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Abstract
Bioactive peptides are functional agents encrypted in food proteins with several potential health benefits. Food-derived 
proteins when hydrolysed release large variety of bioactive peptides which are similar in structure to peptide sequences 
acting in the organism as endogenous signals, or hormones and alter their physiological functions. Moreover, these bioac-
tive peptides owing to their high tissue affinity, specificity and efficiency can interact with receptors, enzymes and certain 
biomolecules in organism thereby confer health promoting effects. In addition, several studies have revealed that these 
peptides exhibit beneficial effects for the treatment and management of chronic and several degenerative diseases including 
hypertension, diabetes, obesity and cancer. Therefore, this review mainly used ISI, SCOPUS and PubMed indexed journals 
containing various experimental reports on in vitro and in vivo studies from humans and animals to elucidate the potential 
health promoting effects of food-derived bioactive peptides with emphasis on antihypertensive peptides, antidiabetic peptides, 
cholesterol-lowering peptides, anticancer peptides, and antimicrobial peptides.
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Introduction

There is increase in epidemiological evidences linking the 
prevalence of lifestyle-related diseases including hyper-
tension, obesity, diabetes, and cancer to dietary factors 
(Hernández-Ledesma et al. 2011; Gul et al. 2015; Daliri 
et al. 2017). Consequently, functional foods are emerging 
in response to the increased perception about the relation 
of food and health benefits. The protein in foods serves 
both nutritional and physiological roles (Daliri et al. 2017). 
Food protein can be hydrolysed to produce several bioactive 
peptides with different potential health benefits. Bioactive 
peptides are active fragments, but they remain inactive as 
long as they remain locked in the parent protein (Hernán-
dez-Ledesma et al. 2014). These bioactive peptides are 

produced by enzymatic hydrolysis of the parent proteins as 
well as during food processing such as cooking, fermen-
tation and ripening (Palaniswamy et al. 2012; Yahya et al. 
2017; Daliri et al. 2017). Bioactive peptides are known to 
specifically interact with biomolecules and certain receptors 
thereby modulate their physiological functions (Daliri et al. 
2017; Hayes 2018). The production of bioactive peptides 
and their possible incorporation into food is gaining inter-
est particularly owing to their health promoting effects and 
safety (Reddi et al. 2016; Daliri et al. 2017; Lin et al. 2018). 
The classical approach involves enzymatic proteolysis with 
food-grade proteolytic enzymes to release numerous peptide 
fragments in hydrolysate (Ugwu et al. 2019; Abdel-Hamid 
et al. 2017; Babini et al. 2017; Wang et al. 2017). Also, 
bioactive peptides can be produced from parent proteins by 
the use of proteolytic system of microorganism during fer-
mentation (Hernández-Ledesma et al. 2014; Koyama et al. 
2014; García-Tejedor et al. 2015; Aguilar-Toalá et al. 2017). 
The biologically active peptides generated can be subjected 
to purification, sequence synthesis and then formulated 
as functional foods or nutraceuticals (Daliri et al. 2017). 
Moreover, in silico proteolysis has been employed by several 
researchers to identify potential bioactive peptide sequences 
and also elucidate their mechanism of actions via molecular 
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docking analysis (Schneidman-Duhovny et al. 2005; Mas-
uyer et al. 2012; Lin et al. 2018; Ugwu et al. 2019). There-
fore, this review mainly used ISI, SCOPUS and PubMed 
indexed journals containing various experimental reports on 
in vitro and in vivo studies on humans and animals to eluci-
date the potential health promoting effects of foods-derived 
bioactive peptides with emphasis on antihypertensive pep-
tides, antidiabetic peptides, cholesterol-lowering peptides, 
anticancer peptides, and antimicrobial peptides.

Production of Bioactive Peptides

Food-derived bioactive peptides are usually produced 
through enzymatic hydrolysis of their parent protein by 
enzymatic proteolysis (Mirzaei et al. 2018; Kumar et al. 
2016), gastrointestinal digestion (Mohanty et al. 2016), 
microbial fermentation (Yahya et al. 2017) and in silico 
proteolysis (Ugwu et al. 2019; Lin et al. 2018). Besides, 
if the peptide sequence is known, it is also possible to syn-
thesize the peptide via chemical or enzymatic synthesis or 
by genetic recombination using bacteria (Park et al. 1998; 
Lv et al. 2003; Jeong et al. 2007; Hernández-Ledesma et al. 
2011).

Enzymatic Hydrolysis

In enzymatic hydrolysis, biologically active peptides can 
be produced through hydrolysis of the whole protein mol-
ecule using analytical-grade proteinases such as alcalase, 
chymotrypsin, pepsin, trypsin, elastase, flavourzyme, savi-
nase, thermolysin, and pancreatin individually or combined 
(Mohanty et al. 2016; Kumar et al. 2016; Bamdad et al. 
2017; Chaudhari et al. 2017; Ugwu et al. 2019). The pro-
cess involves reconstitution of protein sample in appropriate 
buffer of different pH (the optimum pH of the hydrolytic 

enzymes) for optimum enzymatic action. The reconstituted 
protein solution has to be heated in water bath (95 °C) for 
5 min to kill microorganisms, which may produce proteo-
lytic enzymes during hydrolysis and also to denature the 
indigenous enzymes of proteins, if present. The optimum 
pH and temperature for the hydrolysis has to be standard-
ized (Kumar et al. 2016). The enzyme/substrate ratio (E:S) 
should be kept at 1:100 (Kumar et al. 2016), 1:10 (Mirzaei 
et al. 2018), 3:1 (Lin et al. 2017) and 1:50 (Bamdad et al. 
2017) for 4 h, 5 h, 4 h and 1 h respectively. Each hydrolyzed 
sample is immediately heated to 85 °C for 15 min in water 
bath to inactivate the residual enzyme left in hydrolysates 
(Kumar et al. 2016). The hydrolysate is allowed to cool, 
centrifuged in refrigerated centrifuge and then the superna-
tant obtained is subjected to further purification techniques 
(Bamdad et al. 2017) (Table 1).

Gastrointestinal Digestion

Biologically active peptides can also be released from food-
derived proteins during gastrointestinal digestion by the 
action of digestive enzymes such as pepsin, trypsin, chy-
motrypsin and peptidases (Hernandez-Ledesma et al. 2011; 
Mohanty et al. 2016). Proteins from food sources are usu-
ally denatured in the presence of hydrochloric acid (HCl) 
secreted by the parietal cells of the stomach. This low pH 
mediates the activation of pepsinogen and its subsequent 
conversion to its active form called pepsin (Mohanty et al. 
2016). These enzymes occur at the surface of epithelial cells 
where they release several peptides of different lengths. 
Some of these peptides exert direct function at the gastro-
intestinal tract while other peptides are absorbed via sys-
temic circulation to reach target organs and tissues (Shimizu, 
2004). Scientists have employed simulated digestion using 
different proteins such as milk proteins (Hernandez-Ledesma 
et al. 2004, 2007; Gomez-Ruiz et al. 2004; Lignitto et al. 

Table 1   Enzymes applied in production of bioactive peptides by enzyme hydrolysis

a Amount of substrate in moles converted to product per unit time
b Duration of hydrolysis

Enzyme Source Activitya Optimum conditions Time (h)b References

Alcalase Bacillus licheniformis ≥ 2.4 U/g pH 7.5; 25 °C 4 Kumar et al. (2016)
Chymotrypsin Bovine pancreas ≥ 40 U/mg pH 7.8; 37 °C 4 Kumar et al. (2016)
Pepsin Porcine gastric mucosa 2500 U/mg pH 2.0; 37 °C 4 Chaudhari et al. (2017)
Trypsin Porcine pancreas 30 U/g pH 7.0; 37 °C 4 Mirzaei et al. (2018)
Elatase Hog pancreas ≥ 4 U/mg pH 8.0; 37 °C 1 Bamdad et al. (2017)
Flavourzyme Aspergillus oryzae ≥ 500 U/g pH 7.0; 50 °C 1 Bamdad et al. (2017)
Savinase Bacillus sp. ≥ 16 U/g pH 7.0; 55 °C 1 Bamdad et al. (2017)
Thermolysis Bacillus thermoproteolyticus 14 U/g pH 7.0; 50 °C 1 Bamdad et al. (2017)
Pancreatin Porcine pancreas ≥ 100 U/mg pH 7.5; 40 °C 4 Chaudhari et al. (2017)
Papain Papaya plant leaf ≥ 10 U/mg pH 7.0; 65 °C 4 Kumar et al. (2016)
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2010; Egger et al. 2017; Sanchón et al. 2018; Basilicata et al. 
2018), soybean seeds (Capriotti et al. 2015; González-Mon-
toya et al. 2018), soy milk proteins (Capriotti et al. 2015), 
egg proteins (Wang et al. 2018), meat protein (Anna et al. 
2016; Wang et al. 2018), fish proteins (Borawska et al. 2016; 
Mora et al. 2017; Polona et al. 2017; Korczek et al. 2018; 
Zhang et al. 2018), plant protein (Pachaiappan et al. 2018) in 
order to examine how these gastrointestinal proteases medi-
ate the proteolytic digestion of food proteins and release bio-
active peptides which in addition to nutritional benefits may 
exert many physiological and health beneficial functions.

Fermentation

An alternative strategy for production of biologically active 
peptides uses the proteolytic system of microorganism 
(Hernández-Ledesma et al. 2014). For instance, during fer-
mentation process, microorganisms hydrolyse proteins into 
peptides and amino acids which serve as nitrogen source 
necessary for their growth (Juillard et  al. 1998). These 
bioactive peptides also can be isolated by centrifugation 
(Palaniswamy et al. 2012) and purified through ultrafiltration 
or molecular sieve (Mirzaei et al. 2018), and the amino acid 
sequences of bioactive peptide are identified by chromato-
graphic methods (Lin et al. 2017; Mirzaei et al. 2018). For 
example, IPP and VPPP are antihypertensive peptides pro-
duced by fermented milk protein using Lactobacillus helve-
ticus and Saccharomyces cerevisiae (Nakamura et al. 1995). 
Also, fermentation of milk with Enterococcus faecalis, pro-
duced bioactive peptides (LHLPLP and HLPLP) which have 
demonstrated antihypertensive effect in rat model (Quirós 
et al. 2007).

The results of animal experiment and human trials sug-
gest that fermented milk products may exhibit antioxidant 
effect associated with cardiovascular benefits (Hernández-
Ledesma et al. 2014). Furthermore, the consumption of 
fermented goat milk by healthy individuals improved the 
total plasma antioxidant activity (Hernández-Ledesma et al. 
2014). Although the compounds responsible for these effects 
have not yet been identified, however the peptides released 
in fermentated milk might have a key role (Hernández-
Ledesma et al. 2014).

According to Yahya et al. bioactive peptides in milk are 
released by fermentation of skim milk using L.helveticus and 
S. thermophilus and these peptides have shown antihyperten-
sive effects on spontaneously hypertensive rats (Yahya et al. 
(2017). Furthermore, Palaniswamy et al. used the proteolytic 
system of Lactobacillus plantarum isolated from commer-
cially available dairy products to generate milk hydrolysates 
from goat milk. The hydrolysates obtained exhibited ACE-
inhibitory and antioxidant properties (Palaniswamy et al. 
2012). Although, the amino acid sequences of the bioac-
tive peptides present in the hydrolysates responsible for 

ACE-inhibitory and antioxidant activity were not identified 
yet, but the bioactive peptide released in the fermentation 
product could be responsible.

Genetic Engineering

Recombinant DNA technology is being exploited for mass 
production of biologically active peptides (Schrimpf et al. 
2018; De Brito et al. 2018) especially for the synthesis of 
long chain peptides and proteins (Chahardoli et al. 2018; 
Boga et al. 2018). This method involves the construction 
of peptides coding region and its subsequent cloning into 
a prokaryotic expression vector using E. coli cells as host. 
This allows the production of several peptides, simultane-
ously (Espita et al. 2009). However, one of the challenges of 
this technique is that the expression products may be harm-
ful to the host (Hernández-Ledesma et al. 2011). Moreover, 
antibacterial peptides possess strong antibacterial activity 
against the expression vector cells and relative sensitivity to 
proteolytic enzymes (Espita et al. 2009). Interestingly, these 
shortcomings have been overcomed by expression of these 
peptides in the forms of a fusion protein or a tandem gene to 
neutralize their inherent toxic properties and improve their 
expression levels (Espita et al. 2009; Hernández-Ledesma 
et al. 2011). For example, ACE-inhibitory peptides with 
amino acid sequences HHL, HVLPVP, FFVAPFPEVFGK, 
and GHIATFQER have been expressed successfully in E. 
coli (Park et al. 1998; Lv et al. 2003; Jeong et al. 2007; Liu 
et al. 2007). Although promising results are being obtained, 
notwithstanding, the use of genetically modified microor-
ganisms in food products is still controversial.

Purification and Characterization of Bioactive 
Peptides

The techniques mostly employed in production of bioac-
tive peptides usually generate crude peptides which required 
further purification processes. This is because crude peptide 
consists of a mixture of peptides, residues of reagents and 
products of side reactions (Espitia et al. 2012). Thus, differ-
ent separation techniques are used for purification of these 
crude peptides. In the initial stage of the purification pro-
cess, the crude hydrolysates are subjected to centrifugation 
(Palaniswamy et al. 2012) followed by ultrafiltration using 
molecular weight cut off membranes (Bamdad et al. 2017; 
Chaudhari et al. 2017). Subsequently, the partially purified 
peptides are put through any of the reversed-phase high-per-
formance liquid chromatography (RP-HPLC), ion-exchange 
chromatography, size exclusion chromatography, affinity 
chromatography, or capillary electrophoresis (Table 2).

The purity of a peptide is usually verified by a method 
different from the one used for purification process. Thus, 
the characterization is carried out by different methods of 
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mass spectrometry such as electrospray ionization mass 
spectrometry (ESI–MS), fast atom bombardment mass 
spectrometry (FAB-MS) or matrix-assisted laser desorp-
tion/ionization mass spectrometry (MALDI-MS) (Espitia 
et al. 2012; Bamdad et al. 2017) (Fig. 1).

Health Beneficial Effects of Bioactive 
Peptides

Bioactive peptides are 2 to 20 amino acid residues present 
in the parent proteins, they act as endogenous signals, or 
hormones in the organism (Hernández-Ledesma et al. 2014) 

Table 2   Different purification methods of bioactive peptides

Method Fundamental principle References

Reversed-phase chromatography Hydrophobicity; stationary phase of lower polarity and mobile phase of higher 
polarity

Mirzaei et al. (2018)

Size exclusion liquid chromatography Based on size of the peptide relative to pore size of stationary phase Bamdad et al. (2017)
Capillary electrophoresis Migration of peptides in an electric field based on its charge in solution Chetwynd et al. (2018)
Ion exchange chromatography Interaction of charged groups of the peptides with the surface of stationary 

phase
Yigzaw et al. (2009)

Affinity chromatography Based on the biological specificity and interaction of the peptide and the ligand 
immobilized in the column

Pina et al. (2014)

Fig. 1   Production, purification 
and characterization of bioactive 
peptides: RP-HPLC reversed 
phase- high performance 
liquid chromatography, IEC ion 
exchange chromatography, SEC 
size exclusion chromatography, 
AC affinity chromatography, CE 
capillary electrophoresis, ESI–
MS electrospray ionization mass 
spectrometry, FAB-MS fast atom 
bombardment mass spectrome-
try, MALDI-MS matrix-assisted 
laser desorption/ionization mass 
spectrometry

Production Techniques

Enzyme Hydrolysis

Gastrointestinal Digestion

Fermentation

Genetic Engineering

Centrifugation Crude Peptides
(Hydrolysates)

Purification Methods

RP-HPLC

IEC

SEC

AC

CE

Pure Peptides

Identification/
Characterization

Mass Spectrometric Techniques: ESI-
MS, FAB-MS, MALDI-MS

Any one of the steps
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by interacting with certain receptors and biomolecules to 
modulates their biological functions (Hernández-Ledesma 
et al. 2014). The inherent characteristic of the amino acid 
residues present in the peptide sequences are mainly respon-
sible for the biological activities including ACE-inhibitory, 
antidiabetic, cholesterol lowering, antibacterial, Immu-
nomodulatory, and antioxidative effects (Pihlanto 2006; Zou 
et al. 2016; Daliri et al. 2017; Khan et al. 2018). Therefore, 
bioactive peptides when exploited could be beneficial for 
treatment and management of numerous life style-related 
diseases.

Antihypertensive Peptides

ACE‑Inhibitory Peptides

Hypertension is one of the major risk factors for cardiovas-
cular disease (Erdmann et al. 2008). Angiotensin converting 
enzyme (EC 3.4.15.1) is one of the main regulators of blood 
pressure and it is a key component of the renin–angioten-
sin–aldosterone system (RAAS). The RAAS pathway starts 
with renin converting angiotensinogen into angiotensin I. 
Angiotensin I is then converted to angiotensin II via angio-
tensin converting enzyme (ACE) activity. Angiotensin II 
mediates vasoconstriction and activates aldosterone release 
from adrenal gland (Nawaz et al. 2017). Aldosterone is a 
steroid hormone that increases the expression of epithelial 
sodium channels which leads to sodium and water reabsorp-
tion resulting in hypertension (Nawaz et al. 2017). Yet in 
another mechanism, the kinin–kallikrein system (KKS), 
indicated that ACE cleaves the terminal dipeptide (Phe–Arg) 
of the vasodilator, bradykinin to its inactive form bradykinin 
1–7 (Imig 2004). Thus, inhibition of this enzyme is consid-
ered as one of the strategies for treatment of hypertension. 
Owing to the facts that many synthetic antihypertensive 
drugs have been reported to exhibit adverse effects such 
as dizziness, dysgeusia, headache, angioedema, and cough 
(Daliri et al. 2016), there is a rapid growing demand for 
food-derived bioactive peptides with health-promoting effect 
and safety (Daliri et al. 2017). In recent years, anti-hyper-
tensive effects of food-derived bioactive peptides in vitro 
and in vivo have been reported (Hernandez-Ledesma et al. 
2014; Capriotti et al. 2015; Korczek et al. 2018). In addition, 
antihypertensive peptides possess remarkable high tissue 
affinities and thus eliminated slowly from tissues compared 
to synthetic drugs (Koyama et al. 2014). Some of the anti-
hypertensive peptides are presented in Table 3.

Cholesterol‑Lowering Peptides

Cholesterol is required by the body for synthesis of vitamin 
D, steroid hormones, and bile acids. However, hypercholes-
terolemia leads to formation of plaques in arteries resulting 

in arteriosclerosis and subsequent hypertension (Daliri et al. 
2017). Also, cholesterol plaques in the coronary artery may 
reduce oxygen supply to the heart leading to cardiovascular 
diseases. Synthetic drugs employed for treatment of hyper-
cholesterolemia cause liver injury, myopathy and diabetes 
(Katsiki and Banach 2012; Carter et al. 2013; Mancini et al. 
2016). Thus, search for bioactive peptides with cholesterol 
lowering ability has increased over the years and many have 
been discovered with potential hypercholesterolemic effect 
(Table 4).

Antioxidant Peptides

High blood pressure is characterized by increase in reactive 
oxygen species (ROS) production and dysfunctional endog-
enous antioxidant mechanisms (Lassegue and Griendling 
2004). The inability of the antioxidant mechanisms of the 
body to scavenge free radicals produced due to pathophysi-
ological conditions results in induction of oxidative stress 
which in turn leads to tissue injury (Panth et al. 2016). 
Some of the risk factors for cardiovascular diseases (CVDs) 
such as diabetes mellitus, aging, smoking, hypercholester-
olemia, and nitrate intolerance can increase the production 
of ROS (Panth et al. 2016). In addition, these risk factors 
can also trigger apoptosis, activation of metalloproteinases, 
proliferation and migration of smooth muscle cells, lipid 
peroxidation and change in vasomotor functions, all result-
ing to CVDs (Panth et al. 2016). Reactive Oxygen Species 
with unpaired electrons, such as superoxide anion (O2·−), 
hydroxyl radical (OH·−) and lipid radicals, are referred to as 
free radicals. Others such as hydrogen peroxide (H2O2), per-
oxynitrite (ONOO−), and hypochlorous acid (HOCl), have 
oxidizing effects capable of causing oxidative stress (Mada 
et al. 2017). For instance, the reactions of free radicals with 
fatty acids such as polyunsaturated fatty acids (PUFAs) 
within the cytoplasmic membrane generate fatty acid per-
oxyl radical which can attack the adjacent side chain of the 
fatty acid and trigger the production of other lipid radicals. 
The lipid radicals generated target the plasma membrane and 
may have adverse effect on cell function, including alteration 
in cell membrane permeability and dysfunction of mem-
brane bound receptors (Bayir 2005; Mada et al. 2018). Free 
radicals are implicated in hypertension because they oxidize 
low density lipoproteins (LDLs) thereby promoting athero-
sclerosis (Paudel et al. 2016). Oxidized-LDLs is available 
in the arterial wall and macrophages take up oxidized-LDLs 
through scavenger receptor pathways resulting in cholesterol 
ester-rich foam cells and endothelial cell dysfunction, in 
part, via the role of lectin-like oxidized-LDLs receptor-1 
(Mitra et al. 2011; Paudel et al. 2016). The foam cells secret 
calcium-dependent zinc containing endopeptidase and 
matrix metalloproteinase which are activated during oxida-
tive stress in part because of inflammation and non-laminar 
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Table 3   ACE-inhibitory peptides

G glycine, A alanine, P proline, V valine, L leucine, I isoleucine, M methionine, F phenylalanine, Y tyrosine, K lysine, R arginine, H histidine, S 
serine, T threonine, C cysteine, N asparagine, Q glutamine, D aspartate, E glutamate

Peptide sequence Origin Method of production References

LPESVHLNK Kluyveromyces marxianus protein Enzyme hydrolysis using trypsin 
and chymotrypsin

Mirzaei et al. (2018)

YVVFK Soybean seeds and soy milk 
protein

Simulated gastrointestinal diges-
tion using pepsin and pancreatin

Capriotti et al. (2015)

APGAPGPVG, HYVPV Chicken hydrolysates (collagen) Simulated gastrointestinal diges-
tion using pepsin, trypsin and 
chymotrypsin

Anna et al. (2016)

RNLQGENEEEDSGA Germinated soybean protein Simulated gastrointestinal diges-
tion using pepsin and pancreatin

González-Montoya et al. (2018)

AHLL Apalbumin 2 Simulated gastrointestinal diges-
tion using pepsin, trypsin and 
chymotrypsin

Xu and Gao (2015)

AAATP Porcine skeletal muscle protein Fermentation by meat-borne 
lactobacillus

Castellano et al. (2013)

PFPGPIPN Qula β-casein-f 76–83 Enzyme hydrolysis using protein-
ases k from Tritirachium album

Lin et al. (2017)

LHLPLP Qula β-casein-f 148–153 Enzyme hydrolysis using protein-
ases k from Tritirachium album

Lin et al. (2017)

QKEPMIGV Qula β-casein-f 146–153 Enzyme hydrolysis using thermo-
lysin (from Tritirachium album)

Lin et al. (2017)

KYIPIQ Qula k-casein-f 45–50 Alcalase (from Bacillus licheni-
formis) hydrolysis

Lin et al. (2017)

LPLPLL Qula β-casein-f 150–155 Trypsin (from porcine pancreas) 
hydrolysis

Lin et al. (2017)

VVSLSIPR Pigeon pea seeds Fermentation using Aspergillus 
niger

Nawaz et al. (2017)

SLPQNIPPL β-casein-f 69–77 Fermentation using Lactococcus 
lactis

Rodriguez-Figueroa et al. (2012)

FFVAPFPEVFGK Milk protein Recombinant DNA technology 
using Escherichia coli

Lv et al. (2003)

HVLPVP Milk protein Recombinant DNA technology 
using Escherichia coli

Liu et al. (2007)

DVWY, FQ, VVG, VAE, WTFR Buckwheat sprout Neo-fermentation Koyama et al. (2014)
DPYKLRP, PYKLRP, YKLRP, 

GILRP
Lactoferrin Fermentation using Kluyveromyces 

marxianus
García-Tejedor et al. (2015)

AQSAP,IPAVF, APLRV, AHKAL Whey from bovine milk Fermentation using Lactobacillus 
helvelticus

Daliri et al. (2017)

SY Jelly fish gonads Enzyme hydrolysis using neutrase Zhang et al. (2018)

Table 4   Cholesterol-lowering peptides

Peptide sequence Origin Method of production References

IIAEK β-Lactoglobulin Trypsin hydrolysis Nagaoka et al. (2001)
HIRL β-Lactoglobulin Chymotrypsin hydrolysis Yamauchi et al. (2003)
LPYP, IAVPGEVA, IAVPTGVA Soybean protein Soy glycinin digestion with trypsin Lammi et al. (2015)
HSDADYVLVVLNGR, 

HGREEEEEEEEEDER, YPSST-
KDQQSY

White lupin seed Enzyme hydrolysis using pepsin and trypsin Lammi et al. (2016)

YAAAT​ Black bean and cowpea Pepsin-pancreatin digestion Hernandez and de Mejia (2017)
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shear stress (Harrison, 1997).This is one of the important 
steps in the progression and development of atherosclerosis 
(Harrison et al. 2003). Atherosclerosis disrupts the flow of 
blood due to plaque buildup on the artery wall leading to 
more resistance in blood vessels thereby causes increase in 
blood pressure. Food-derived peptides exhibit antioxidant 
property without side effects (Shanmugam et al. 2015; Sar-
madi and Ismail 2010). Consequently, many peptides with 
antioxidant properties have been discovered (Table 5).

Mechanism of Action of Angiotensin‑Converting Enzyme 
(ACE) Inhibitory Peptides

ACE inhibitory peptides usually consist of short amino 
acid sequence (He et al. 2013) with tyrosine, phenylalanine, 
tryptophan, lysine, leucine, isoleucine, valine and arginine 
as dominant amino acids (Murray and Fitzgerald 2007). 
In addition, peptides containing hydrophobic amino acids 
are the most effective ACE inhibitors especially those with 
proline in the C-terminal and positively charged amino 
acids (arginine and lysine) in the N-terminal (Lemes et al. 
2016). Likewise, presence of branched chain amino acids 
such as valine and isoleucine in the peptide sequence pro-
motes hydrophobic interaction at the ACE active site ensu-
ing inhibition the enzyme (Daliri et al. 2017). Similarly, 
casein-derived peptides contain phosphorylated serine 

residue which are effective cation chelators that form com-
plexes with Zn2+ in the active site of ACE to prevent metal 
ion catalysis (Daliri et al. 2017). Also, bioactive peptides 
with histidine and glutamate residues acts as Zn2+ chelators 
thereby enhances ACE inhibition (Fitzgerald et al. 2004; 
Pihlanto 2006; Daliri et al. 2017).Consequently, the ratio 
of hydrophilic-hydrophobic amino acids in the peptide 
sequence is a critical factor in ACE-inhibitory activity due 
to disruption of access of the peptides to ACE active site by 
hydrophilic amino acid residues (Mirzaei et al. 2018; Asoo-
deh et al. 2016; Li et al. 2004). Researchers have revealed 
that ACE prefers substrates or competitive inhibitors that 
contain aromatic amino acid residues such as tryptophan, 
phenylalanine and tyrosine at their C-terminal tripeptide 
sequence as well as branched and aliphatic amino acids such 
as glycine, valine, leucine, and isoleucine at the N-terminal 
(Kapel et al. 2006; Ondetti and Cushman 1984; Sharma et al. 
2011). Besides, molecular docking analysis have shown 
that ACE-inhibitory peptides combine with ACE residues 
through the interaction forces of hydrogen bonds, hydro-
phobic, van der waals and electrostatic interactions that exist 
between amino acids residues of ACE and those of peptides 
(Li et al. 2014). However, hydrogen bonds interaction force 
plays crucial role for stabilizing the docking complex and 
enzyme catalytic reactions (Mirzaei et al. 2018). Wu et al. 
reported that ACE contained three main active site pockets 

Table 5   Antioxidative peptides

Peptide sequence Origin Method of production References

LLSGTQNQPSFLSGF, 
NSLTLPILRYL,TLEPNSVF- LPV-
LLH

Lentil protein Enzyme hydrolysis using savinase Garcia-Mora et al. (2017)

YSK Rice bran protein Trypsin hydrolysis Wang et al. (2017)
WVYY, PSLPA Hemp seed (Cannabis sativa L.) Simulated gastrointestinal digestion 

using pepsin and pancreatin
Girgih et al. (2014)

YVEELKPTPEGDL Buffalo ricotta cheese Simulated gastrointestinal digestion 
using pepsin, pancreatin and chymo-
trypsin

Basilicata et al. (2018)

VLSTSFPPK Kluyveromyces marxianus protein Enzyme hydrolysis using trypsin and 
chymotrypsin

Mirzaei et al. (2018)

VLYSTPVKMWEPGR, VITV-
VATAGSETMR, HIGININSR

Tinospora cordifolia stem proteins Enzyme hydrolysis using trypsin, 
papain, pepsin, α-chymotrypsin, and 
pepsin-pancreatin

Pachaiappan et al. (2018)

WG Poultry protein Simulated gastrointestinal digestion 
using pepsin trypsin and chymot-
rypsin

Anna et al. (2016)

PGPIPN, PFPGPIPN, YPFPGPIP, 
VYPFPGPIPN, MPFPKYPVEP, 
EPVLGPVRGPFP, QEPVLG-
PVRGPFP, TPVVVPPFLQPE, 
TQTPVVVPPFLQPE

Casein from bovine milk Enzyme hydrolysis using flavourzyme, 
savinase, thermolysin, trypsin, and 
elastase.

Bamdad et al. (2017)

AEERYP, DEDTQAMP Chicken egg white Protease hydrolysis Nimalaratne et al. (2015)
VLPVPQK Buffalo milk casein Trypsin-pepsin hydrolysis Shanmugam et al. (2015), 

Mada et al. (2017)
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viz: S1, S2, and S01 (Wu et al. 2015). The first pocket (S1) 
contained Ala354, Glu384 and Tyr523 residues, and S2 
pocket consisted of Glu281, His353, Lys511, His513 and 
Tyr520 residues, while S01 included Glu162 residue. Also 
previous molecular docking study revealed that VLSTS-
FPPK, LPGSVHLAK peptides formed hydrogen bond with 
the S1, S2 and S01 pockets and inhibited ACE activity (Mir-
zaei et al. 2018) (Fig. 2).

Mechanism of Action of Cholesterol‑Lowering Peptides

Biologically active peptides that possess hypocholesterolae-
mic effect are also crucial in the management of hyperten-
sion. For example, Cumin seed derived peptides have been 
shown to inhibit cholesterol micelle formation, inhibit lipase 
activity and bind strongly to bile acids and may therefore 
lower cholesterol level (Siow et al. 2016). Previous study 
also revealed that sericin-derived oligopeptides suppressed 
serum total cholesterol and inhibited cholesterol uptake by 
monolayer cells. These peptides also bound tightly to tauro-
cholate, deoxytaurocholate, and glycodeoxycholate which 
lead to a reduced cholesterol absorption in the gut (Lapphan-
ichayakool et al. 2017). Additionally, Lammi et al. reported 
that soybean peptides (LPYP, IAVPGEVA and IAVPTGVA) 
activated LDLR-SREBP-2 signaling pathway, improved 
LDL absorption and inhibit HMG-CoA reductase activity 
in HepG2 cells and this may account for their significant 
hypocholesterolaemic effect (Lammi et al. 2015). In a related 
studies, peptides derived from cowpea and rice bran pro-
tein hydrolysates exhibited HMG-CoA reductase-inhibitory 
effect and reduced cholesterol micellar solubilization in vitro 
(Marques, et al. 2015; Zhang et al. 2012). Moreover, black 

bean and cowpea-derived peptide (YAAAT) can bind tightly 
to the N-terminal domain of Niemann-Pick C1 (NPC1L1) 
and disrupt the interactions between NPC1L1 and membrane 
proteins thereby improve cholesterol absorption (Hernandez 
and de Mejia 2017) (Fig. 3).

Mechanism of Action of Antioxidative Peptides

Antioxidative activity of bioactive peptides is associated 
with the composition, sequence and hydrophobicity of 
amino acid residues present in the peptide sequence (Las-
soued et al. 2015). Also presence of hydrophobic amino 
acids in peptides sequence enhances their solubility in lipid 
and facilitates accessibility to free radical species, thereby 
promoting antioxidant activity (Chen et al. 1996; Suetsuna 
et al. 2000; Qian et al. 2008). Previous study demonstrated 
that there exists a strong correlation between the antioxidant 
properties of peptides with hydrophobic and aromatic amino 
acid residues (Cheison et al. 2007). For instance, the pres-
ence of valine and leucine at the N-terminal and proline in 
the sequence of peptide contribute to its antioxidant activ-
ity (Chen et al. 1995). Additionally, the aliphatic groups in 
valine and leucine have high affinity to hydrophobic poly 
unsaturated fatty acids (Qian et al. 2008). Also, lysine-con-
taining peptides possess antioxidant property, especially due 
to their ability to reduce Fe3+ to Fe2+ and to chelate Fe2+ and 
Cu2+ ions (Carrasco-Castilla et al. 2012; Huang et al. 2010). 
Phenylalanine acts as proton donor to electron deficient radi-
cals and efficiently scavenge them (Duan et al. 2014) while 
bioactive peptide with histidine residue in the sequence act 
as oxygen quencher and hydroxyl radical scavenger due to 
its imidazole ring which act as proton donor (Pihlanto 2006; 

Fig. 2   ACE-catalyzed con-
version of angiotensin I to 
angiotensin II and bradykinin to 
bradykinin (1–7). Formation of 
angiotensin II and depletion of 
bradykinin concentration results 
in elevation of blood pressure
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Zou et al. 2016). In addition, tyrosine delivers a proton to 
suppress free radicals (Wang et al. 2008). Furthermore, the 
presence of histidine, proline, cysteine, tyrosine, tryptophan, 
phenylalanine, and methionine in a peptide sequence pro-
motes delay in lipid peroxidation, thus producing antioxidant 
effect (Li and Yu 2015). Thus it is important to mention that 
antioxidative effect of a single amino acid is far weaker than 
the additive effect of many amino acids in the sequence of a 
bioactive peptide (Zhu et al. 2012) (Fig. 4).

Antidiabetic Peptides

Diabetes mellitus (DM) is a metabolic disease character-
ized by increased blood glucose level due to inadequate 
insulin secretion or action, or both. DM is classified as 
type I and type II. The Type I diabetes (Insulin dependent 
diabetes mellitus) is an autoimmune disease characterized 
by beta cells dysfunction leading to little or no insulin 
secretion by pancreas. Type 2 diabetes mellitus (T2DM) 
also known as non-insulin dependent diabetes mellitus, 
there is an imbalance in the insulin secretion and blood 
sugar absorption (Chaudhury et al. 2017). Unfortunately, 
the current therapy for diabetes uses synthetic drugs that 
have been linked with adverse effects and increases the 
risks of obesity (Thulé and Umpierrez 2014), gastrointes-
tinal disorder (Thong et al. 2015), pancreatitis (Meier and 
Nauck 2014) and intolerance and other metabolic disorders 

(Dujic et al. 2015). However, bioactive peptides present 
in functional foods have the potentials to regulate sugar 
absorption and insulin level in the body (González-Mon-
toya et al. 2018). T2DM account for 90% of all diabetes 
cases (DeFronzo et al. 2015). Following consumption of 
a carbohydrate rich diet, insulin secretion is stimulated by 
the combined actions of Glucose-Dependent Insulinotropic 
Polypeptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) 
on the pancreatic cells (Silveira et al. 2013). These incre-
tins hormones perform their physiological roles through 
activation of their receptors. GLP-1 exhibits both insulino-
tropic and glucagonostatic effects that can normalize blood 
glucose levels in patients with T2DM (Deacon, 2018). As 
a metabolic regulatory mechanism, the biological activity 
of incretins is significantly reduced upon degradation by 
dipeptidyl peptidase IV (DPP-IV). Interestingly, inhibition 
of DPP-IV is considered a novel therapeutic strategy for 
managing T2DM (Deacon 2018; Mulvihill 2018). Food-
derived DPP-IV-inhibitory peptides have been identified 
as natural alternatives to DPP-IV inhibitory compound 
(Nongonierma and FitzGerald 2015). Also, α-amylase and 
α-glucosidase inhibitors have been employed for the con-
trol of glucose homeostasis in diabetic patients (González-
Montoya et al. 2018). Food-derived bioactive peptides are 
gaining interest from researchers owing to their antidia-
betic properties and safety (Daliri et al. 2017). Some of 
the bioactive peptides with antidiabetic effects have been 
summarized in Table 6.

Fig. 3   Mechanism of action of 
cholesterol lowering peptides: 
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Fig. 4   Antioxidant peptides 
prevent fenton reaction, delay 
lipid peroxidation and enhance 
lipid solubility
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Table 6   Antidiabetic peptides for T2DM

Bioactive peptide Origin Function References

NNDDRDS,LSSTEAQQS,NAENNQRN, 
QQQQQGGSQSQ,EEPQQPQQ,IKSQSES

Germinated soybean Inhibits DPP-IV, α-amylase and 
α-glucosidase

González-Montoya et al. (2018)

PPL Meat protein Inhibits DPP-IV Lafarga and Hayes (2016)
YP, LP, IPI, VPL, IPA, IPAVF Milk protein Inhibits DPP-IV Nongonierma and Fitzgerald (2015)
PGVGGPLGPIGPCTE,CAYNTERPVDRIR, 

PACCGPTISRPG
Tuna cooking juice hydrolysates Inhibits DPP-IV Huang et al. (2012)

GPAE, GPGA Atlantic salmon skin gelatin Inhibits DPP-IV Li-Chan et al. (2012)
MHQPPQPL, AWPQYL,SPTVMFPPQSVL, 

VMFPPQSVL,AWPQYL, INNQFLPYPY
Goat milk casein Inhibits DPP-IV Zhang et al. (2015)

LKPTPEGDL, LPYPY, IPIQY, WR Milk protein Inhibits DPP-IV Lacroix et al. (2017)
ILAP, LLAP, MAGVAHI Macro alga (Pamaria palmate) Inhibits DPP-IV Harnedy et al. (2015)
IPA Whey protein (β-lactosin) Inhibits DPP-IV Silveira et al. (2013)
IPAVF Whey protein (β-Lg) Inhibits DPP-IV Tulipano et al. (2011)
VAGTWY​ Whey protein (β-Lg) Exhibits hypoglycemic effect Uchida et al. (2011)
LPQNIPPL Casein Inhibits DPP-IV Uenishi et al. (2012)
ILDKEGIDY,ILDKVGIQY,ILQLA,LLQLE

AIR, LPVP, MPVQA, SPVVPF, TPVEPF
Camel milk protein Inhibits DPP-IV Nongonierma et al. (2018)

LAHKPL, ILDKEGIDY Camel milk protein (α-lactalbumin) Inhibits DPP-IV Nongonierma et al. (2019)
VPV, YPI, VPF Camel milk protein (β-casein) Inhibits DPP-IV Nongonierma et al. (2019
VPV Camel milk protein Inhibits DPP-IV Nongonierma et al. (2019)
KDLWDDFKGL, MPSKPPLL Camel milk protein Inhibits DPP-IV Mudgil et al. (2018)
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Mechanism of Action of Antidiabetic Peptides

Many bioactive peptides have been demonstrated to exhibit 
antidiabetic effect through inhibition of DPP-IV as well as 
key enzymes linked to carbohydrates metabolism includ-
ing α-amylase and α-glucosidase (Zhang et  al. 2016). 
Previous study reported that fermented soybean protein 
contains low molecular weight peptides some of which 
induce insulin-stimulated glucose uptake in 3T3-L1 cells 
and antagonize PPAR-activities (Kwon et al. 2011). Simi-
larly, AKSPLF, ATNPLF, FEELN, and LSVSVL peptides 
obtained from black bean protein hydrolysates possess 
glucose transporter-2 (GLUT-2) and sodium-dependent 
glucose transporter-1 (SGLT-1) inhibitory activity thereby 
reduce blood glucose level (Mojica et al. 2017). Salmon 
frame protein hydrolysates contain peptides promote glu-
cose uptake in muscle cells (Roblet et al. 2016). Also, in 
related study, peptides (LPIIDI and APGPAGP) obtained 
from Silver carp protein hydrolysates effectively inhib-
ited DPP-IV (Zhang et al. 2016) as presented in Table 6 
(Fig. 5).

Antimicrobial Peptides and Their Mechanism 
of Action

Antimicrobial peptides are gaining interest because of 
their multifunctional properties including wound healing 
(Tomioka et al. 2014) and immunomodulation (Mansour 
et al. 2014) on a wide range of microorganisms (Memar-
poor-Yazdi et al. 2012).These properties make antimicro-
bial peptides better alternatives against resistant pathogenic 
bacteria than conventional antibiotics (Daliri et al. 2017). 
Milk-derived peptides with antimicrobial property have been 
extensively studied (Piotto et al. 2012). Their antimicrobial 
activities are diverse, ranging from those that prevent the 
attachment or invasion of pathogen microorganisms, to those 
that inhibit microbial growth (Hernandez-Ledesma et al. 
2014). In addition, peptide (ELLLNPTHQIYPVTQPLAPV) 
isolated from human colostrum inhibited bacterial growth 
by cell wall and cytoplasmic membrane destruction (Zhang 
et al. 2017). Also, AMPSSSEESII from β-s2–casein inhibit 
the growth of Listeria innocua, Micrococcus luteus, Sal-
monella enteritidis and E. coli. Milk-derived antimicrobial 

Fig. 5   Bioactive peptides 
exhibit antidiabetic effects
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peptides contain more positively charged amino acid resi-
dues in their sequence (Guterstam et al. 2009). The net posi-
tive charge could aid binding to negatively charged bacterial 
membranes and arginine and lysine-containing peptides per-
meate cells by inducing ATP-dependent endocytic micro-
pinocytosis (Guterstam et al. 2009). Besides, hydrolysis 
of bovine lactoferrin with pepsin and digestion of bovine 
whey proteins (β-lactoglobulin and α-Lactalbumin) pro-
duced antibacterial peptides with a broad spectrum against 
Gram-positive and Gram-negative bacteria (Pellegrini et al. 
2001; Bellamy et al. 1992). Furthermore, biologically active 
peptide (SIFIQRFTT) has also been isolated from fish pro-
teins with antimicrobial potentials against Listeria innocua 
and Escherichia coli (Guinane et al. 2015). Also, forage 
fish protein yielded GLSRLFTALK peptide which showed 
strong antimicrobial effects against S. aureus, B. subtilis, 
S. pneumoniae, E. coli, S. dysenteriae, P. aeruginosa and 
S. typhimurium (Ennaas et al. 2015). In some cultures and 
religion, consumption of blood is a taboo. However, in some 
countries, blood from domesticated animals is processed and 
consumed as food (Alan 2006). Hydrolysis of blood protein 
has also yielded several peptides with antimicrobial prop-
erty. For examples, VNFKLLSHSLLVTLASHL peptide 
isolated from bovine haemoglobin effectively inhibited the 
growth of Candida albicans, Escherichia coli and Staphylo-
coccus aureus (Aissaoui et al. 2016). In addition, hydrolysis 
of haemoglobin using pepsin enzyme yielded many pep-
tides which effectively inhibited the growth of Salmonella 

enteritidis, Escherichia coli, Shigella sonnei, Micrococcus 
luteus, Enterococcus faecalis, Listeria innocua, Staphylo-
coccus saprophyticus, Bacillus cereus and Staphylococcus 
simulants (Hu et al. 2011; Adje et al. 2013). Antimicrobial 
peptides possess both hydrophilic and hydrophobic amino 
acids at their terminals and this has been recognized as the 
major structural motifs through which they interact with 
microbes (Daliri et al. 2017). The mechanisms amongst 
which these bioactive peptides exert antibacterial effect can 
be either by making pores through the bacteria cell mem-
brane or by interacting with macromolecules inside the 
microbial cells (Shah et al. 2016; Taniguchi et al. 2016). 
Researchers have discovered many antimicrobial peptides 
and these are available on database such as APD3 (Wang 
et al. 2016), CAMPR3 (Waghu et al. 2016) and YADAMP 
(Piotto et al. 2012). Antimicrobial peptides derived from 
food proteins are presented in Table 7.

Anticancer Peptides and Their Mechanism 
of Action

The orthodox drugs used for treatment and management 
of different forms of cancer are usually not effective and 
have adverse effects such as gonadotoxicity (Gutierrez et al. 
2016), nephrotoxicity (Van Acker et al. 2016), neurotox-
icity and cardiotoxicity (Oun et al. 2013). Consequently, 
researchers have intensified efforts towards investigation of 

Table 7   Antimicrobial peptides derived from food proteins

Bioactive peptide Origin Function References

ELLLNPTHQIYPVTQPLAPV Human milk casein Inhibits bacterial growth by cell wall and 
cytoplasmic membrane destruction

Zhang et al. (2017)

AMPSSSEESII Human milk casein Interacts with microorganisms to inhibit 
their growth

Zhang et al. (2017)

IKHQGLPQE Milk protein Inhibits the growth of pathogenic bacteria 
in infant formula

Kamali and Ehsani (2017)

SIFIQRFTT Casein Inhibits Listeria innocua and Escherichia 
coli

Guinane et al. (2015)

GLSRLFTALK Atlantic mackerel 
(Scomber scom-
brus)

Interacts with microorganism to cause 
inhibition

Ennaas et al. (2015)

FPIGMGHGSRPA Forage fish Inhibits microbial growth Tang et al. (2015)
VLSAADKGNVKAAWGKVGGH-

AAEYGAEALERMF,ASHLPSDFTPA-
VHASLDKFLANVSTVLTSKYR, 
VLSAADKGNVKAAWGKVGG-
HAAEYGAEALERMFLSF

Bovine hemoglobin Inhibits microbial growth Hu et al. (2011), Adje et al. (2013)

VNFKLLSHSLLVTLASHL Fish-by product Inhibits the growth of Candida albicans, 
Escherichia coli and Staphylococcus 
aureus

Aissaoui et al. (2016)

PGTAVFK
EVSLNSGYY​
TTMPLW

Soy bean
Barley
α-casein

Causes bacteria and yeast membrane 
destruction

McClean et al. (2014)



843International Journal of Peptide Research and Therapeutics (2020) 26:831–848	

1 3

food-derived bioactive peptides with anticancer properties 
with little or no side effects. Food protein-derived peptides 
possess inherent potentials for preventing different stages of 
cancer, including initiation, promotion, and progression (De 
Mejia and Dia 2010). The selectivity of action of anti-cancer 
peptides seems to be due to their strongly cationic character 
that allows them to interact with negatively charged struc-
tures on cancer cells, resulting in the destabilization of can-
cer cell membranes (Hoskin and Ramamoorthy 2008). Addi-
tionally, in vitro studies have shown that anti-cancer peptides 
act by inducing apoptosis, cell cycle arrest, modulating gene 
expression, and preventing angiogenesis (De Mejia and Dia 
2010). In previous study, casein phosphopeptides (CPPs) 
inhibit proliferation of intestinal tumour HT-29 and AZ-97 
cells and induce apoptosis by activating voltage-activated 
calcium channels, which mediate the calcium flux according 
to the depolarization state of the cell (Perego et al. 2012). 
Moreover, peptides from different sources have shown prom-
ising effects against cancer. For instance, oyster hydrolysate 
containing LANAK peptide and HVLSRAPR peptide iso-
lated from S. platensis hydrolysate inhibited HT-29 cancer 
cell proliferation (Umayaparvathi et al. 2014; Wang and 
Zhang 2017). In addition, another peptide RQSHFANAQP 
from chickpea hydrolysate increased the level of p53 in 
breast cancer cell lines and inhibited their proliferation (Xue 
et al. 2015). Furthermore, setipinna taty-derived peptide 

(YALPAH) induced apoptosis in prostate cancer PC-3 cells 
(Song et al. 2014). Moreover, soybean protein hydrolysates 
contain many anticancer peptides exhibited strong antiprolif-
erative effect against breast cancer cell line MCF-7 through 
induction of cell cycle arrest in S-phase and promote the 
expression of p21 and p27, decrease cyclin A expression, 
cleaved caspase 3, downregulate Bcl-2, PARP and caspase 
9 expression with concomitant upregulation of p53 and Bax 
expression (Hung et al. 2014). In related study, peptides iso-
lated from Dendrobium catenatum showed antiproliferative 
activity against HepG-2, SGC-7901 and MCF-7 cancer cells 
(Zheng et al. 2015) (Table 8).

Conclusion

Food-derived biologically active peptides have the inher-
ent potentials to interact with tissues, cells, enzymes, reac-
tive oxygen species and certain molecules to exert some 
therapeutic functions which are helpful in the management 
and treatment of many lifestyle-related diseases including 
hypertension, diabetes mellitus, obesity and cancer. In addi-
tion, several bioactive peptides possess antimicrobial effects 
owing to their multifunctional properties. However, the 
major challenge associated with bioactive peptides is reten-
tion of the activity after oral ingestion. Thus, the present 

Table 8   Anticancer peptides

Bioactive peptide Origin Function References

RHPFDGPLLPPGD
RCGVNAFLPKSYL-
VHFGWKLLFHFD
KPEEVGGAGDRWTC​

Dendrobium catenatum Antiproliferative activity against HepG-2, 
SGC-7901 and MCF-7 cancer cells

Zheng et al. (2015)

KPEGMDPPLSEPED-
RRDGAAGPK, KLPPLLLAKLLMSG-
KLLAEPCTGR​

Tuna cooking juice Antiproliferative effect on breast cancer cell 
line MCF-7. Promotes the expression of 
p21 and p27, Decreases cyclin A expres-
sion, Cleaves caspase 3, Downregulates 
Bcl-2, PARP and caspase 9 expression, 
Upregulates p53 and Bax expression

Hung et al. (2014)

RKQLQGVN, GLTSK, GEGSGA, 
MPACGSS, LSGNK, MTEEY

Soybean protein Effectively inhibits cell proliferation Fernandez-Tomé et al. 
(2017), Vital et al. (2014)

YALPAH Setipinna taty Induces apoptosis in prostate cancer PC-3 
cells

Song et al. (2014)

RQSHFANAQP Chickpea Increases the level of p53 in breast cancer 
cell lines and inhibits their proliferation

Xue et al. (2015)

HVLSRAPR S. platensis Inhibited HT-29 cancer cell proliferation Wang and Zhang (2017)
LANAK Oyster Anticancer activity against human colon 

carcinoma (HT-29) cell lines
Umayaparvathi et al. (2014)

RRWQWR Lactoferrin Induces cytotoxicity via caspase-mediated 
and cathepsin B-mediated mechanism in 
T-leukemia cells

Arias et al. (2017)

PFWRIRIRR Lactoferrin Induces necrosis in leukemia cells (MEL and 
HL-60)

Arias et al. (2017)

FKCRRWQWRMKKLGAPSITCVRRAF Lactoferrin Inhibits leukemia cells Arias et al. (2017)
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review further highlighted the health promoting effects of 
food-derived bioactive peptides against chronic and degen-
erative diseases.
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