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Abstract Central regulatory mechanisms for food intake

regulation vary among animals. Evidence from animal

studies suggests central opioids and dopamine have promi-

nent role on appetite regulation but their interaction(s) have

not been studied in layer-type chicken. Thus, in this study six

experiments designed to investigate intracerebroventricular

(ICV) administration of SCH23390 (D1 like receptors

antagonist), Sulpride (D2 like receptors antagonist),

DAMGO (l-opioid receptors agonist), DPDPE (d-opioid

receptors agonist), U-50488H (j-opioid receptors agonist)

on feeding behavior in 3 h food deprived neonatal layer-type

chickens. In experiment 1, chicks ICV injected with control

solution, SCH23390 (2.5 nmol), DAMGO (125 pmol) and

their combination (SCH23390 ? DAMGO). In experiment

2: control solution, SCH23390 (2.5 nmol), DPDPE (d-opi-

oid receptors agonist, 40 pmol) and SCH23390 ? DPDPE

were applied to the birds. In experiment 3, injections were

control solution, SCH23390 (2.5 nmol), U-50488H

(30 nmol) and SCH23390 ? U-50488H. In experiments

4–6 were similar to experiments 1–3 except Sulpride

(2.5 nmol) applied instead of SCH23390. Then, cumulative

food intake was recorded until 120 min after injection.

According to the results, ICV injection of DAMGO

(125 pmol) significantly decreased food intake but co-in-

jection of DAMGO ? SCH23390 diminished DAMGO-

induced hypophagia (P\ 0.05). Also, SCH23390 was not

able to decrease the DPDPE- and U-50488H-induced

hyperphagia (P[ 0.05). Furthermore, Sulpride had no role

on DAMGO, DPDPE and U-50488H-induced food intake

(P[ 0.05). These results suggest there is an interaction

between opioidergic and dopaminergic systems via l and D1

receptors in appetite regulation in chicken.
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Introduction

Appetite regulation is a complex physiologic phenomenon

which interacts via diverse signals from central and

peripheral tissues. In the brain, neurotransmitters by neu-

rological mechanisms are responsible for food intake reg-

ulation (Zendehdel et al. 2014). It is important to note,

appetite regulates by a wide distributed neural network

with variety of peptides (Alizadeh et al. 2015; Hassanpour

et al. 2015). Dopamine (DA) is the predominant cate-

cholamine neurotransmitter in the central nervous system

(CNS). To date, at least five distinct subtypes of DA

receptors identified (D1–D5), belong to G protein coupled

receptor subtypes (GPCRs). D1 like receptor subtypes (D1

and D5) couples to the stimulatory G protein (Gs) via

adenylyl cyclase pathway while D2 like subfamily (D2, D3

and D4) acts through inhibiting adenylyl cyclase and acti-

vation of K? channels (Ikemoto 2007). D1 and D2 receptors
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are more abundant than the other dopamine receptors in the

brain (Cadet et al. 2010). DA controls several physiological

functions such as emotion, locomotor activity, cognition

and food intake (Ikemoto 2007).

Opioids are known as inhibitory neurotransmitters.

Three opioid receptors classified mainly as mu (l), delta

(d) and kappa (j) which are homologous to GPCRs (Fichna

et al. 2007; Erbs et al. 2014). Endogenous opioid peptides

exist abundant in the CNS and have an important role in the

regulation of pain mechanisms, respiration, immune sys-

tem (Le Merrer et al. 2009) and food intake (Bodnar 2014).

Feeding behavior is modulated in several parts of the

brain, such as striatum, hypothalamus, amygdala, orbito-

frontal cortex (OFC), nucleus ventral tegmental area

(VTA), nucleus accumbens (NAcc), tractus solitaries (NTS)

and arcuate nucleus (ARC) (Parker et al. 2014). Several

neurotransmitters, including DA, cannabinoids, opioids,

GABA and serotonin are implicated in the rewarding effect

of food (Chen et al. 2006; Le Merrer et al. 2009). DA is a

key anorexigenic neurotransmitter modulating reward

which acts mainly through its projections from the VTA

into the NAcc and ARC (Volkow et al. 2011). The inhibi-

tory effect of DA on food intake was decreased by SCH

23390 pretreatment in chicken (Bungo et al. 2010; Zende-

hdel et al. 2014). The same observation reported in mam-

mals which ICV injection of SKF 38393 (D1 receptors

agonist) and apomorphine (D2 receptors agonists) decreased

cumulative food intake in rats (Kuo 2002).

Reports suggest the endogenous opioidergic system is

involved in food intake regulation. Central l and d
receptors agonists exert orexigenic effects in mammals

(Taha 2010; Kaneko et al. 2012; Kozlov et al. 2013). There

is evidence food intake regulation pathways are dissimilar

between mammals and avian (Zendehdel and Hassanpour

2014). For instance, ICV injection of [D-Ala2, NMe-Phe4,

Gly5-ol]-enkephalin (DAMGO) and b-casomorphin (l-

opioid receptor agonists) decreased while [D-Pen2,5]-

enkephalin (DPDPE) (d-opioid receptor agonist) and

U-50488H (j-opioid receptor agonist) increased feeding

behavior in chicks (Bungo et al. 2004, 2005).

There are extensive functional interactions between the

DA and opioid systems within the reward circuitry

(Vucetic et al. 2010). For example, opioidergic and

DAergic systems are involved in stress modified feeding

behavior in rat (Samarghandian et al. 2003). Moreover, it is

reported excessive sugar intake sensitized D1 and l
receptors in rat (Colantuoni et al. 2001). As well, l opioid

receptors in the VTA have a crucial role in the stimulant

effects of food on mesolimbic DA transmission (Tanda and

Di Chiara 1998). Most of the present knowledge regarding

on behavioral effects of opiates and DA on food intake has

been derived from studies in mammalian species. Central

opioidergic and DAergic systems play crucial roles in

physiological and pathological conditions in animals and

human (Volkow et al. 2011).

No report exists on the interconnection of opioidergic

and DAergic systems on central food intake in avian. On

the basis of comparative physiology it is important to

determine the role of neurotransmitters in other species

(Zendehdel and Hassanpour 2014). So, the purpose of the

present study was to investigate the role of ICV injection of

D1 and D2 receptors antagonists on l, d and j induced

feeding in 3 h food deprived (FD3) neonatal layer-type

chicken.

Materials and Methods

Animals

In this study, to assume interaction of opioidergic and

dopaminergic systems on central food intake, 288 one-day-

old female layer chickens were purchased from a local

hatchery (Morghak Company, Tehran, Iran) and kept for

2 days as flocks and then birds randomly allocated into

transferred into their individual cages. Birds were main-

tained in stabilizing electrically heated batteries at a tem-

perature of 32 �C ± 1, kept at 40–50 % relative humidity

and 23:1 lighting/dark period (Olanrewaju et al. 2006).

During the study birds had ad libitum access to a com-

mercial starter diet containing 21 % crude protein and

2850 kcal/kg metabolizeable energy (Animal Science

Research Institute Co. Iran). 3 h prior to the injections,

birds were food deprived (FD3) but had free access to

water. ICV injections were done at 5 days of age. Animal

handling and experimental procedures were performed

according to the Guide for the Care and Use of Laboratory

animals by the National Institutes of Health (USA) and the

current laws of the Iranian government for animal care.

Experimental Drugs

Experimental drugs include SCH23390 (D1 like receptors

antagonist), Sulpride (D2 like receptors antagonist), [D-

Ala2, NMe-Phe4, Gly5-ol]-enkephalin (DAMGO, l-opioid

receptors agonist), [D-Pen2,5]-enkephalin (DPDPE, d-opi-

oid receptors agonist), U-50488H (j-opioid receptors

agonist) and Evans blue were purchased from Sigma Co.

(Sigma, USA). Drugs at first dissolved in absolute dimethyl

sulfoxide and then diluted with 0.85 % control solution

containing Evans blue at a ratio of 1:250.

ICV Injection Procedures

In this study, 6 experiments designed, each includes 4

treatment groups (A–D) with 12 replicates in each group
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(n = 48 birds per experiment). In each experiment, the

birds were weighed and based on their body weight allo-

cated into experimental groups so the average weight

between treatment groups was as uniform as possible. In

each experiment birds were injected intracerebroventricu-

lary once using a microsyringe (Hamilton, Switzerland)

without anesthesia in accordance with Davis et al. (1979)

and Furuse et al. (1997). Briefly, in this technique, head of

the birds was held with an acrylic device in which the bill

holder was 458 and the calvarium was parallel to the sur-

face of the Table 1 (Van Tienhoven and Juhasz 1962). An

orifice was made in a plate that immediately located over

the skull of the right lateral ventricle. Microsyringe was

inserted into the ventricle via this orifice and tip of the

needle perforated 4 mm below the skin of the skull (Jonaidi

and Noori 2012). There is no injection-induce physiologic

stress using this technique in neonatal chicken (Saito et al.

2005). Each chick received one injection during the study

(control or drug solution) in a volume of 10 lL. At the end

of the experiments, to recognize the accuracy of injection,

the chicks were sacrificed by decapitation and direct

placement of injection (in the lateral ventricle) was verified

by the presence of Evans blue followed by slicing the

frozen brain tissue. In each experiment 12 birds received

injections, but only data from individuals were used for

analysis, which dye was present in their lateral ventricle

(9–12 chickens per group). All experimental procedures

were done from 8:00 a.m. until 15:30 p.m.

Food Intake Measurement Procedure

In experiment 1, chicks in group (A) received ICV injection

of control solution, (B) SCH23390 (D1 like receptors

antagonist, 2.5 nmol), (C) DAMGO (l-opioid receptors

agonist, 125 pmol) and group (D) their combination

(SCH23390 ? DAMGO). In experiment 2, ICV injection of

(A) control solution (distilled water contained Evans blue),

(B) SCH23390 (2.5 nmol), (C) DPDPE (d-opioid receptors

agonist, 40 pmol) and group (D) SCH23390 ? DPDPE

were applied to the birds. In experiment 3, ICV injections

were (A) control solution, (B) SCH23390 (2.5 nmol),

(C) U-50488H (j-opioid receptors agonist, 30 nmol) and

(D) SCH23390 ? U-50488H. In experiments 4–6 were

similar to experiments 1–3 except Sulpride (D2 like receptors

antagonist, 2.5 nmol) applied instead of SCH23390. Each

bird was injected once only. Right away after injection,

chickens were returned to their individual cages and pro-

vided ad libitum food (pre-weighed) and water. Then the

cumulative food intake was recorded at 30, 60 and 120 min

post injection. Food consumption was calculated based on

percent of body weight (% BW) to adjust the differences

between body weights. Drug dosage was determined

according to the previous (Steinman et al. 1987; Bungo et al.

2004, 2005; Yanagita et al. 2008; Zendehdel et al. 2014,

2015; Alimohammadi et al. 2015) and pilot studies (un-

published).

Statistical Analysis

Cumulative food intake (% BW) was analyzed by two-way

analysis of variance (ANOVA) for repeated measurement

Table 1 Treatments procedure in experiments 1-6

ICV Injection

Exp. 1

Treatment groups

A CS*

B SCH23390 (2.5 nmol)

C DAMGO (125 pmol)

D SCH23390 (2.5 nmol) ? DAMGO (125 pmol)

Exp. 2

Treatment groups

A CS*

B SCH23390 (2.5 nmol)

C DPDPE (40 pmol)

D SCH23390 (2.5 nmol) ? DPDPE (40 pmol)

Exp. 3

Treatment groups

A CS*

B SCH23390 (2.5 nmol)

C U-50488H (30 nmol)

D SCH23390 (2.5 nmol) ? U-50488H (30 nmol)

Exp. 4

Treatment groups

A CS*

B Sulpride (2.5 nmol)

C DAMGO (125 pmol)

D Sulpride (2.5 nmol) ? DAMGO (125 pmol)

Exp. 5

Treatment groups

A CS*

B Sulpride (2.5 nmol)

C DPDPE (40 pmol)

D Sulpride (2.5 nmol) ? DPDPE (40 pmol)

Exp. 6

Treatment groups

A CS*

B Sulpride (2.5 nmol)

C U-50488H (30 nmol)

D Sulpride (2.5 nmol) ? U-50488H (30 nmol)

CS Control solution, SCH23390: D1 like receptors antagonist, Sul-

pride: D2 like receptors antagonist, DAMGO: l-opioid receptors

agonist, DPDPE: d-opioid receptors agonist, U-50488H: j-opioid

receptors agonist
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using SPSS 16.0 for Windows and is presented as

mean ± SEM. For treatments showing a main effect by

ANOVA, means were compared using post hoc Bonferroni

test. P\ 0.05 was considered as significant differences

between treatments.

Results

Effects of central opioidergic and DAergic systems on

cumulative food intake in FD3 neonatal layer-type chicks

are shown in Figs. 1, 2, 3, 4, 5 and 6.

In experiment 1, ICV injection of sub effective dose of

SCH23390 (D1 like receptors antagonist, 2.5 nmol) had no

significant effect on cumulative food intake (% BW) in

comparison with control group at 30, 60, 120 and 180 min

post-injection [F(l,43) = 2.44, 1.98, 4.71; 2.36; P = 0.91,

0.59, 0.52; 0.73 respectively]. Also, the ICV injection of an

effective dose of DAMGO (l-opioid receptors agonist,

125 pmol) significantly diminished food intake at time-

points 30, 60, 120 and 180 min after injection

[F(l,43) = 139.17, 127.18, 144.73; 126.44; P\ 0. 01,

respectively]. Co-injection of SCH23390 (2.5 nmol) and

DAMGO (125 pmol) lessened hypophagic effect of l-

opioid receptors at time-points 30, 60, 120 and 180 min

after injection [F(l,43) = 171.09, 145.12, 197.84; 163.42;

P\ 0.001, respectively]. These results imply an interac-

tion exists between the D1 and l-opioid receptors on food

intake in layer-tye chicken.

In experiment 2, ICV injection of DPDPE (d-opioid

receptors agonist, 40 pmol) significantly increased food

intake at 30, 60, 120 and 180 min post-injection [F(l,43) =

164.11, 128.97, 142.31; 173.12; P\ 0.01, respectively].

Additionally, co-administration of SCH23390 ? DPDPE

was not able to attenuate d-opioid receptors-induced

hyperphagia compared to control group at time-points 30,

60; 120 and 180 min after injection [F(l,43) = 1.26, 2. 42,

3.09; 1.97; P = 0.61, 0.49, 0.53; 0.78; respectively]. Per-

haps, there is no interconnection between D1 and d-opioid

receptors on feeding behaviour in birds.

In experiment 3, ICV administration of SCH23390

(2.5 nmol) had no effect on cumulative food intake in

layer-type chicken (P[ 0.05). Hence, U-50488H (j-opioid

receptors agonist, 30 nmol) amplified food intake in com-

parison to control group at time-points 30, 60;120 and

180 min after injection [F(l,43) = 137.11, 159.71, 151.02;

163.22; P\ 0.01, respectively]. Furthermore, co-injection

of SCH23390 ? U-50488H had no effect on j-opioid

receptors-induced food intake in FD3 neonatal layer-type

chicks at 30, 60, 120 and 180 min post-injection

[F(l,43) = 3.19, 2.73, 5.01; 2.53; P = 0.59, 0.64, 0.71;

0.63; respectively]. It seems, there is no interaction

between D1 and j-opioid receptors on appetite regulation

in birds.

In experiment 4, ICV injection of sub effective level of

Sulpride (D2 like receptors antagonist, 2.5 nmol) had no

significant effect on food intake (P[ 0.05). Also, DAMGO

(125 pmol) had anorixigenic effect in FD3 neonatal layer-

type chicks compared to control group at time-points 30, 60,

120 and 180 min after injection [F(l,43) = 184.15, 193.62,

129.75; 149.13; P\ 0.001, respectively]. Likewise, co-in-

jection of Sulpride and DAMGO was not able to diminish l-

opioid receptors- induced hypophagia in FD3 chicks at 30,

60, 120 and 180 min post-injection [F(l,43) = 1.04, 3.11,

2.46; 3.64; P = 0.93, 0.47, 0.51; 0.57; respectively]. We

thus hypothesize that the suppressive effect of l-opioid

receptors on cumulative food intake is not mediated by D2

receptors.

In experiment 5, ICV administration of DPDPE (d-

opioid receptors agonist) at a dose of 40 pmol significantly

amplified food consumption at 30, 60, 120 and 180 min

post-injection [F(l,43) = 157.01, 149.75, 118.32; 161.72;

Fig. 1 Effect of ICV injection

of SCH23390 (2.5 nmol),

DAMGO (125 pmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. SCH23390: D1

like receptors antagonist.

DAMGO: l-opioid receptors

agonist. There are significant

differences between groups with

different superscripts in a

column (a and b; P\ 0.05)
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P\ 0.01, respectively]. As well, no significant effect

observed on food intake after ICV injection of Sulpride

(2.5 nmol) (P[ 0.05). Moreover, co-injection of Sul-

pride ? DPDPE had no effect on d-opioid receptors

induced food intake in in FD3 chicks at 30, 60, 120 and

180 min post-injection injection [F(l,43) = 2.37, 1.93,

4.05; 2.17; P = 0.62, 0.95, 0.48; 0.72; respectively]. This

implies the effect of d-opioid receptors on food intake is

not mediated by D2 receptors.

In experiment 6, no significant effect on food consump-

tion observed after ICV injection of 2.5 nmol of Sulpride

compared to control group (P[ 0.05). Additionally,

U-50488H at a dose of 30 nmol amplified food intake at 30,

60, 120 and 180 min post-injection [F(l,43) = 125.06,

127.84, 140.12; 152.38; P\ 0.01, respectively]; but the

hyperphagic effect of U-50488H was not fluctuate by co-

injection of Sulpride ? U-50488H at 30, 60, 120 and

180 min post-injection [F(l,43) = 3.06, 3.47, 2.19; 1.24;

P = 0.80, 0.46, 0.51; 0.67; respectively]. Perhaps D2

receptors have no role on j-opioid receptors-induced

hyperphagia in neonatal layer-type chicks.

Discussion

To our knowledge this paper is the first report on interac-

tions between DAergic and opioidergic systems on food

intake in FD3 neonatal layer-type chickens. Obtained data

Fig. 2 Effect of ICV injection

of SCH23390 (2.5 nmol),

DPDPE (40 pmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. SCH23390: D1

like receptors antagonist.

DPDPE: d-opioid receptors

agonist. There are significant

differences between groups with

different superscripts in a

column (a and b; P\ 0.05)

Fig. 3 Effect of ICV injection

of SCH23390 (2.5 nmol),

U-50488H (30 nmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. SCH23390: D1

like receptors antagonist.

U-50488H: j-opioid receptors

agonist. There are significant

differences between groups with

different superscripts in a

column (a and b; P\ 0.05)
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in experiments revealed ICV injection of DAMGO (l-

opioid receptors agonist) decreased (Figs. 1 and 4) while

DPDPE (d-opioid receptors agonist) and U-50488H (j-

opioid receptors agonist) increased cumulative food intake

in FD3 neonatal layer-type chicks (Figs. 2, 3, 5 and 6).

Opioids are known as orexigenic system which acts

through nucleus accumbens (NAc) and NTS in rodents

(Fichna et al. 2007). ICV injection of morphine or

DAMGO into hypothalamus has hyperphagic effect in rat

(Browning et al. 2006; Zheng et al. 2007). According to our

previous research (Zendehdel et al. 2015) and results of the

current study, effect of l-opioid receptors is completely

different in layer-type chicks compared to the mammals.

Few studies investigated the effects of opioidergic system

in domestic fowls. For instance, ICV injection of DAMGO

inhibited ingestion in neonatal broiler (McCormack and

Denbow 1989; Bungo et al. 2004). Effects of neurotrans-

mitters such as ghrelin, leptin and adiponectin on feeding

behavior regulation are somewhat dissimilar between

mammals and avian (Novoseletsky et al. 2011; Zendehdel

and Hassanpour 2014). It is suggested genetic selection for

egg production in layers might alter their responsiveness to

physiological appetite regulation mechanisms and/or

pathways (Denbow 1994).

ICV injection of DPDPE and U-50488H (d and j
receptors agonists, respectively) reinforced food con-

sumption in layer-type neonatal chicken. ICV injection of

DPDPE elevated feeding behavior in rats (Levine 2006;

Kaneko et al. 2012) and neonatal broiler chicken (Yanagita

et al. 2008; Khan et al. 2009; Alimohammadi et al. 2015).

Fig. 4 Effect of ICV injection

of Sulpride (2.5 nmol),

DAMGO (125 pmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. Sulpride: D2 like

receptors antagonist. DAMGO:

l-opioid receptors agonist.

There are significant differences

between groups with different

superscripts in a column (a and

b; P\ 0.05)

Fig. 5 Effect of ICV injection

of Sulpride (2.5 nmol), DPDPE

(40 pmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. Sulpride: D2 like

receptors antagonist. DPDPE: d-

opioid receptors agonist. There

are significant differences

between groups with different

superscripts in a column (a and

b; P\ 0.05)
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It seems, d and j receptors have orexigenic effect in both

mammalian and domestic fowl.

DAergic system modulates food intake in both mam-

mals and avian. ICV injection of DA and L-DOPA

decreased food intake in FD3 broiler cockerels (Zendehdel

et al. 2014). Blockade of various DA receptor subtypes is

associated with reduced feeding response in rats. Also, a

dose dependent hypophagia reported after ICV injection of

D1 and D2 receptors agonists in rat (Terry and Katz 1992).

D1 knockout mice showed a decrease in the operant per-

formance to obtain sucrose under different schedules of

reinforcement. Similarly, D2 deficient mice presented a

delayed acquisition of an operant task to obtain reward. In

fact, the DA may be involved in the translation of food

motivation into adapted behaviors to obtain food (Barbano

and Cador 2007).

In our previous research (Zendehdel et al. 2014) and

pilot studies no significant effect observed using other DA

receptors antagonist AMI-193 (D2 receptor antagonist),

NGB2904 (D3 receptor antagonist) and L-741, 742 (D4

receptor antagonist) on reward regulation in FD3 broiler

cockerels. Perhaps, these receptors are not involved in

appetite regulation in birds. As discussed above, genetic

variations between animals might responsible for observed

discrepancy. New findings of this study are important as

comparative physiology. So, based on the available infor-

mation, here we investigated interconnection of D1 and D2

like receptors on opioidergic system induced feeding.

We used sub-effective dose of DA antagonists, which

blocks receptor without effect on food intake to assay

possible interaction(s) of DAergic system with opioid

induced food intake. Of particular interest of the present

study was that the inhibitory effect of l-opioid receptors on

food intake decreased by administration of a D1 receptors

antagonist in chicken. Our data indicates there is a rela-

tionship between DAergic and opioidergic systems in

neonatal layer type chicken. An interconnection exists

between DAergic and opioidergic systems where excessive

sugar intake sensitized D1 and l-receptors in rat (Colan-

tuoni et al. 2001). In mammals, l-opioid receptor is sub-

divided into two subtypes: l1 and l2 but their roles have

not been studied in chickens. Further researches will be

needed to establish the hetero receptors in layers.

To date researches were done to investigate effect of

opiates on the binding characteristics of D1 receptors in

specific rat brain regions. Following repeated morphine or

naloxone treatment, Kd values were significantly decreased

in both hypothalamus and midbrain of morphine and

naloxone-treated animals. These researchers employed 3H-

SCH-23390 for D1 receptor binding ligand. So they con-

clude interaction exist between opiates and dopaminergic

system where repeated intermittent treatment with opiates

induces alterations in D1 receptors binding properties (El-

wan and Soliman 1995). Beyond the limitation of this

study, we were not able to determine kd value for l- and

D1-receptors in chickens. We think, merit studies need to

distinguish kd value in avian species.

Anatomical evidence suggesting both receptors involved

in feeding regulation centers in the brain (Volkow et al.

2011; Parker et al. 2014). DA is released in the olfactory

tubercle and NAcc in the brain. Furthermore, DA supplies

projections from the VTA into the NAcc and ARC (Zen-

dehdel et al. 2014). l-opioid receptor is present in DAergic

neurons of the substantia nigra (Samarghandian et al.

Fig. 6 Effect of ICV injection

of Sulpride (2.5 nmol),

U-50488H (30 nmol) and their

combination on cumulative food

intake (% BW) in neonatal

chickens is presented in

mean ± SEM. Sulpride: D2 like

receptors antagonist.

U-50488H: j-opioid receptors

agonist. There are significant

differences between groups with

different superscripts in a

column (a and b; P\ 0.05)
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2003). Additionally, l-opioid receptors impress the orexi-

genic effect on food intake via NAcc and NTS in rat

(Browning et al. 2006). ICV injection of naloxonazine into

VTA impairs morphine- and nicotine-induced stimulation

of DA release in the NAc shell suggests these effects are

the result of an activation of l1 receptors (Tanda and Di

Chiara 1998).

There are interesting evidences which recommends

there is interaction between DA and opioid-related gene

expression in response to reward where stimulation of the

opioidergic system decreased expression of D1 and D2

receptors as well as reuptake of DA within NAcc and PFC

in rat (Vucetic et al. 2010). To date several researches done

to identify pathway(s) underlying between these two sys-

tems, however, direct mechanism is not fully elicited. It is

suggested DAergic and opioidergic systems might interact

by effect on other appetite regulatory neurotransmitters. It

seems, l-opioid receptors are involved in the orexigenic

effect of neuropeptide Y (NPY)/agouti related protein

(AgRP) neurons in the ARC (Barnes et al. 2006) however,

neural pathway between NPY and opioidergic system is not

identified in poultry’s hypothalamus (Dodo et al. 2005).

Other hypotheses imply DAergic and opioidergic sys-

tems interact via corticotropin-releasing factor (CRF) on

food intake. CRF and its receptors, play crucial effects on

energy intake and body weight regulation where known as

hypophagic neurotransmitter. DA is known to stimulate the

release of CRF from the paraventricular nucleus of the

hypothalamus. Opioid peptides also affect the hypothala-

mic CRF release. However, in this study, we were not able

to measure CRF levels after ICV injection of DAergic and

opioidergic drugs (Samarghandian et al. 2003). We think

merit study is required to clarify the precise mechanism by

which CRF, DA and opioids increase food intake. GPCRs

are abundant, widely expressed and involved in major

physiological responses. GPCR heteromerization refers to

the direct interaction among at least 2 different functional

receptors forming a complex with specific functional and

biochemical properties, dissimilar from those of its com-

ponent receptor units. Several heteromerization reported

for D1 receptors with the other receptor heteromers (Albizu

et al. 2010). In a study, Juhasz et al. (2008) heterooligomer

formation reported between and D1 receptors. We think

further studies needed to investigate heteromerization

between l and D1 receptors (Rozenfeld and Devi 2010).

As observed, in the current study, there was no interaction

between D1 and D2 receptors with d- and j-opioid receptors

on food intake regulation in neonatal layer type chicken. In

our recent work, we observed co-injection of d-opioid

receptor agonist and CB1 receptors antagonist was not able to

diminish the hyperphagic effect of DPDPE. Furthermore,

ICV injection of U-50488H (j-opioid receptors agonist) and

CB1 and CB2 receptors antagonists was not able to attenuated

hyperphagic effect of U-50488H (Zendehdel et al. 2015). So,

we think, presumably d- and j-opioid receptors have few

interactions with other neurotransmitters on feeding behav-

ior in layer-type chicken. To our knowledge, there was no

previous study on the role of central DAergic and opioids on

food intake in avian. So, we were not able to compare our

results with it. It seems, other neurotransmitters such as

cannabinoids, glutamate, serotonin and GABA might

responsible for interaction between these systems on feeding

behavior regulation (Volkow et al. 2011). Most research on

central food intake regulation has done with rat models,

whereas considering few investigations done in birds. These

observations can be used as base information on central food

intake regulation in birds. Finally, the authors recommend

merit further investigation need to clarify direct cellular and

molecular signaling pathways of DAergic and opioidergic

systems with other receptors in physiology of food intake

regulation in poultry.
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