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Abstract
Multi drug resistance is a major problem of the twenty first century. In order to combat this issue, there is an urgent need 
in the pharmaceutical industry, for novel therapeutic agents. Antimicrobial peptides such as protegrins which exhibit non-
specific membranolytic action can be viewed as probable therapeutic agents and replace conventional antibiotics. Protegrin-1 
(PG-1) is a peptide isolated from porcine leucocytes. Its primary role is its antimicrobial activity against a broad-spectrum 
of gram-positive as well as gram-negative bacteria and fungi. Its antagonistic activity can be accounted by its pore formation 
mechanism in microbial membranes. In addition, PG-1 has multiple roles viz., anticancer and antiviral activity, immunomodu-
latory functions and numerous applications which increase its suitability as a potential therapeutic agent. This review paper 
presents a comprehensive overview of biological roles, lytic mechanism of action and applications of PG-1, thus providing 
a thorough understanding of this β-sheet peptide, which structurally resembles defensin peptides.
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Abbreviations
AMP  Antimicrobial peptide
AFM  Atomic force microscopy
DMPC  1,2-Dimyristoyl-sn-glycero-3-phosphocholine
DLPC  Dilauroyl-sn-glycero-3-phosphocholine
DPC  Dodecylphosphocholine
DPhPC  Diphytanoylphosphatidylcholine
GIXD  Grazing incidence X-ray diffraction
MD  Molecular dynamics
NMR  Nuclear magnetic resonance
OCD  Oriented circular dichroism
PG-1  Protegrin-1
PC  Phosphatidylcholine
PE  Phosphatidylethanolamine
PG  Phosphatidylglycerol
PS  Phosphatidylserine
POPC  1-Palmitoyl-2-oleoyl-glycero-3-phosphocholine
WHO  World Health Organization

Introduction

Multi-drug resistance has been reported as one of the major 
threats to human health by the World Health Organization 
(WHO) (“WHO | Antimicrobial resistance” 2014). An esti-
mated 10 million deaths of people per year may occur by 
the year 2050 (Cordes et al. 2014). Thus, there is an urgent 
requirement for therapeutic agents to combat this problem.

Antimicrobial peptides (AMPs) majorly lyse microbial 
cells via non-specific membranolytic mechanism, which 
reduces their susceptibility to antimicrobial resistance. 
Therefore, antimicrobial peptides have been viewed as prob-
able therapeutics which can replace conventional antibiotics. 
Protegrin-1 (PG-1), is an AMP which has been viewed as a 
probable therapeutic agent by the pharmaceutical industry 
to combat the issue of antimicrobial resistance. However, 
the authors found a limited number of review articles which 
were specifically focused on topics viz., understanding pore 
formation mechanisms of PG-1 through computational 
approaches or gene expression, structure and applications 
of PG-1 (Sun and Zhang 2007; Bolintineanu et al. 2012; 
Yan et al. 2013). This review presents the reader with an 
overview of the membranolytic antimicrobial peptide, pro-
tegrin-1, highlighting its role as an antimicrobial agent, its 
antagonistic mechanism of action in addition to its other 
biological roles and applications (Fig. 1).
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Origin and Structure of Protegrin‑1 (PG‑1)

Protegrin-1 is a peptide isolated from swine leucocytes 
(Kokryakov et al. 1993). It was observed to exhibit antago-
nistic activity towards Escherichia coli, Listeria mono-
cytogenes and Candida albicans and; it was named after 
a Latin word ‘protegere’, which means ‘to protect’. It 
forms a part of the non-specific first line of defense in the 
immune system of pigs. The sequence of PG-1 was eluci-
dated using a combination of electrospray mass ion spec-
trometry and Edman degradation comprised of 18 amino 
acids with an amidated C-terminal (Mirgorodskaya et al. 
1993). In vivo, PG-1 acquires an amide group at its C-ter-
minal, post-translation and; it is then known as mature 
PG-1. Its peptide sequence constitutes RGGRLCYC RRR 
FCVCVGR. It comprises 33% arginine which imparts a 
cationic nature to PG-1.

NMR studies of PG-1revealed that its amino acid resi-
dues from 5th to 9th positions and the amino acid residues 
from 12th to 16th positions adopted β-sheet secondary 
structures in antiparallel orientation, connected by a hair-
pin loop structure assumed by amino acids at 9th to 12th 
positions. Also, the monomer of PG-1is stabilized by two 
disulphide bonds between the cysteines viz., CYS (6)–CYS 
(15) and CYS (8)–CYS (13) (Aumelas et al. 1996). It was 
observed that these porcine peptides resembled defensins, 
especially rabbit defensin, NP-3a and tachyplesins—AMPs 
isolated from hemocytes of horseshoe crab (Kokryakov 
et al. 1993). The 3D structure of PG-1 is illustrated in 
Fig. 2.

Fig. 1  Flowchart of the review article on PG-1

Fig. 2  3D structure of PG-1 dis-
playing its sequence of amino 
acids (represented in three-letter 
code)
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Antimicrobial Activity of PG‑1

In vitro antimicrobial activity of PG-1 was first reported 
by Kokryakov et al. (1993). Its disulphide bridges and cati-
onic nature are essential for its antibacterial activity. Also, 
its cationic charge is responsible for the differential mech-
anism of action and antibacterial activity towards gram-
positive and gram-negative bacteria (Aumelas et al. 1996; 
Su et al. 2011). PG-1 was also found to display antimicro-
bial activity towards Neisseria gonorrhea. It was observed 
that PG-1 formed 80–100 nm wide circular plaques in its 
outer membrane (Fahrner et al. 1996).

Another study that demonstrated in vitro antibacte-
rial action of PG-1 towards Mycobacterium tuberculosis 
was found to be comparable to that of human and rabbit 
defensins (Miyakawa et al. 1996). In vivo study in mice 
demonstrated the antimicrobial activity of PG-1towards P. 
aeruginosa, methicillin resistant Staphylococcus aureu-
sand methicillin sensitive Staphylococcus aureus. Addi-
tionally, intraperitoneal administration of PG-1 in the 
infected mice reduced their mortality to 0% (Steinberg 
et al. 1997). In 2017, a study demonstrated that mature 
PG-1 produced in Pichia pastoris after cleavage of matrix-
metalloprotease site (inserted in its gene sequence) dis-
played higher efficiency in combating methicillin—resist-
ant Staphylococcus aureus than the mature PG-1 produced 
normally (proform PG-1) (Hill and Li 2017). A study 
reported that PG-1 showed antimicrobial activity towards 
epidemiologically unrelated clinical isolates of Haemo-
philus ducreyi—a pathogen causing sexually transmitted 
disease, chancroid. This study found that PG-1 showed 
higher activity towards Haemophilus ducreyi in com-
parison to antibiotics viz., erythromycin, kanamycin and 
chloramphenicol. Additionally, PG-1 lysed Haemophilus 
ducreyi at very low doses. Thus PG-1 was proposed as 
an ingredient of topical applicants for treatment of chan-
chroid (Fortney et al. 1998). In addition to imparting anti-
microbial activity, PG-1 was found to display synergistic 
behavior with conventional antibiotics towards Escheri-
chia coli (GuoDong 2013). A study reported the syner-
gistic antimicrobial activity of combination of PG-1 and 
colistin towards Acinetobacter baumanii, isolated from 
surgical wounds (Morroni et al. 2019). Another interest-
ing study by Zharkova et al. (2019), demonstrated that 
the combination of PG-1 with individual antibiotics viz., 
rifampicin, polymyxin, gentamycin, ofloxacin and oxacil-
lin displayed higher antimicrobial activity towards Escher-
ichia coli ML-35p and methicillin resistant Staphylococ-
cus aureus ATCC 33,591 compared to the antimicrobial 
activity exhibited by antibiotics alone. However, one study 
mentioned that though PG-1 effectively treated bacterial 
sepsis, it could significantly alter the host innate immune 

response to infection (Steinstraesser et al. 2003). Addi-
tionally, a study by Soundrarajan et al. (2019) reported 
the differential cytotoxicity of PG-1 to various types of 
mammalian cell lines.

Mechanism of Action of PG‑1: Pore 
Formation

The antimicrobial activity exhibited by PG-1 towards the 
aforementioned microbial flora can be attributed to its pore 
formation in their membranes. This section about PG-1 pore 
formation mechanism is further divided into four parts, as 
follows:

1. Interaction of PG-1with model microbial membranes
2. Membrane thinning effect of PG-1
3. Dimerization of PG-1 and the formation of pores
4. PG-1 oligomers form its pore

Interaction of PG‑1 with Model Microbial 
Membranes

Interaction of PG-1 with microbial membranes can be attrib-
uted mainly to the electrostatic interactions between them. 
These electrostatic interactions can be attributed to the posi-
tively charged residues in PG-1. Additionally, a study carried 
out by NMR spectroscopy demonstrated that the side chains 
of amino acid residues viz., LEU (5), PHE (12), VAL (14) 
and VAL (16) formed a hydrophobic cluster which aided 
the interaction of PG-1 with dodecylphosphocholine (DPC) 
micelles (Kolosova et al. 2016).Thus, it can be inferred that 
both hydrophobic and positively charged residues of PG-1 
mediate the interaction with model microbial membranes.

Interaction of PG-1 with microbial membranes can be 
also be understood by application of biophysical techniques 
like potential mean force and adaptive biasing force to 
molecular dynamic simulations of PG-1 in model microbial 
membranes (Rui and Im 2010; Vivcharuk and Kaznessis 
2011).

Potential mean force is the average force on particles 
along a particular coordinate. It is related to the radial dis-
tribution function of particles and it can be used to calculate 
and understand biomolecular interactions. Calculation of 
potential mean forces from molecular dynamics (MD) sim-
ulations was initially used to understand the interaction of 
PG-1 with biological membranes. The binding free energy 
of PG-1 to phosphatidylethanolamine/phosphatidylcholine 
(PE/PC) membranes was computed as − 2.4 ± 0.8 kcal/mol 
(Vivcharuk and Kaznessis 2010a). Further, the energy of 
PG-1 when possessing a transmembrane orientation was 
calculated as − 20.0 kcal /mol. The transfer of PG-1 from 
aqueous phase to transmembrane state was determined using 
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adaptive biasing force (Vivcharuk and Kaznessis 2011). 
Additionally, a study conducted using multistep molecular 
dynamics simulations revealed that the guanidium group of 
arginine in PG-1, initially interacted with the polar phos-
phate headgroups of membranes, aiding its translocation 
across the membrane (Lai and Kaznessis 2018).

Membrane Thinning Effect of PG‑1

Antimicrobial activity of PG-1 can be attributed to its 
membrane thinning effect. Using oriented circular dichro-
ism (OCD), Heller et al. (1998) showed the two states of 
PG-1- surface adsorbed (S) and inserted (I) in a phospho-
lipid bilayer. These two states of PG-1 support its membrane 
thinning effect. Further, the pore formation and membrane 
thinning effect of PG-1 was confirmed with lamellar X-ray 
diffraction experiments and NMR studies (Heller 1999; Wi 
and Kim 2008).

Pore formation in diphytanoyl phosphatidylcholine 
(DPhPC) by PG-1 revealed that membrane thinning effect 
increased with PG-1 concentration. The binding of PG-1 
to DPhPC caused DPhPC to fold onto itself, increasing its 
thickness. This mechanism of membrane thinning by PG-1 
led to the proposal of torroidal pore model mechanism of 
action (Heller et al. 2000).

During MD simulations, it was observed that the turn 
region of PG-1 occupied by ARG (9), ARG (10) and ARG 
(11) forms electrostatic interactions with the phosphate 
headgroups of the 1,2 dilauroyl-sn-glycero-3-phosphocho-
line (DLPC) bilayer and is pulled towards the core of DLPC 
bilayer (Khandelia and Kaznessis 2007). Since amino acids 
at positions 9–11 form the turn region of PG-1, the mem-
brane thinning effect of the upper layer of DLPC membrane 
can be attributed to this region of PG-1. Additionally, Jang 
et al. (2006) stated through MD simulations that the β-turn 
region of PG-1 played a significant role in the membrane 
thinning by PG-1 in DLPC bilayers.

PG-1 ultimately formed transmembrane pores in mem-
brane monolayers (mimicking Gram-positive bacterial 
membranes) by initially increasing the surface pressure on 
membrane surface to + 8.5 mN/m followed by formation 
of small clusters of 5 µm in the monolayer. This formation 
of clusters due to increasing surface pressure on biological 
monolayers confirms the membrane thinning effect of PG-1 
(Knyght et al. 2016).

Dimerization of PG‑1 and Formation of Pores

Using atomic force microscopy (AFM), Lam et al. (2006) 
demonstrated the complete disruption of supportive DLPC 
membranes via pore formation by PG-1at a concentration 
of 20 µg/ml. Yang et al. (2000) successfully crystallized 

hexagonal pores formed by PG-1 in completely hydrated 
fluid membranes using neutron diffraction experiments.

PG-1 dimerizes upon binding to DPC micelles. Its inter-
action is mainly due to its arginine residues (Rui et al. 2009). 
PG-1 dimers then oligomerize to form pores in the DPC 
micelles. Aggregation of PG-1 dimers can be accounted for 
by the C-terminal amide group of PG-1. This mechanism 
of pore formation by oligomerization by PG-1 dimers was 
found similar to that of human defensin HNP-3.PG-1 was 
found to have similar orientation to that of the 21 residue 
α-helical peptide alamethicin (Roumestand et al. 1998). Jang 
et al. (2007) demonstrated through MD simulations that the 
dimers of PG-1 exist in both parallel and anti-parallel ori-
entations, while interacting with 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) membranes. These orien-
tations were maintained with the help of two intramolecular 
disulphide bonds between the cysteine residues of the PG-1 
monomers. It was also observed that the dimer orientation 
was dependent on the surrounding environment (Jang et al. 
2007).

Drin and Temsamani (2002) confirmed that the formation 
of pores in the membrane was dependent on the presence of 
disulphide bridges. The significance of disulphide bridges 
in pore formation by PG-1 was demonstrated using a fluo-
rescent PG-1 analog ([12 W]PG-1) with intact disulphide 
bridges and a linearized PG-1 with alanine/leucine residues 
replacing the cysteine residues in PG-1. Pore formation was 
exhibited only by the fluorescent PG-1 analog. However, a 
study conducted by Mangoni et al. (1996) established that 
disulphide bridges in protegrins were essential for pore for-
mation but not for antimicrobial activity.

Orientations of PG-1 in the membrane were confirmed 
by X-ray diffraction methods and NMR studies (Buffy et al. 
2003a; Gidalevitz et al. 2003). Study by Buffy et al. (2003b) 
stated that the orientation of PG-1 in DLPC bilayers was 
such that GLY (2) and PHE (12) were located at the surface 
of the bilayer whereas LEU (5) and VAL (16) interacted with 
the acyl chains in the bilayer. The depth of PG-1in DLPC 
bilayer increased in the following order: GLY (2) > PHE 
(12) > LEU (5) > VAL (16). Study by Kandasamy and Lar-
son (2007) using model lipid bilayers with hydrophobic 
lengths revealed that PG-1 displayed two different orien-
tations when it formed transmembrane pores. This altered 
orientation was attributed to the flexible ‘RGGR’ region in 
the N’terminal of PG-1.Further, the two leucine residues 
helped stabilize the β-sheet structure of protegrin during 
pore formation in the membrane (Gottler et al. 2008).

Pore formation of PG-1 in zwitterionic lipid bilayers fol-
lowed a particular order as PG-1 concentration increased 
viz. (i) structural deformation of the bilayer at the edges (ii) 
formation of nanopores in the membrane (iii) formation of a 
network of stripe like structures in the membrane. A similar 
pattern was followed by PG-1 upon interaction with anionic 



1497International Journal of Peptide Research and Therapeutics (2020) 26:1493–1501 

1 3

lipid bilayers, but with a lower concentration of PG-1 (Lam 
2007).

PG‑1 Oligomers Form Its Pore

A study by Langham et al. (2008) stated that the formation 
mechanism of octamer pore of PG-1 resembled that of the 
barrel stave model than the torroidal pore model. Addition-
ally, this study examined the transportation of ions through 
the octamer pore of PG-1 and established that one chloride 
ions passes through them every two seconds. Passage of ions 
through a pore disabled the bacterial membrane potential, 
which then allowed water ions to pass through the pore-ulti-
mately lysing the bacteria. Interestingly, only one pore was 
required for complete osmolysis of bacteria. Bolintineanu 
et al. (2009) carried out ion conductance studies-using Pois-
son Nernst Planck models which investigated the diffusion of 
ions through octameric pores of PG-1 in membrane bilayers. 
In its octameric pores, PG-1 monomers displayed an oblique 
orientation-a tilt angle of 19° with respect to the membrane 
normal (Sayyed-Ahmad and Kaznessis 2009). Further, these 
octameric pores may comprise of either antiparallel NCCN 
or parallel NCNC orientation of PG-1 dimers, as they are 
more energetically favorable (Lazaridis et al. 2013).

Jang et al. (2008) observed that PG-1 octamer pores 
formed in phosphatidylethanolamine/ phosphatidylglycerol 
(PE/PG) membranes shared a common subunit organiza-
tion with that of the four to six-unit β-amyloid ion chan-
nels formed during Alzheimer’s disease (Jang et al. 2008). 
A study by Jang et al. (2011) revealed that amyloid forming 
β-peptides shared common motif with PG-1 which formed 
fibrillar structures on a hydrophilic mica surface. However, 
a study demonstrated that the optimal oligomeric state for 
PG-1 pores was the nonamer (pore formed by 9 PG-1 mono-
mers) (Lipkin and Lazaridis 2017).

Differential Activity of PG‑1 Towards 
Bacterial and Mammalian Membranes 
and the Protective Role of Cholesterol 
Present in Mammalian Membranes

The charge of PG-1 and the overall charge of membrane 
determine the electrostatic interactions between them. PG-1 
shows higher electrostatic interactions with anionic mem-
branes compared to zwitterionic—neutral membranes. The 
interaction of PG-1 with membrane is affected by its charge, 
the overall charge of the membrane, its secondary structure, 
its amphiphilicity, the structural features of phospholipid 
headgroups and lipid packing (Jing et al. 2005; Bolintineanu 
et al. 2007). An MD study showed that altering the charge of 
C-terminal of PG-1 from positive to negative significantly 

affected its penetration in DPC micelles (Langham and 
Kaznessis 2006).

It was observed that PG-1 formed channel like structures 
in membranes composed of PE, Phosphatidyl serine (PS) 
or PG, but not in membranes composed of PC (Vivcharuk 
and Kaznessis 2010a). Besides, a study conducted using 
grazing incidence X-ray diffraction (GIXD) showed the dif-
ferential activity of PG-1—enhanced interaction with lipid 
A monolayers (Gram-negative membrane mimics) than 1,2 
-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) mon-
olayers (mammalian erythrocyte membrane mimics). The 
selectivity of PG-1 interaction towards anionic membranes 
in comparsion to DMPC membranes (erythrocytic mem-
brane mimics) was confirmed by the decreasing interaction 
of PG-1 with DMPC bilayers with increase in percentage of 
cholesterol from 0 to 30% (Maldonado et al. 2011). Further, 
a study by Neville et al. (2008) revealed that the peptide-
lipid interactions were dependent on the composition as well 
as the packing density of the lipids in membrane monolay-
ers. Henderson et al. (2019) showed that the interaction of 
PG-1 with phosphatidylcholine (PC) membranes reduced 
with increasing amounts of monounsaturated fatty acyl 
chains.

Mammalian cells are primarily composed of PC and cho-
lesterol whereas, bacterial membranes are composed of PE 
and PG. Cholesterol is a neutral molecule and its intersper-
sion in mammalian membranes reduces their overall charge, 
thereby decreasing the electrostatic interactions with PG-1. 
Reduced electrostatic interaction might account for its pro-
tective role from damaging effects of PG-1 (Mani et al. 2004; 
Henderson et al. 2012, 2014, 2015; Iyengar et al. 2016).

Reducing Toxicity of PG‑1

A molecular dynamics study by Langham et  al. (2006) 
showed that the two strands of PG-1—RGGRLCYCRR 
(strand 1) and RFCVCVGR (strand 2) interacted differ-
ently with all-atom sodium dodecyl sulphate (SDS) and 
dodecylphosphocholine (DPC) micelles. Strand 2 (more 
hydrophobic than strand 1) is embedded in the core of DPC 
micelles while strand 1 embedded itself in the core of the 
SDS micelles. From this observation the authors concluded 
that the amino acid substitutions in PHE (12) or VAL (14) 
can alter the hemolytic activity of PG-1 while retaining its 
antibacterial activity.

Physical Resistance to PG‑1

PG-1 was identified as a promising therapeutic scaffold 
among its peptide family based on computational tech-
niques such as interaction with representative gram-negative 
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bacterial membrane, mammalian cell toxicity and static-
dynamic structural stability (Shruti and Rajasekaran 2019). 
This study assessed PG-1 stability based on hydrogen bonds 
(H-bonds). Vivcharuk and Kaznessis (2010b) also empha-
sized the role of hydrogen and ionic bonds in pore forma-
tion efficacy of PG-1. A study by Bolintineanu et al. (2010) 
established that the antimicrobial activity of PG-1 towards 
E. coli occurred due to the formation of 10–100 pores, which 
led to leakage of potassium ions and complete loss of its 
potential across the membrane- ultimately leading to bacte-
rial cell lysis.

The antimicrobial activity of PG-1 is also dependent on 
the fluidity of microbial membrane. Alteration of membrane 
fluidity by bacteria can be a physical mechanism of resist-
ance to PG-1 (Chapman et al. 2009).

Other Biological Roles and Applications 
of PG‑1

Immunomodulatory Function of PG‑1 and Its 
Aapplication in Immune Disorders

PG-1 caused human mast cell degranulation, which is essen-
tial for the healing of wounds (Gupta et al. 2015). A study 
by Penney and Li (2018), decoded the immunomodulatory 
mechanism of PG-1. This study found that mature PG-1 
interacts with Insulin-like growth factor 1, which in turn 
modulates other immune activity as well as brings about 
migration of intestinal cells. This study therefore proposed 
the application of PG-1 for combating immune disorders 
related to the GI tract, such as irritable bowel syndrome.

Anticancer and Antiviral Activity of PG‑1

A study confirmed the strong time and dose-dependent anti-
cancer activity of PG-1 expressed in Pichia pastoris, towards 
HepG2 cells (Niu et al. 2015). Additionally, PG-1 exhibits 
apoptosis in lymphoma cells. A study conducted by Suga-
wara et al. (2016), used PG-1, an apoptosis inducing agent, 
as part of a peptide probe for the electrochemical detection 
of lymphoma cells.

Another study demonstrated the in vivo antiviral activity 
of fusion protein, PG-1-MAP30-PLSN in mice infected with 
dengue virus. The fusion protein prevented viral replication 
by inhibiting the NS2B-NS3 protease (Rothan et al. 2014). 
Another study demonstrated that PG-1 exhibited antiviral 
activity in swine infected with porcine reproductive and res-
piratory syndrome virus by blocking the virus from attach-
ing to Marc-145 cells, thus preventing their replication in 
Marc-145 (Macrophages) (Guo et al. 2015).

Therapeutic Potential of PG‑1 to Treat Murine Colitis

Huynh et  al. (2019) showed that PG-1 brought about a 
reduction in murine colitis induced by dextran sodium sul-
phate by influencing the expression of tissue repair factors 
such as trefoil factor 3 and mucin. This study thus proposed 
the therapeutic potential of PG-1 in treatment of intestinal 
damage and inflammation. Another study conducted in 2018 
demonstrated the in-vivo antimicrobial activity of PG-1 
towards Citrobacter rodentium, which causes infection in 
the intestine of mice (colitis). Additionally, PG-1 altered 
the expression of various inflammatory mediators during 
infection and helped in the re-establishment of intestinal 
homeostasis (Osakowicz 2018).

PG‑1 as Topical Applicant for Wound Healing 
and for Treatment of Cystic Fibrosis

The potency of PG-1 as a topical applicant for treatment of 
wounds was confirmed by in vivo experiments of PG-1 on 
adult male rats infected by Pseudomonas aeruginosa (Stein-
straesser et al. 2001). Also, PG-1 was used as a topical appli-
cant on tooth-mimetic surfaces to treat oral infections caused 
by pathogen, Streptococcus mutans (Liu et al. 2016).

Another interesting application of PG-1 was discovered 
after its antimicrobial activity against clinical isolates of 
Pseudomonas aeruginosa commonly found in cystic fibro-
sis patients. It was reported that the PG-1 effectively killed 
Pseudomonas cells by binding to its lipopolysaccharide mol-
ecules on its surface (Albrecht et al. 2002).

PG‑1 Combats Plant Pathogens

A study proposed the application of PG-1 in preventing bac-
terial infections in plant by demonstrating the antagonistic 
activity of PG-1 towards plant pathogen Erwinia carotovora 
by enabling the expression of PG-1 in tobacco chloroplast 
genomic (Lee et al. 2011). Another study showed that the 
expression of PG-1 in Nicotiana tabacum plant displayed 
antibacterial as well as antifungal activity towards a broad 
spectrum of bacteria and Candida spp. (Patiño-Rodríguez 
et al. 2013).

PG‑1 as an Applicant for Livestock

A study demonstrated that ectopic expression of PG-1 in 
transgenic mice enhanced their resistance to bacterial infec-
tion such as those of Actinobacillus suis. Thus, this study 
proposed the application of PG-1 to livestock (transgenic 
livestock) to increase their resistance to bacterial infections 
(Cheung et al. 2008). Further in order to enhance the expres-
sion of PG-1 in livestock such as pigs, research has proposed 
the supplementation of diet to livestock with lactoferrin, 
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Achyranthes bidentata polysaccharides, micron Astragu-
las copper. Supplementation with the aforementioned sub-
stances were shown to increase PG-1 expression, enhanc-
ing the non-specific immune response to bacterial and viral 
infections (Wang et al. 2006; Qing-hua et al. 2008; Guo et al. 
2015; Yan et al. 2015; Tu et al. 2006).

Conclusion

A review of PG-1 is necessary to determine its therapeutic 
potency. This review represents a thorough overview of the 
multifaceted biological roles of PG-1 in addition to its pri-
mary role as an antimicrobial peptide. Its mechanism of lys-
ing bacterial cells has also been focused upon. Thus, several 
biological roles and applications of PG-1 render it a promis-
ing therapeutic agent for the global pharmaceutical industry.
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