it was highly 
expressed in the intestine. The β-sheets present in piscidin 4 
and 5 are similar to carbohydrate and lipopolysaccharide-bind-
ing motifs which helps in pattern recognition function in innate 
immunity (Yoshida et al. 2001; Lauth et al. 2001; Patrzykat 
et al. 2002; Mason et al. 2006). Piscidin 5 is a mature peptide 
with 44 amino acids that contains a signal peptide with 22 
amino acid at N terminal and 4 amino acid as prodomain at 
C-terminal (Pan et al. 2018). Piscidin 5 like peptide plays an 
immune response in large yellow croaker (Larimichthys cro-
cea). It was showing 86% similarity with other homologous 
species (Zhou et al. 2014).

Piscidin 6 and 7 belongs to Class III family based on their 
structure as well as function. Piscidin 6 gene expression was 
predominantly observed in gill, intestine and kidney of M. 
saxatilis and M. chrysops. Also, piscidin 7 was expressed in 
the intestine of M. saxatilis (Campoverde et al. 2017). The 
different isomers of piscidin, their amino acid sequence and 
physico-chemical properties including isolelctric point and 
molecular weight are listed in Table 2.

Piscidin family were classified into three major classes 
based on the number of amino acid residues present in it. 
Piscidin 1, 2 and 3 belong to Class I while piscidin 4 and 5 
belong to Class II and piscidin 6 and 7 belong to Class III fam-
ily. Class I has 22 amino acid residues, whereas Class II and 
Class III has 44–46 and 55 amino acid residues, respectively 
(Salger et al. 2016). Class I piscidins have the highest activity 
against Gram-positive bacteria compared to Class II and class 
III piscidins. Class I piscidin showed higher activity against 
prokaryotes and ciliated protozoans compared to class II and 
class III (Campoverde et al. 2017). Class II piscidins have the 
highest activity against Gram-negative bacteria and Class III 
piscidins have very little activity against bacteria, whereas high 
activity was reported against protozoan (Salger et al. 2016; 
Shin et al. 2017). Class III piscidins has coil-β sheet-coil-α 
helix structure which is different from that of Class I and Class 
II (Salger et al. 2016). The seven piscidins isolated from dif-
ferent fish sources and the classification was listed in Table 3.

Structure of Piscidin

The structure of piscidin was determined by Nuclear Mag-
netic Resonance (NMR) spectroscopy; it shows that pisci-
din 1 formed an α-helical structure in SDS micelles (Jeong 
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et  al. 2016). Utilizing dodecyl phosphocholine (DPC) 
micelles, a zwitterionic lipid surface the three-dimensional 
structure was determined (Campagna et  al. 2007). Pis-
cidin-1 has an amphipathic α-helical structure, as it con-
tains hydrophobic and hydrophilic amino acids in opposite 
sides which was determined by solid-state NMR (Lee et al. 
2007). The solid-state NMR study shows that Pis-1 is par-
allelly oriented to membrane surface. The peptide-lipid 

interactions are enhanced by water-bilayer interface of 
amphipathic cationic AMPs (Lee et al. 2007). As reported 
Perrin et al. (2014) utilizing 3:1 ratio of 1,2-dimyristoyl-
sn-glycero-3-phosphatidylcholine (DMPC)/1,2-dimyris-
toyl-sn-glycero-3-phosphatidylglycerol (DMPG) and 
1-palmitoyl-2-oleoyl-sn-glycerophosphatidylethanolamine 
(POPE)/1-palmitoyl-2-oleoyl-sn-glycero-phosphoglycerol 
(POPG) lipid bilayers, different high-resolution structures 

Table 2  List of different isomers of piscidins, their sequence and other parameters including number of residues, isoelectric point, molecular 
weight and their properties

Peptide Sequence No. of residues Isoelectric point Mol. mass (Da) Properties References

Piscidin 1 FFHHIFRGIVHVGK-
TIHRLVTG

22 12.01 2572.06 Anti-viral, anti-bacterial, 
anti-fungal, anti-para-
sitic and anticancer

Salerno et al. (2007) and 
Chen and Cotten  (2014)

Piscidin 2 FFHHIFRGIVHVGKTI-
HKLVTG-NH2

22 11.27 2543.4 Anti-viral, anti-bacterial, 
anti-fungal, anti-mold 
and anti-parasitic

Chen et al. (2009a, 
b), Sung et al. 
(2008), Salger et al. 
(2011) and Peng et al. 
(2012a)

Piscidin 3 FIHHIFRGIVHAGRSI-
GRFLTG

22 12.3 2491.93 Anti-viral, anti-bacterial, 
anti- fungal and anti-
parasitic

Chen et al. (2009a, b) and 
Salger et al. (2011, 
2016)

Piscidin 4 FFRHLFRGAKAIFR-
GARQGXRAHKVVS-
RYRNRDVPETDN-
NQEEP

44–46 11.23 5329.3 Lowest hemolysis Yoshida et al. (2001) and 
Peng et al. (2012a)

Piscidin 5 LIGSLFRGAKAIFR-
GARQGWRSHKA

44–46 12.48 2784.27 Anti-bacterial, anti-fun-
gal and anti-parasitic

Sun et al. (2007) and 
Rathinakumar et al. 
(2009)

Piscidin 6 N/A 55 N/A 6229 Antibacterial Salger et al. (2016)
Piscidin 7 N/A 55 N/A 6318 Antibacterial Salger et al. (2016)

Table 3  Isomers of piscidin peptides and their different classes obtained from different species have been provided along with its GenBank accs-
sion IDs

Peptide GenBank accession ID (species) Class Organism References

Piscidin 1 AF394243 (white bass), JX412481 
(Malabar grouper)

Class I Morone chrysops, Epinephelus mala-
baricus

Sun et al. (2007)

Piscidin 2 JX412480 (Malabar grouper),
AF394244 (striped sea-bass)

Class I Epinephelus malabaricus, Morone 
saxatilis

Sun et al. (2007)

Piscidin 3 KX231319 (striped bass), KX231323 
(white bass)

Class I Morone chrysops,
Morone saxatilis

Salger et al. (2016)

Piscidin 4 KX231324 (white bass), KX231315 
(striped bass), HM596029 (white 
bass × striped sea-bass)

Class II Morone chrysops,
Morone saxatilis
Morone chrysops × Morone saxatilis

Sun et al. (2007) and Salger et al. (2016)

Piscidin 5 KX231312 (white bass), KX232424 
(striped bass), HM596030 (white 
bass × striped sea-bass)

Class II Morone chrysops,
Morone saxatilis,
Morone chrysops X Morone saxatilis

Sun et al. (2007) and Salger et al. (2016)

Piscidin 6 KX232425 (white bass X striped sea-
bass),

KX231321 (striped sea-bass), 
KX231326 (white bass)

Class III Morone chrysops × Morone saxatilis,
Morone saxatilis,
Morone chrysops

Salger et al. (2016)

Piscidin 7 KX231322 (striped sea-bass), 
KX231318 (white bass X striped 
sea-bass)

Class III Morone saxatilis,
Morone chrysops × Morone saxatilis

Salger et al. (2016)
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of piscidin 1 and piscidin 3 were determined (Perrin et al. 
2014). In a circular dichroism analysis, Piscidin 2 was 
unstructured in the water while in trifluoroethanol showed 
α helical structure (Lauth et al. 2001; Sung et al. 2008). The 
prediction of the secondary structure of piscidin 4 suggested 
an alpha-helix in N-terminal and a random coil in the C-ter-
minal of the sequence (Noga et al. 2009). Piscidin 4 has high 
activity towards DPPC and EYPC liposome which contain 
low alpha-helical regions (Lee et al. 2007). The piscidin 5 
like peptide is more similar to piscidin 4; and piscidin 5 has 
a major role in immune response (Zhou et al. 2014).

The structural diversity of piscidin is due to the adapta-
tion of microbes in different environments (De Angelis et al. 
2011). Kumaresan et al. (2018) have identified two isoforms 
of piscidin, which has conserved as well as variable regions 
with three distinct α-helices. The three-dimensional struc-
ture of piscidin was depicted in Fig. 1 (Kumaresan et al. 
2019).

Gene Regulation of Piscidin

Piscidin was found as conserved among teleosts and it 
was upregulated by various pathogenic responses. This 
regulation towards pathogenic challenge is species and 
gene-specific; the regulation of piscidin was recognized by 
pathogen-associated molecular patterns (PAMPs) via pat-
tern recognition receptors (PRRs), such as the action of 
an intracellular signaling cascade which includes MyD88, 

Toll-like receptors (TLRs), TRAF6, IRAK1 and IKK. The 
signaling cascade helps in the activation of NF-κB which 
translocates to the nucleus, where AMPs and effector mol-
ecules transcriptionally activated (Campoverde et al. 2017). 
Piscidin expression was observed in Nile tilapia, rodlet cells 
of mesentery organs, phagocytic granular cells of head kid-
ney and gills of gilthead seabream (Sparus aurata) (Mulero 
et al. 2008) and in alimentary tract and gill of pearl gourami 
(Trichogaster leeri) (Silphaduang et al. 2006; Ruangsri et al. 
2012b). The up and down-regulation of the different classes 
of piscidins against various pathogens in fish species are 
presented in Table 4. In fish, piscidins are received by a 
pathogen that contains phagosomes, thus the peptides act 
as an antimicrobial agent for bactericidal activity through 
phagocytosis due to the granules present in the phagocytic 
granulocytes of piscidin (Iijima et al. 2003; Andrews et al. 
2010). The positively charged sites present in the piscidin 
gene codes for mature peptide which provide protection 
against evolving host pathogens (Peng et al. 2012a). Pisci-
din was introduced by some stimuli like Gram-positive and 
Gram-negative bacteria, bacterial cell components like LPS, 
bacterial antigen like ASAL and also by parasites, viruses 
and poly I:C (Masso-Silva and Diamond 2014).

Most piscidin genomic organization have four-exon and 
three-intron (Cole et al. 2000), whereas piscidin from Nile 
tilapia has a three-exon and two-intron in structure (Peng 
et  al. 2012a). The epinecidin from yellow croaker and 
grouper has five-exon and four-introns (Pan et al. 2008). 
The proteolytic cleavage at N-terminal and prepropeptide 
of C-terminal leads to the removal of the signal peptide and 
prodomain, respectively; hence, releasing a short-matured 
peptide, piscidin. Piscidin has an amphipathic structure with 
hydrophilic cationic amino acids and can, therefore, inter-
act with pathogenic membranes (Bae et al. 2014). During 
fish development, the piscidin expression was upregulated. 
The levels of gene expression of piscidin are noticed in skin 
mucus, skin, gill, head kidney, intestine/gastrointestinal tract, 
spleen, blood, liver, rectum, gall bladder, stomach, pyloric 
caeca, heart and muscle as high to low (Iijima et al. 2003; 
Salger et al. 2011). Most commonly piscidins are present in 
mast cells of gills and rodlet cells of skin, intestine, gill, epi-
thelial mucous cells, eosinophilic granular cells, phagocytic 
granulocytes and intestinal goblet cells of intestinal mucosa 
(Katzenback 2015). The promoter regions of piscidin con-
tains binding sites namely γ-IRE, α-IRE, C/EBPβ, NF-IL-6, 
AP-1 and hepatocyte nuclear factor (HNF-1) transcriptional 
factors; these receptors involved in intracellular signaling 
pathway and transcriptional factors in piscidin regulation 
(Lee et al. 2014; McDonald et al. 2015; Pan et al. 2007; Han 
et al. 2016; Campoverde et al. 2017).

Piscidin has an immune-modulatory role that expresses 
both pro-inflammatory genes and immune-related genes 
such as IL-10, IL-1β, TNF-α, NOS2, NF-kb, Myd88, TLR3, 

Fig. 1  Three-dimensional structure of piscidin protein. Piscidin pro-
tein was isolated from Channa striatus (LS974203) with conserved 
and variable regions highlighted in magenta and blue color, respec-
tively. This structure was formulated using I-Tasser server (Color fig-
ure online)
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TLR1 and TLR4a by releasing NF-κB via IKB down-regu-
lation; also, there is a down-regulation of some anti-inflam-
matory signals. In addition, a reduction of inflammatory 
cytokines by pathogen expression was observed in fishes 
(Menousek et al. 2012; Noga et al. 2009; Sun et al. 2007). 
Immunomodulatory activity of pleurocidin belongs to pis-
cidin family in which expression of IL-1β and COX1 was 
induced by RTS11 macrophage cell line, where no effect was 
observed on antigen presentation or Mx gene expressions by 
JAK/STAT (Chiou et al. 2006); Mx protein is the interferon-
induced antiviral protein, a product of the Mx gene (Jensen 
and Robertsen 2000). The Mx proteins have a role in resist-
ance to negative-stranded RNA viruses, thus function as 
antiviral defense (Trobridge and Leong 1995). Pleurocidin 
does not affect the LPS induced responses, while cured bar-
ramundi brain (cBB) fish cell line induced Mx transcripts 
(Wang et al. 2010). In response to piscidin transcripts, Mx2 
and Mx3 were down-regulated in grouper (Wang et  al. 
2010). In transgenic zebrafish epinecidin-1 expression was 
induced due to pathogenic microbes (Peng et al. 2010). 
When the fish is expressing epinecidin-1 due to E. coli, the 
expression of TNF, IL-1β, TLR4, NF-κB and nitric oxide 
synthase 2 were also observed (Katzenback 2015). The 
immunomodulatory activity of piscidin in fish enabled the 
expression of pro-inflammatory and other immune-related 
genes such as IL-1β, IL-22, TNF-α, IL-26, IFN-γ, lysozyme, 

IL-10, NOS2, NF-κB, MyD88, TLR1, TLR4a and TLR3 
(Baumann 1991; Larrick et al. 1995; Akira et al. 2006; Lee 
et al. 2007; Noga et al. 2009; Hayden et al. 2015).

Piscidin was expressed in fish during embryonic develop-
ment and the amount of expression was increased between 
day 8 and day 40 (Noga et  al. 2009; Shin et  al. 2017). 
However, a reduction was observed in 40 day old larvae, it 
was due to the dilution effect because of the rapid growth 
occurred after metamorphosis. In the developed juveniles, 
piscidin was highly expressed in gill, moderately in kidney 
and spleen and lower in gut (Noga et al. 2009; Dezfuli et al. 
2010).

The gene expression of piscidin 1 was only found in 
striped bass and piscidin 2 were only found in white bass. 
While Piscidin 4 gene is inherited from both or any one 
of the parental species of hybrid striped bass. Piscidin 4 is 
one of the major components of host antibacterial defenses 
(Noga et al. 2009). The gene expression of piscidin 4 shown 
in both species; mainly the highest expression was noticed in 
gills and the lowest was observed in the foregut of intestine 
(Park et al. 2011). The striped bass and white bass piscidin 
orthologs contributed to the alleles of the hybrid striped bass 
genome as six different piscidin from 4 loci (piscidin 1, 3, 
4, and 6), another 2 alleles from 2 loci (piscidin 5 and 7) 1 
allele from 1 loci (piscidin 2) which are all derived from 
parental species (Salger et al. 2016).

Table 4  List of pathogens influenced the up and downregulation of piscidin protein along with their expression sites and organisms

Pathogens Expression site/ tissues Upregulation/
downregulation

Organism References

Gram-negative bacteria
  Aeromonas salmonicida Head kidney and spleen Upregulation Gadus morhua Brown et al. (2008)
  Edwardsiella tarda Spleen and kidney Up and downregulation Oplegnathus fasciatus Narayana et al. (2015)
 LPS Brain, heart, gill, kidney, 

pronephros, skin, spleen, 
intestine, head kidney 
leukocytes, head kidney, 
intestine and skin

Upregulation Siniperca chuatsi, Chion-
odraco hamatus and 
Epinephelus coioides

Ii (2010), Pan et al. (2007) 
and  Yang et al. (2016)

  Vibrio anguillarum Skin, gills, head and kidney Up and downregulation Dicentrarchus labrax Salger et al. (2016)
Gram-positive bacteria
  Streptococcus iniae Kidney, spleen and gill Upregulation Oplegnathus fasciatus Narayana et al. (2015)

Virus and viral analogue
 Lymphocystis iridovirus Acidophilic granulocytes Upregulation Sparus aurata Iijima et al. (2003)
 Poly I:C Head kidney, leukocytes, 

intestine and skin
Upregulation Chionodraco hamatus and 

Epinephelus coioides
Ii (2010) and Pan et al. 

(2007)
 Red seabream iridovirus 

(RSIV)
Spleen and kidney Upregulation Oplegnathus fasciatus Narayana et al. (2015)

Parasites
  Acanthocephalus lucii Intestine mast cells Upregulation Perca fluviatilis Han et al. (2016)
 Chondracanthus goldsmidi Gills Upregulation Latris lineata Sun et al. (2012)
 Cryptocaryon irritans Gills, skin, spleen, head 

kidney, liver and intestine
Upregulation Pseudosciaena crocea Niu et al. (2013)

 Ergasilus sp. Gill mast cells Upregulation Sparus aurata McDonald et al. (2015)
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Mechanism of Piscidin as Antimicrobial

The AMP has a net positive charge, a high isoelectric point 
which interacts with negatively charged bacterial mem-
brane, partial or complete insertion of the lipid bilayer, 
flexible in structure and active biological conformation 
on binding with membrane (De Angelis et al. 2011). The 
mode of action of a peptide depends on the charge, length, 
amphipathicity, concentration of peptide (Hayden et al. 
2015) and lipid composition of the membrane (Campagna 
et al. 2007). The amphipathic nature of these peptides was 
important for their mechanism of action against bacteria 
as it can alter antimicrobial activity (Haney and Hancock 
2013). The interfacial activity of AMPs depends on the 
balance of hydrophobic and electrostatic interactions of 
peptides with water and lipids (Ii 2010). The proteoglycan 
and lipopolysaccharide outer membrane of Gram-positive 
and Gram-negative, respectively were crossed easily by 
AMPs while the permeation of large marker took time 
(Campagna et al. 2007; Perrin et al. 2014). After the con-
tact of AMPs with the membrane, there is a chance of 
disruption, destruction and fragmentation (Ii 2010).

In low peptide-lipid ratio, the peptide binds parallel 
to the lipid bilayer, as peptide-lipid ratio increases, the 
peptide starts to be perpendicular to the membrane (Park 
and Hahm 2005). Thus, the membrane permeabilization 
was explained in different models including barrel-stave, 
carpet-like, toroidal pore models (Campagna et al. 2007) 
and detergent model (Ii 2010). In the barrel-stave model, 
the transmembrane pore formation leads to membrane per-
meabilization which was made of helices (Campagna et al. 
2007). In the carpet-like mechanism, the peptides act as 
a detergent by forming pore by disrupting the bacterial 
membranes (Campagna et al. 2007). The correct mode of 
action of peptides was not established; however, it was 
suggested that the bacterial cells were lysed by disruption 
of the bacterial cell membrane (Moon et al. 2007) and 
disrupt the intercellular components (Hayden et al. 2015). 
The piscidin peptide disrupts the bacterial cell membrane 
by toroidal pore mechanism; lipids of the membrane were 
inserted between the α-helices of peptide (Corrales et al. 
2010). The piscidin AMP showed similar characteristic 
features based on the mechanism involved in the mem-
brane permeabilization compared to cationic AMPs (Rah-
manpour et al. 2013).

AMPs are believed to kill microorganisms in two meth-
ods of mode of action, which are non-receptor mediated 
process and receptor-mediated process. The Gram-posi-
tive and Gram-negative bacteria attain a negative charge 
as they contain teichoic acids and lipopolysaccharides, 
respectively on their surfaces; they also contained nega-
tively charged phospholipids. As antimicrobial peptide has 

a net positive charge, it binds to the negatively charged 
outer surface of bacteria. The lysis of bacterial cells occurs 
due to the following two processes: (i) the peptide lyses 
the bacterial membrane by pore formation which results 
in transmembrane electrochemical gradient damage that 
leads to loss of energy and ultimately further leads to 
cell swelling and osmosis (Mulero et al. 2008; Peng et al. 
2012b; Masso-Silva and Diamond 2014) and (ii) the pep-
tide act as a multi-hit mechanism, which includes more 
than one anionic targets (Shai 2002).

The piscidin peptide forms toroidal pores in the mem-
brane as it interacts with acidic phospholipids (Pan et al. 
2008; Bae et al. 2014). Their anti-fungal and anti-tumor 
activity occurs through pore formation, membrane permea-
bilization and by inducing Reactive Oxygen Species (ROS) 
and apoptotic pathways (Ebbensgaard et al. 2015; Pan et al. 
2007; Dezfuli et al. 2011; Meloni et al. 2015). The peptide 
has a direct defense mechanism against a wide range of path-
ogens (Katzenback 2015). The disruption of cell membrane 
depends on the membrane composition, for example piscidin 
1 and 3 by the formation of parallel α helical membrane, 
they induce a membrane antimicrobial interaction (Masso-
Silva and Diamond 2014). The mode of action was through 
permeabilizing the plasma membrane of the pathogen (Cam-
poverde et al. 2017). The piscidin peptide binds on the bacte-
rial surface based on charge and formed toroidal formation 
as their mode of action depicted in Fig. 2.

AMPs are interacting as a direct antibacterial mecha-
nism that leads to membrane perturbation, disruption of 
membrane-associated physiological events to interact with 
cytoplasmic targets. The positively charged AMP interact 
with negatively charged lipids in the outer cytoplasmic 
membrane. The alteration in membrane structure and local-
ized perturbation results in the reorientation of peptide 
molecules. The peptides diffuse into the cytoplasm through 
the membrane and reach intracellular targets. The physico-
chemical and structural characteristic features depend on the 
interaction of AMPs with membrane (Fjell et al. 2012). The 
mechanism of piscidin peptide suggests that it targets bacte-
rial and fungal membranes; the replacement of Pro for Gly 
exhibited bacterial cell selectivity. Pro gives a bent structure 
in two helices which are for bacterial cell selectivity (Jeong 
et al. 2016). Also, piscidin functions as an anti-bacterial 
activity which interacts with acidic phospholipids, thus 
formed toroidal pores in the membrane (Katzenback 2015).

Piscidin exhibits an antimicrobial activity by forming 
toroidal pores in bacterial membrane like that of cationic 
AMPs involved in permeabilization (Mehrnejad and Zarei 
2010). The binding and disrupting properties of piscidin 1 
and 3 helps in translocation of bacterial cell membranes and 
attach to the target sites as the mechanism of cell death. 
The physicochemical properties including cationic, amphip-
athicity, number of cationic residues and histidine present in 
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piscidin 1 and 3 help in translocating across membranes and 
synthesis of macromolecules (Hayden et al. 2015).

Other Properties of Piscidin

Piscidins showed antibacterial, antifungal and antiviral 
properties (Ii, 2007; Dezfuli et al. 2010); recently it was 
found to have anti-parasitic properties (Colorni et al. 2008). 
Along with antimicrobial activity, piscidin has anti-tumor 
activity against cancer-derived cell lines including A549, 
U937, HT1080,U937, HeLa, HL60,MDA-MB-468, SKBR3, 
MCF7, T47-D, MDA-MB-231, MCF7-TX400 (paclitaxel-
resistant MCF7) and 4T1 (Masso-Silva and Diamond 2014). 
Piscidins are hemolytic than magainin 2 (Hicks et al. 2003) 
and less hemolytic than mellitin (Moon et al. 2007). Pis-
cidin 1 can be used as anticancer drug by modifying their 
sequence form so that other mammalian cells do not dam-
age. The single or multiple modifications in their amino 
acid sequence may lead to the reduction in hydrophobicity, 
amphipathicity and helicity, which help to reduce hemolytic 
action (Lin et al. 2012). Piscidin 1 shown HIV inhibition 
activity which suggests the importance of cationic arginine 
side chain. It also shows anti-cancer properties against HeLa 
and HT1080 cells. Piscidin 2 also has a similar kind of anti-
microbial properties (Chen and Cotten 2014).

Among piscidins, piscidin 3 was the least hemolytic pep-
tide (Park et al. 2011). The cytotoxicity and antimicrobial 
activity increase with the hydrophobicity of peptides (Jeong 
et al. 2016) and which can be reduced by replacing with 
positively charged amino acids such as lysine. Piscidin 1 is 
highly cytotoxic due to the presence of hydrophobic amino 
acids. Comparatively, piscidin 3 has weaker antimicrobial 
activity than piscidin 1 and 2 (Colorni et al. 2008). When 
we compare the peptide treated with untreated samples, the 
protoplast cell wall was regenerated in treated samples. The 
antifungal property of piscidin 2 is due to the interaction 
of the peptide with plasma membrane rather than cell wall, 
which suggests that peptide act on plasma membrane of 
Candida albicans for exhibiting fungicidal activity (Sung 
et al. 2008). Piscidin 2 was non-hemolytic against both sheep 
and human erythrocytes at a concentration lesser than 2.5 
µM (Campagna et al. 2007). Piscidin 4 exhibits less hemo-
lytic activity than piscidin 1 in which the C-terminal region 
prevents the insertion into hydrophobic erythrocyte mem-
brane (Lee et al. 2007).

Therapeutic Applications

The AMPs are most important in pharmaceutics as they are 
not as resistant as antibiotics. It is involved in chemotaxis, 
wound healing and can also be used against cancer (Li et al. 

Fig. 2  The mechanism of action of piscidin peptides. The antimicrobial peptide interacts with Gram-positive and Gram-negative bacteria 
through toroidal pore formation. Due to the presence of biological membranes the peptides fold to form amphipathic structures
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2012). At present, the AMPs are the therapeutically impor-
tant compound with low toxicity and high efficacy in treat-
ing bacterial pathogens (Schuerholz et al. 2012). Piscidin 2 
disrupts the fungal membrane (Rajanbabu and Chen 2011) 
and exhibits antifungal activity against human pathogenic 
fungi (Rakers et al. 2013). This fungicidal properties against 
C. albicans, Malassezia furfur and Trichosporon beigelii are 
at MIC values of 1.25–6.25 µM. The antimicrobial activi-
ties of piscidin 1 and 2 were found against Gram-positive 
and Gram-negative bacteria at 0.04–10 µM concentration. 
These were also found active against Tetrahymena pyri-
formes with  PCmin value of 1.25 µM. These peptides were 
potent against V. vulnificus, V. alginolyticus, P. aeruginosa, 
S. agalactiae 819 and S. agalactiae BCRC 10787 strains 
(Peng et al. 2012b). The piscidin derived from tilapia can be 
used for wound healing due to bacterial infection. Piscidin 
AMPs showed activity against 11 strains of Acinetobacter 
baumanni and 6 strains of P. aeruginosa; and shows low 
hemolytic activity with human red blood (Jiang et al. 2014). 
Piscidin showed inhibitory activity against porcine epidemic 
diarrhea virus (PEDV), pseudorabies virus (PRV), transmis-
sible gastroenteritis virus (TGEV), porcine reproductive and 
respiratory syndrome virus (PRRSV) and rotavirus (RV) 
(Hu et al. 2019). Piscidins can be used instead of antibiotics 
which has no immunotoxic effect (Huang et al. 2015). There 
is a high demand for AMPs in the food industry to invent the 
effectiveness of some of the inhibitory compounds, hence 
these can be used as potential food preservatives too (Li 
et al. 2012).

Conclusions

The AMPs have great importance in fish as well as human 
environments as the resistance of different bacterial and 
other organisms are very common. Day by day the antibi-
otic resistance is increasing which leads to the necessity of 
derived AMPs from natural resources. The piscidin peptides 
from a lower vertebrate group have both commercial as well 
as medicinal importance. The details related to the struc-
ture, classes, gene expression, mechanism and therapeuti-
cal importance discussed in this review provided a way to 
consider its importance in aquaculture industry as well as 
for human purpose. Apart from the antimicrobial nature of 
piscidin peptide, it can also be used as an anti-neuropathic, 
anti-nociceptive, anti-endotoxic and anesthetic compound. 
Furthermore, there is a need to have research on its design-
ing for the large-scale therapeutics approach. So that, these 
peptides in humans as well as in aquaculture organisms play 
a variety of application roles.
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