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Abstract Cytokines such as interleukin-6 (IL-6) and IL-17

which act as key regulators of the immune response have

been identified to have a potential role in the bone remod-

eling mechanism. Receptor activator of NF-jB ligand

(RANKL) has been shown to regulate osteoclast differenti-

ation and function while the osteoprotegerin (OPG) blocks

the binding of RANKL and inhibits the differentiation of

osteoclasts, thus favoring osteogenesis. Alkaline phos-

phatase (ALP) on the other hand works as early mineral-

ization indicator in bone regulation. The current study aims

to determine the potential role of IL-6 and IL-17A in regu-

lating the OPG/RANKL system of the murine osteoblast cell

line (MC3T3-E1). Gene expression analysis showed signif-

icant up-regulation of OPG andALP by all the treated groups

(rIL-6, rIL-17A and rIL-6 ? rIL-17A). In contrast, treat-

ment of cells with rIL-6 and/or rIL-17A showed down-reg-

ulation of RANKL expression. Interestingly, the osteoblast

cells treated with combinations of rIL-6 ? rIL17A showed

marked increased in OPG/RANKL ratio. Similar pattern of

protein expression was observed in the osteoblasts treated

with rIL-6 and/or rIL-17A as detected by western blotting

and ELISA. These findings suggest a new mechanism of

regulation by these cytokines on the expression of OPG and

RANKL, which could promote osteogenesis and diminish

osteoclastogenesis.
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Introduction

Numerous proteins and growth factors have been widely

explored to understand the biological fixation and activity

to overcome bone complications and strengthen bone

immunology (Hadi et al. 2011). The bone remodeling cycle

is highly regulated by a variety of factors such as hor-

mones, cytokines and growth factors. Recent studies have

demonstrated interactions between bone and immune cells

via cytokines which are mainly involved in bone metabo-

lism (Oishi et al. 2012; Raggatt and Partridge 2010; Riggs

2000). It is reported that the cytokines produced in bone

defines the response of bone cells to the bone mechanism

and developments of bone remodeling (Horowitz and

Lorenzo 2008). Cytokines which acts in bone formation

might also be involved in bone resorption under certain

circumstances (Manolagas and Jilka 1995). Identifying

such functional cytokines involved in these mechanisms

have been widely studied (Horowitz and Lorenzo 2008;

Lorenzo 2011; Murakami et al. 2011). Interleukins such as

IL-6 and IL-17 for instance, acts as key regulators in the

immune response and bone mechanism (Murakami et al.

2011; Tokuda et al. 2004; Tokuda et al. 2002; Won et al.

2011).

IL-6 is a multifunctional cytokine which plays a major

role in bone homeostasis by balancing the osteoblast and

osteoclast production. It regulates immune cell function

and is involved in osteoblastic cells proliferation and dif-

ferentiation (Shaama 2005). Murine and human osteoblast

cells produce IL-6 and IL-6 receptors, naturally present in

the bone microenvironment (Horowitz and Lorenzo 2002).
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Although, IL-6 is a pro-inflammatory cytokine, it has been

reported to display regenerative or anti-inflammatory

activity (Scheller et al. 2011). IL-6 has been shown to

stimulate both RANKL and OPG production in bone via

RANKL dependent (Lorenzo 2011; Yoshitake et al. 2008)

and RANKL independent (Kudo et al. 2003) mechanisms.

This suggests that IL-6 may target osteoblastic cells under

varying conditions (Frost et al. 2001). Osteoblasts naturally

does secrete IL-6, therefore IL-6 may have distinct role on

bone metabolism, although the pathway is still unclear

(Horowitz and Lorenzo 2002).

Meanwhile, IL-17 also has various contributions in bone

regulation (Witowski et al. 2004). It is mainly synthesized

by activated T cells and its receptors present in osteoblast

cells (Van bezooijen et al. 1999). Several clinical studies

have indicated a pivotal role for IL-17 involvement in bone

remodeling, either in enhancing or aggravating osteogen-

esis, depending on the microenvironment involved (Gos-

wami et al. 2009; Huang et al. 2009; Kwan Tat et al. 2008;

Moon et al. 2012). It has been recently reported that,

rheumatoid arthritis disease cause high level of IL-17

production which points out osteoclastogenesis subjugated

condition (Moon et al. 2012). Although IL-17 is primarily

associated with the induction of tissue inflammation, other

findings stated strong implications for bone remodeling

which favors bone formation (Goswami et al. 2009).

However, the exact mechanism of IL-17 in bone cells is yet

to be clarified.

In-depth understanding of bone metabolism implies the

involvement of osteoprotegerin (OPG) and receptor acti-

vator of RANK ligand (RANKL) that balances bone

metabolism (Alkady et al. 2011). RANKL is present in

osteoblasts and is responsible for the initiation of bone

resorption. In addition, RANKL stimulates osteoclastoge-

nesis and osteoclast activity by binding to the cell surface

receptor RANK, which is located on osteoclast precursors

and mature osteoclasts (Kawashima et al. 2007). This

binding leads to the activation of specific signaling path-

ways that is involved in the formation and survival of

osteoclasts in bone resorption. Meanwhile, OPG which is

secreted by osteoblasts also acts as a soluble decoy receptor

for RANKL (Saidak and Marie 2012). Thus, RANKL and

OPG appear to be the key regulators in controlling the bone

remodeling process (Whyte 2013).

Understanding the role of cytokines in bone metabolism

shall provide insights into the mechanisms that regulate the

development of bone related diseases and could lead to

new therapies for bone healing. Our preliminary study

showed that treatments with rIL-6 or rIL-17A respectively

enhanced the proliferation and alkaline phosphatase

activities in dose dependent manner (Sritharan et al., 2014).

Therefore, further studies on the regulatory properties of

IL-6 and IL-17 are crucial to understand their roles on

osteoblasts formation and bone metabolism. The aim of

this study is to evaluate the role of IL-6 and IL-17A in the

modulation of the OPG/RANKL system of murine osteo-

blast cell line (MC3T3-E1).

Methodology

Cell Culture

MC3T3-E1 cell line was cultured in Alpha minimum

essential medium (a-MEM) (Nacalai Tesque, Japan) under

sterile conditions in a controlled 37 �C temperature and

5 % CO2 humidified atmosphere. The cells were supple-

mented with 10 % heat-inactivated fetal bovine serum

(GIBCO, UK) and 1 % penicillin/streptomycin antibiotics.

After seeding cells, treatment was carried out in 24 h. The

cells were treated with rIL6 ± rIL17A (eBiosciences,

USA) at 10 ng/ml based on our previous study (Sritharan

et al. 2014). The cells were divided into 4 groups i.e.

MC3T3-E1 alone, MC3T3-E1 ? rIL6, MC3T3-

E1 ? rIL17A and MC3T3-E1 ? rIL6 ? rIL17A.

Intracellular Alkaline Phosphatase Assay

Alkaline phosphatase (ALP) activity was measured by

quantifying the release of p-nitrophenol (pNP). The ALP

assay was carried out using alkaline phosphatase activity

kit (Biovision, USA). The cells were seeded into a 24-well

plate at a density of 1 9 105 cells per well. The cells were

incubated for 1, 3, 7, 10 and 14 days. At the harvest day,

the supernatant was removed and the cells were homoge-

nized in assay buffer. The assay was carried out according

to the manufacturer’s instructions (Biovision, USA).

Finally, the optical density (OD) was read at 405 nm. ALP

activity was calculated as follows: ALP activity (U/

ml) = amount of pNP generated by samples/volume/time.

Validation of Bone Regulatory Genes Using Real-

Time PCR

Real-time PCR was performed on ALP, RANKL and OPG

genes. Total RNA was isolated from three biological

replicates of the treated and untreated samples and con-

verted to cDNA using High Capacity RNA-to-cDNA kit

(Applied Biosystems, USA). Primers and probes for qRT-

PCR were purchased from the Applied Biosystems, USA

and the assay was performed as described by the manu-

facturer. The assay was conducted using the ABI 7500

Real-Time PCR System (Applied Biosystems, USA) with

the following conditions: 50 �C for 2 min, 95 �C for 20 s

for enzyme activation, 40 cycles of denaturation at 95 �C
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for 3 s, 60 �C for 33 s for annealing and extension. The

expression level was estimated by the Applied Biosystems

7500 Software v2.0.

OPG and RANKL Expression by Western Blotting

MC3T3-E1 cells were washed and lysed using RIPA buf-

fer. The lysates were centrifuged at 13,000 rpm for 20 min

and the supernatants were denatured using Laemmli buffer.

Lysates were fractionated on 12 % (w/v) polyacrylamide

gels using electrophoresis method before transferring to

polyvinylidene difluoride (PVDF) membrane. The mem-

brane was then blocked with 5 % skimmed milk solution

for an hour before incubation with OPG mouse anti-goat

antibody and RANKL mouse anti-mouse antibody for 2 h

at 37 �C followed by incubation with the secondary HRP-

antibody for 1 h at 37 �C. Chemiluminescence was gen-

erated by an ECL western blot detection reagent. An

antibody specific to the house keeping gene, GAPDH was

used as a control. Integrated density of the band was

measured using Image J software where the integrated

OPG and RANKL density was normalized with integrated

density of GAPDH.

Detection of OPG and RANKL Secretion by ELISA

The OPG and RANKL expressions were determined from

the culture supernatants of the treated and untreated cells by

using Raybio mouse ELISA (Enzyme-Linked Immunosor-

bent Assay) kits, according to the manufacturer’s instruc-

tions. This assay employs an antibody specific for mouse

OPG and RANKL coated on a 96-well plate. The optical

density (OD) of 450 nm was measured using spectropho-

tometer (Bio-rad, USA) and the concentration (pg/ml) was

determined by comparison with the standard curve.

Untreated cells were used as a control.

Statistical Analyses

Statistical analyses were performed using the Statistical

Package of Social Sciences (SPSS) software, version 20.

The data obtained from independent experiments (n = 3)

were presented as the mean ± standard deviation (SD).

The data obtained from ALP, real-time, western blot and

ELISA were analyzed using one way ANOVA followed by

Post Hoc multiple comparison test, Bonferroni procedures.

The assumptions of normality, homogeneity of variance

and compound symmetry were checked and fulfilled. For

all analyses, p value of\0.05 was considered statistically

significant.

Results

ALP Activity

ALP activitywasmeasured on day 1, 3, 7, 10 and 14 as shown

in Fig. 1. The ALP assay showed that all the treated cells

secreted significantly higher levels of ALP compared to the

untreated group from day 1 onwards and peaked at day 14

(p\ 0.05). Remarkably, the ALP activity was significantly

increased at day 10 of the group treated with combination

cytokines (MC3T3-E1 ? rIL6 ? rIL17A) (p\ 0.05) com-

pared to the other treated groups. At day 14, similar signifi-

cant ALP activity was observed in MC3T3-E1 ? rIL6

(p\ 0.05) group. Extensive increase of ALP activity was

detected at day 14 compared to day 1, 3, 7 and 10 in all the

treated groups.

Validation Analysis of Specific Genes Using

qRT-PCR

The expression of specific bone regulatory genes was

examined using qRT-PCR. Values of log fold-change for

the up-regulated and down-regulated genes are shown in

Fig. 2. GAPDH was used as an internal control. ALP

gradually increased and peaks at the phases of mineral-

ization at day 14. Significant up-regulation of the relative

fold changes was shown by OPG gene by all the treated

groups when compared to the untreated group (p\ 0.05).

OPG showed the highest (p\ 0.05) relative fold changes

Fig. 1 ALP activity of MC3T3-E1 cells treated with IL-6 and/or IL-

17A. ALP activity was measured during the early proliferation period

on day 1, 3, 7 and during osteoblastic differentiation period on day 10

and 14. Cells with media alone were used as control. The data

presented as mean ± S.D. of quadruplicate cultures. *p\ 0.05,

significantly different from the untreated group. #p\ 0.05, signifi-

cantly different within the treated groups
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in MC3T3-E1 ? rIL-6 ? rIL-17A-treated sample in all

treatment days (day 3, 7 and 14) compared to the other

treated samples. RANKL, a specific osteoclast marker,

gradually decreases in the relative fold changes within the

treated groups at all the treated days (p\ 0.05). Day 14

demonstrated a drastic increase of the OPG and decrease in

RANKL expression in all the treated groups. Overall, the

cells treated with combination of both cytokines showed

significant increase in the OPG expression.

The Expression of OPG and RANKL Proteins

in MC3T3-E1 Cells in Response to rIL-6 – rIL-17A

Immunoblots demonstrated the appearance of a band at

approximately 35 and 60 kDa respectively indicating the

presence of OPG and RANKL proteins in both treated and

untreated cells (Fig. 3). Overall, significant increase in

the expression of OPG could be detected at day 7 and 14;

while significant reduction of RANKL could be observed at

day 3, 7 and 14 in the cells treated with rIL-6 ? rIL-17A and

rIL-17A (Fig. 3b). In addition, MC3T3-E1 cells treated with

combination cytokines demonstrated higher OPG protein

expression compared to the untreated and the other treated

samples. In contrast, RANKL was expressed higher in the

cells treated with rIL-6 alone compared to the other treated

groups. Interestingly, at day 7 and 14, OPG expression was

significantly elevated in the presence of combination cytoki-

nes (MCT3T3-E1 ? rIL-6 ? rIL-17A) and MCT3T3-

E1 ? rIL-17A group (p\ 0.05), while significant decreased

inRANKLexpression could be alsodetected in both samples.

On the other hand, MCT3T3-E1 ? IL-6 has no significant

difference inOPGandRANKLat day3 and7, however at day

14, OPG marked a significant decrease. The combination

cytokines showed significant expression of OPG among all

the treated samples on day 7 and 14, hence RANKL was

significantly reduced on day 14.

OPG and RANKL Production by MC3T3-E1 Cells

in Response to rIL-6 – rIL-17A

The OPG and RANKL productions were detected in all

culture supernatants of the treated and untreated cells. In the

treated cells, the OPG production was significantly higher

compared to the untreated cells (p\ 0.05). In the presence of

both combination cytokines (MCT3T3-E1 ? rIL-6 ? rIL-

17A) the OPG production was markedly increased

(p\ 0.05) than the other treated samples. All treatment days

showed similar OPG production patterns and it was noted

that day 14 showed the highest production of OPG (Fig. 4a).

In contrast, RANKL production in the treated samples

showed no significant difference compared to the untreated

cells. Meanwhile, day 3 expressed the lowest RANKL pro-

duction compared to day 7 and 14 (Fig. 4b).

Fig. 2 Validation of gene expression (log fold-change) of selected

genes (OPG, RANKL, and ALP genes) in the treated group (n = 3)

relative to the untreated group (n = 3) using qRT-PCR. The log fold-

change on day a 3, b 7 and c 14. *p\ 0.05, significantly different

from the untreated group. #p\ 0.05, significantly different within

the treated groups
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Discussion

Bone is a specialized connective tissue that is continually

remodeled according to physiologic events. This remod-

eling results from involvement of many cell types, pri-

marily osteoblasts and osteoclasts (Bellido et al. 2014).

Several precursors have been known to play an important

role in bone formation, activation and modulating bone

remodeling. This includes OPG and RANKL mechanism in

balancing osteoblast and osteoclast activity in bone regu-

lation (Giner et al. 2009a). The OPG-RANKL pathway is

an essential signaling pathway involved in cell interaction

as well as in osteogenic mechanism where modification of

this pathway has major effects on bone remodeling and

bone related diseases (Giner et al. 2009b; Pilichou et al.

2008; Pivonka et al. 2010). OPG encodes for osteoblastic

Fig. 3 Expression of OPG and RANKL proteins in MC3T3-E1 cells

treated with rIL-6 ± rIL-17A at day 3, 7 and 14. a Representative

Western blot results of OPG, RANKL and GAPDH proteins

b Integrated density of OPG and RANKL bands for each sample

were normalized to GAPDH. Data are represented as mean intensity

of protein expression ± SD for three independent experiments.

*p\ 0.05 is considered significantly different compared to the

untreated group. #p\ 0.05, significantly different within treated

the groups

Fig. 4 Production of a OPG and b RANKL in MC3T3-E1 cells

treated with rIL-6 ± rIL-17A and incubated for 3, 7 and 14 days.

Data are represented as mean concentration of protein ± SD for three

independent experiments. *p\ 0.05 is considered significantly dif-

ferent compared to the untreated group, #p\ 0.05, significantly

different within the treated groups
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development, which favors bone formation and thus OPG

deficiency boosts osteoclastic bone resorption or osteo-

porosis. OPG is recognized as a decoy receptor for

RANKL, the osteoclastic differentiation factor (Udagawa

et al. 2000). A study indicated that, increased level of OPG

has the tendency to inhibit excessive RANKL production

and leads to improved bone metastasis in vivo (Haynes

et al. 2003). Various findings have reported a profound

connection linking RANK/RANKL/OPG system with

regulation on bone development (Carda et al. 2005; Kuhn

et al. 2012). Research related to bone tissue tested the

distribution of joint development with the OPG and

RANKL regulators and a successful coupled mechanism of

bone remodeling were observed (Carda et al. 2005). A

previous report suggested OPG/RANKL ratio was used to

evaluate the activity of adipocyte-secreted factors on bone

formation (Kuhn et al. 2012). Another study utilized

RANK/RANKL/OPG system to measure the oxidative and

anti-oxidative properties of metals in bone activity (Br-

zoska and Rogalska 2013). It has been also specified that

bone diseases such as rheumatoid arthritis, cancerous bone

metastases (osteolytic metastases) and osteoporosis are

caused by alteration and imbalanced in the network of

RANK/RANKL/OPG (Hofbauer et al. 2004; Jones et al.

2002; Terpos et al. 2005; Wada et al. 2006). An experiment

was conducted to study the bone metastases in breast

cancer patient by assessing the OPG/RANK/RANKL

markers (Ibrahim et al. 2011). Therefore, modulation of

OPG/RANKL/RANK pathway is expected to hold more

promising roles on understanding the bone regulation and

preventing bone diseases which are yet to be discovered.

ALP is a multifunctional enzyme that often used as an

important marker for osteoblast activity (Sun et al. 2009).

During osteogenic differentiation, ALP is involved in the

differentiation pathway by expressing matrix-associated

proteins which is released during bone mineralization

(Fauran-Clavel and Oustrin 1986). In this study, high

levels of ALP were released in the treated MC3T3-E1 cell

line suggesting that these cytokines were effective regu-

lators for bone formation (Fig. 1). This could indicate a

pattern resembling the bone mineralization activity by

both rIL-6 and rIL-17A cytokines, where ALP secretion

gradually increases in the treated groups. Similarly, IL-6

has also been proven to have steady effects on osteoblast

differentiation directly (Itoh et al. 2006). Many studies

have proven that IL-6 induces osteoblast differentiation

in vitro (Li et al. 2008; Nishimura et al. 1998; Taguchi

et al. 1998). IL-6 also modulates osteoblastic differenti-

ation by increasing ALP activity in periodontal ligament

cells (Iwasaki et al. 2008). On the other hand, IL-6 had

been proven to have negative effects on osteoblast dif-

ferentiation (Kaneshiro et al. 2013). It is also believed

that IL-6 might be involved indirectly on osteoblast

differentiation by activating two distinct signaling path-

ways, namely JAK-STAT and MAP kinase. Nonetheless,

previous reports regarding the effects of IL-6 on osteo-

blast differentiation have been inconsistent on its exact

roles (Franchimont et al. 2005). Meanwhile, IL-17 is

known to signal the proliferation and differentiation of

human mesenchymal stem cells and capable of enhancing

bone formation (Huang et al. 2009). A study indicated

that IL-17 alone is able to increase ALP activity (Osta

et al. 2014), while its inhibitory roles have also been

proven in osteoblast differentiation in vivo (Kim et al.

2014).

Therefore, overall this could explain a steady differen-

tiation pattern of cells induced by rIL-6 or rIL-17A or

combination of both in the present study. Apparently, day

10 and day 14 showed remarkable increase in ALP activity

than day 1, 3 and 7, as it is expected to be high during peak

of differentiation period. It was noted at day 10, the com-

bination treatment showed significant increased of ALP

level compared to the other treated groups. This might

explain the synergistic effect of both cytokines which

enhancing higher ALP activity. However, at day 14,

treatment of MCT3T3-E1 cells with IL-6 alone showed

significant increase of ALP activity compared to treatments

with rIL17 alone and the combination cytokines. As proven

in the previous study, IL-6 might induce mineralization in

the bone microenvironment thus increasing high ALP

activity at day 14 (Guihard et al. 2012). Overall day 14

expressed a relatively higher ALP activity; the peak in ALP

activity generally denotes the initiation stage of bone

mineralization.

Following treatment with rIL-6 and rIL-17A, the

expressions of OPG and ALP genes were increased in time

dependent pattern, in contrast to the RANKL expression

that was decreased in time dependently (Fig. 2a–c). ALP

gene was expressed at higher levels in all the treated

samples. Interestingly, treatment of osteoblast cells with

rIL-6 or rIL-I7A or combination of both cytokines showed

down-regulation of RANKL gene expression and up-regu-

lation of OPG gene expression. The significant increase of

ALP and OPG expressions were identified in the samples

treated with combination of rIL-6 ? rIL-17A compared to

the samples treated with the individual cytokines. In

addition, treatment of cells with rIL-6 or rIL-17A or

combination of both cytokines had improved the OPG/

RANKL ratio thus indicating enhancement of osteogenesis

mechanism. The results indicated that combination of rIL-

6 ? rIL-17A has synergistic role on the OPG/RANKL

system and might have regulatory role on bone remodeling.

These cytokines were reported to influence osteoblast and

osteoclast differentiation via OPG/RANKL/RANK signal-

ing pathway as indicated in the previous studies (Axmann

et al. 2009; Huang et al. 2009; Lorenzo 2011; Palmqvist
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et al. 2002; Weitzmann et al. 2002; Yoshitake et al. 2008).

In this study, we demonstrated that the combination treat-

ment of rIL-6 and rIL-17A has promoted osteogenesis as

indicated by the gene expression study. Previous reports

have highlighted the direct role of IL-6 on osteoclasts and

indirect role on osteoblasts that leads to osteoclastogenesis

through RANKL signaling pathway (Axmann et al. 2009;

Hashizume and Mihara 2011; O’Brien et al. 1999). How-

ever, limited findings are available on the direct involve-

ments of IL-6 on osteoblast (Duplomb et al. 2008). A study

has indicated that IL-6 has been proven to have steady

effects on osteoblast differentiation directly (Itoh et al.

2006). Yoshitake et al. (2008) demonstrated the suppres-

sion role of IL-6 on osteoclast progenitor via an inhibition

of RANK signaling pathway. In addition, the study also

suggested that IL-6 might play an important role in pre-

venting excessive bone resorption during steady-state bone

remodeling. In contrast, it has been reported that IL-6 when

treated independently leads to osteoclastogenesis (Axmann

et al. 2009; O’Brien et al. 1999). According to Shaama

(2005), IL-6 triggers osteoclastogenesis in the presence of

other precursors, as it is secreted by osteoblasts when

stimulated by other cytokines which initiates osteoclast

formation (Frost et al. 2001). Our study indicated that at the

gene level, the direct involvement of IL-6 has no negative

feedback towards osteoblast cells, instead it could con-

tribute to a promising outcome towards osteogenesis.

On the other hand, IL-17 is predicted to be more

favorable for bone disruption and also been proven to act as

a protective precursor in bone loss (Goswami et al. 2009).

However, IL-17 could act as a retroactive mechanism

which could modify bone resorption into bone formation

phases (Kwan Tat et al. 2008). A previous study has proven

that osteoblast regulation were heightened by IL-17 during

the initial stage of fracture repair and promoted osteogen-

esis (Nam et al. 2012). IL-17 has also significantly sup-

pressed bone resorption activity in osteoblast (Kwan Tat

et al. 2008). In addition, IL-17 has been proven to have a

steady interaction and modulates bone mechanisms when

treated in combination with other inflammatory cytokines

(Shen et al. 2005). In this study, we demonstrated that the

direct involvement of IL-17 in osteoblast could enhance the

bone regulation mechanism. Moreover, to date no study

has been conducted on the synergic, antagonistic or addi-

tive effects of these IL-6 and IL-17 when treated in com-

bination. We believe that both cytokines which has

retroactive mechanism independently has a synergic effect

when combine together in natural bone and thus favors

bone regulation rather than bone disruptions. Overall, the

results demonstrated that expression patterns of bone-re-

lated genes favors bone formation (ALP and OPG) rather

than bone resorption (RANKL). The genes evaluated in the

study were important parameters for osteoblast activity in

bone formation and the data contributed to further under-

standing towards molecular mechanism of bone regulation

in bone remodeling.

Protein expression study demonstrated no significant

difference among all the treated samples at day 3 (Fig. 3).

This might be due to early phase of protein regulation and

initiation of osteogenic mechanism. Previous studies have

stated that the bone regulation mechanisms were usually

undetectable at day 3 (Ai-Aql et al. 2008; Cho et al. 2002;

Dimitriou et al. 2005). It has been reported that mRNA and

protein expressions varies at their optimal peak of pro-

duction (Schwanhausser et al. 2011; Sullivan et al. 2000).

Interestingly, at day 7 and 14, the OPG expression was

significantly elevated and the RANKL expression was

significantly decrease in the presence of combina-

tion cytokines (MCT3T3-E1 ? rIL-6 ? rIL-17A) and

MCT3T3-E1 ? rIL-17A (Fig. 3b). This explains the

increase of osteogenic property in the samples, as day 7

and 14 portray the peak of proliferation and the most active

osteogenesis phase (Ai-Aql et al. 2008; Dimitriou et al.

2005; Kon et al. 2001). Protein expression indicated that

treatment of MC3T3-E1 ? rIL-6 ? rIL-17A demonstrated

the highest OPG expression on day 7 and 14 compared to

treatments with rIL-6 or rIL-17A respectively. This con-

firmed that combination of rIL-6 ? rIL-17A has direct

evidence for the differential expression of proteins which

favor osteogenic activity. Findings highlights OPG/

RANKL pathway as an important aspect to study local

immune response and bone remodeling (Poubelle et al.

2007). In addition, Sood et al. (2011) speculated the

essential roles of OPG/RANKL pathway in bone metas-

tases, where the disruption of the OPG protein expression

results in osteoporosis and the high RANKL expression

leads to tumour stimulation (Sood et al. 2011).

The biochemistry assay further supports that rIL-6 and

rIL-17A play a major role in bone regeneration, where it

elevates the OPG production significantly higher in com-

bination of cytokines (MCT3T3-E1 ? rIL-6 ? rIL-17A)

and MCT3T3-E1 ? rIL-17A compared to the untreated

cells (Fig. 4a). In consistent with the previous assays, the

combination treatment has a major significant pattern from

day 7 to day 14 compared to the other treated samples. This

is likely proposing that the combination of cytokines

(MCT3T3-E1 ? rIL-6 ? rIL-17A) has a functional role

towards bone remodeling. On the other hand, RANKL

production showed less functional effect in ELISA analysis

although it showed a significant decrease in combination of

cytokines (MCT3T3-E1 ? rIL-6 ? rIL-17A) and

MCT3T3-E1 ? rIL-17A-treated samples at day 14

(Fig. 4b).

In contrast with gene expression where mRNA level of

OPG was elevated when treated with rIL-6 and rIL-17

independently, no significant increase in OPG protein
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expression was observed when treated with the rIL-6

respectively. Nonetheless, IL-6 showed a significant

decrease of OPG expression at day 14, which is a negative

response towards osteogenesis. The similar pattern was

noted in a study by Grandjean-Laquerriere et al. (2004)

where osteoblasts showed significant elevation in mRNA

level of IL-18 but no protein expression was reported

(Grandjean-Laquerriere et al. 2004). These might be due to

cytokines ability to emit strong signals for transcription but

inadequate signals for translation (Vogel and Marcotte

2012). Besides, we postulate that other precursors might

have influence to decrease the OPG/RANKL expressions

via stimulating different pathways and not favoring bone

regulation, due to the retroactive process. However, it is

proposed that the regulatory role of IL-6 is depending on

the microenvironment conditions (Hidalgo et al. 2011;

Yoshitake et al. 2008). In accordance to our results, gene

and protein analyses indicate positive effects on MC3T3-

E1 when treated in combination with rIL-6 ? rIL-17A or

rIL-17A alone. Remarkably the combination cytokines

(rIL-6 ? rIL-17A) shows excellent regulation on osteoge-

nesis. This may contribute to a promising outcome towards

bone regeneration at the molecular level.

Conclusion

Our study demonstrated that the synergistic effects of rIL-

6 and rIL-17A significantly promoted the differentiation

and mineralization of MC3T3-E1 murine osteoblast cells.

The findings suggest that the combination treatment of rIL-

6 and rIL-17A could serve as a potent osteoblastogenesis

enhancing regulator despite expressing contrasting regula-

tory mechanism when treated independently with cells.

However, further studies are needed to understand the

regulatory role of rIL-6/rIL-17A on RANK or other sig-

naling pathways.
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