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Abstract In §93 of The Principles of Mathematics, Bertrand Russell (1903) observes
that “the variable is a very complicated logical entity, by no means easy to analyze
correctly”. This assessment is borne out by the fact that even now we have no fully
satisfactory understanding of the role of variables in a compositional semantics for
first-order logic. In standard Tarskian semantics, variables are treated as meaning-
bearing entities; moreover, they serve as the basic building blocks of all meanings,
which are constructed out of variable assignments. But this has disquieting con-
sequences, including Fine’s antinomy of the variable and an undue dependence of
meanings on language (representationalism). Here I develop an alternative, Fregean
version of predicate logic that uses the traditional quantifier–variable apparatus for the
expression of generality, possesses a fully compositional, non-representational seman-
tics, and is not subject to the antinomy of the variable. The advantages of Fregean over
Tarskian predicate logic are due to the former’s treating variables not as meaningful
lexical items, but as mere marks of punctuation, similar to parentheses. I submit that
this is indeed how the variables of predicate logic should be construed.
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1 Introduction

In standard, Tarski-style syntax for first-order logic, atomic formulas are constructed
from predicate symbols and an appropriate number of variables and names. Truth-
functional connectives can be used to form new formulas out of ones already
constructed. From any formula already constructed, and any individual variable, a new
formula can be obtained byfirstwriting a quantifier symbol, appending the chosen vari-
able, and then appending the original formula. For instance, we can build the atomic
formula Rxa from the two-place predicate symbol R, the variable x , and the name
a. Similarly, we can construct the atomic formula Px from the one-place predicate
symbol P and the variable x . We can then conjoin these by means of the conjunction
symbol into (Rxa ∧ Px), and finally prefix this formula with the quantifier-variable
combination ∃x to obtain the formula ∃x(Rxa ∧ Px).

In Tarskian semantics for first-order logic, we start from a modelM and a variable
assignment g over M, let the value val(x, g,M) of a variable x relative to g and M

be the object g(x), and let the value val(a, g,M) of a name a relative to g and M

be the interpretation aM of a in M. Then we recursively define what it means for
a variable assignment to satisfy a formula in a model: An assignment g satisfies an
atomic formula Pt1 . . . tn inM just in case the tuple 〈val(t1, g,M), . . . , val(tn, g,M)〉
belongs to the interpretation PM of the predicate symbol P inM. A negation is satisfied
by g in M if and only if g fails to satisfy the negated formula in M, a conjunction is
satisfied by g in M just in case g satisfies each conjunct in M, and an existentially
quantified formula ∃xφ is satisfied by g inM if and only if there exists some x-variant
of g that satisfies φ inM.

The Principle of Compositionality has been given various formulations. Accord-
ing to one popular gloss, it says that the meaning of a compound linguistic item is
determined by the meanings of that item’s immediate parts, together with the way
those parts are fitted together into the compound. Another (not entirely equivalent)
version requires that for every syntactic rule α there is a semantic operation rα such
that μ(α(e1, . . . , en)) = rα(μ(e1), . . . , μ(en)), where we write μ(e) for the meaning
of the expression e.1 As Klein and Sternefeld (2017, 65) point out:

Compositionality is at the heart ofmodel theoretical semantics and its application
to the semantics of natural language. As has become standard practice, linguists
translate a fragment of English into an intensional extension of classical predicate
logic (…).

It therefore seems pressing to ascertain that classical predicate logic itself has a com-
positional semantics. This is not completely obvious from the usual presentations of
Tarski’s logical semantics in terms of the recursive definition of satisfaction, since these
don’t specify what the meaning of an expression is. Nevertheless it is widely accepted
that predicate logic does have a compositional semantics. The meaning assignment
for Tarski-style predicate logic that is taken to show this proceeds as follows.2

1 See e.g. Pagin and Westerstahl (2010, §3).
2 To my knowledge, Janssen (1997) was the first to propose a compositional meaning assignment along
roughly these lines, defining the meaning of a formula as the set of variable assignments that satisfy it.
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The proper treatment of variables in predicate logic 211

Fix a modelMwith domain M and letG be the set of all variable assignments over
M . All meanings to be defined will be functions whose domain is G.

We begin with the lexical items (i.e. the primitive meaningful expressions): The
meaning �P�of ann-place predicate symbol P is the (constant) function thatmaps each
assignment g ∈ G to the characteristic function χPM of the interpretation PM ⊆ Mn

of P in M; similarly the meaning �a� of a name a is the constant function that maps
each g ∈ G to the interpretation aM of a in M. The meaning �x� of a variable x
is the function that maps each variable assignment g ∈ G to g(x). The meanings
�¬�, �∧�, . . . of the truth-functional connectives ¬, ∧, … are the constant functions
that map each assignment g to the truth function corresponding to the respective
connective. The meaning �∃� of the existential quantifier is the constant function that
maps any assignment to the characteristic function, relative to the power set of M , of
the non-empty subsets of M .

As to the compound linguistic items, i.e. the formulas φ, the idea is to let the
meaning �φ� of φ be the function on G that maps a variable assignment to the truth
value t (“true”) if that assignment satisfies φ in M, and to the truth value f (“false”)
otherwise. Given the definition of satisfaction, this yields the following recursive
clauses for the assignment of meanings to formulas:

1. �Pt1 . . . tn� is the function that maps any assignment g to

�P�(g)(�t1�(g), . . . , �tn�(g)).

2. �¬φ� is the function that maps any assignment g to

�¬�(g)(�φ�(g)).

3. �(φ ∧ ψ)� is the function that maps any assignment g to

�∧�(g)(�φ�(g), �ψ�(g)).

4. �∃xφ� is the function that maps any assignment g to3

�∃�(g)({u ∈ M : for some h ∼x g, u = �x�(h) and �φ�(h) = t}).

If we now say that the immediate parts of Pt1 . . . tn are P as well as t1, . . . , tn , the
immediate parts of ¬φ are ¬ and φ, the immediate parts of (φ ∧ ψ) are φ, ∧, and ψ ,
and the immediate parts of ∃xφ are ∃, x , and φ, it seems—at first blush at least—that
this meaning assignment abides by the Principle of Compositionality.4

Footnote 2 continued
Janssen treats the quantifier–variable pair∃x as one symbol, thus essentially relegating the role of the variable
to that of an index. Below I follow the more sophisticated presentation by Zimmermann and Sternefeld
(2013).
3 As usual, h ∼x g means that h is an x-variant of g; that is, h(y) = g(y) for all variables y other than x .
4 As a matter of fact, there are two immediate (but fixable) problems here, one having to do with whether
our meaning assignment really does satisfy Compositionality, the other with the plausibility of the meaning
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212 K. F. Wehmeier

Nevertheless there are reasons to be worried.
First there is a concern about the representationalism of the semantics, that is, the

fact that the meanings have been constructed out of variable assignments, which in
turn are constructed out of variables, i.e. bits of language (as opposed to bona fide
model-theoretic objects, such as members of the domain of the model and relations
over them). Jacobson (2003, 58) hints at this worry when she contrasts her own brand
of variable-free semantics with the standard, Tarski-inspired view, according to which

the meaning of any expression is a function from assignment functions to some-
thing else, where each assignment function in turn is a function from variable
names to “normal” model-theoretic objects (such as individuals). (…) In the
variable-free view, there is no role for assignment functions and hence also, of
course, no role for variables.5 The meaning of any linguistic expression is sim-
ply some normal, healthy model-theoretic object—something constructed only
out of the “stuff” that any theory presumably needs: individuals, worlds, times,
perhaps events, etc.

Zimmermann and Sternefeld (2013, 243) make the same point but also draw attention
to a disquieting consequence. After describing Tarskian meanings (which they call
global extensions) as “somewhat of a cheat,” they elaborate:

For other than ordinary extensions, which correspond to the objects referred to
in the non-linguistic world, global extensions are language dependent in that
they are functions whose domain is the set of variable assignments, which in
turn are functions defined on variables […], and hence linguistic expressions.
[…] As a consequence, unless languages overlap in some of their basic means
of expression (to wit, variables), no two expressions of two distinct languages
could have the same global extension. This so-called representationalism, i.e.,
the fact that global extensions are language-dependent (aspects of) meaning,
may be seen as a nuisance and too high a price to pay for the compositionality
of variable binding.6

Picking up on these observations, Klein and Sternefeld (2017, 66) point out that

[a] conceptual problem results frommaking assignment functions part of a com-
positional semantics (…).Once denotations are compositionally defined in terms
of assignment functions (…), these functions become part of the ontology, with
the undesirable consequence that there is more in our ontology than the sim-
ple denotations found in the standard semantics. In particular, the semantics of

Footnote 4 continued
assignment as a meaning assignment. We postpone discussion of these problems until we consider the
meaning assignment for Fregean predicate logic in Sect. 3.
5 As I will show, this is a non sequitur: We can do predicate logic with variables without at the same time
admitting variable assignments into our semantics.
6 See also Geurts et al. (2016, §6), who make a similar observation with respect to dynamic predicate logic:
“A variable assignment is a mapping from variables to individuals, and variables are linguistic expressions,
so it can hardly be claimed that assignments are non-representational entities”.
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The proper treatment of variables in predicate logic 213

a language has to refer to the variables of the language and thereby becomes
language dependent.

While Jacobson’s worry seems to be that Tarskian meanings violate some ideal of
ontological purity, according to which meanings ought not to be contaminated by
syntax (or more generally, by elements extrinsic to semantics), Zimmermann, Sterne-
feld, and Klein appear in addition to be concerned that Tarskian meanings fail to be
language-transcendent. We’ll return to these issues in Sect. 5 below.

A second reason to be dissatisfied with the standard account of the compositionality
of first-order logic is Fine’s (2003, 2007) so-called antinomy of the variable.

Fine asks us to consider two variables, x and y, say. Do these have the same
meaning or different meanings?7 On the one hand, it seems obvious that they have
distinct meanings. Take the formula x > y, for example. Clearly it is not synonymous
with x > x , but if x and y had the samemeaning, it is hard to see how the two formulas
could fail to be synonymous.

As one might hope, our compositional semantics for Tarskian predicate logic
accounts for this difference in meaning (as long as the background model M con-
tains at least two elements), since �x� assigns a different value than �y� to any variable
assignment g that doesn’t map x and y to the same object.

On the other hand, there are reasons to think that x and y ought to have the same
meaning. For consider the formula x > 0. What does x do here? It holds a place for
a value from some given domain, we might say; it “indefinitely indicates” an object,
to borrow Frege’s turn of phrase. And that seems all there is to it. But then that’s
precisely what y does in y > 0, and the only difference between the two formulas is
a typographical one, a matter of arbitrary choice, a notational rather than a semantic
issue. So it seems we are driven to thinking that x > 0 and y > 0, and hence x and y,
must have the same meaning.

This, then, is the antinomy of the variable in a nutshell: Assuming that variables
have meanings at all (and in our Tarskian semantics, they do), any two variables ought
both to have distinct meanings, and also the same meaning.8

The antinomy is, I take it, a central motivation for the quest, recently undertaken by
linguists (Klein andSternefeld 2017;Kracht 2011), for a compositional, alphabetically
innocent predicate logic, alphabetic innocence requiring, roughly speaking, that any
two open formulas that differ only in the indexing of the variables occurring free
in them (but not in the pattern of their occurrence) be assigned the same meaning.
These proposals, however, entail significant revisions to the syntax and semantics of
first-order logic, as does Fine’s own program of semantic relationism (Fine 2007).

Another prominent revisionary proposal arising out of dissatisfaction with stan-
dard Tarskian semantics is Jacobson’s (e.g. 1999) project of designing a variable-free
semantics of natural language. Jacobson’s approach is ultimately inspired by the com-

7 Fine speaks more vaguely of “semantic role” rather than “meaning,” but we will ignore this nicety here.
8 Because they find Fine’s own reasoning “elusive,” Pickel and Rabern (2016, §§I.1.–I.2) offer a different
motivation for the antinomy, specifically for the argument that distinct variables have the same meaning.
Themachinery they deploy for this purpose—a theory of structuredmeanings and strong assumptions about
the relationship between syntactic and propositional structure—goes way beyond the one Fine appeals to
in his own exposition and thus makes their version of the antinomy much easier to resist.
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214 K. F. Wehmeier

binatory logic of Curry and Feys (1958) and the predicate–functor logic of Quine
(1960), both of which abandon the traditional quantifier–variable apparatus entirely.

As we will see, neither the problem of representationalism nor the antinomy of
the variable arises for Fregean predicate logic, which nevertheless abides by com-
positionality and retains the traditional quantifier–variable mechanism. Thus while I
am sympathetic to Jacobson’s project and agree with her in rejecting variable assign-
ments as bona fide model-theoretic objects, I believe that Fregean predicate logic
is the simplest and most conservative answer to the challenges faced by Tarskian
accounts (notwithstanding the considerable ingenuity of the solutions proposed by
all the authors mentioned). Moreover, since Fregean predicate logic doesn’t eliminate
variables but rather employs them as part of its apparatus of generality, it suggests an
attractive account of the logical status of variables, an issue that variable-free accounts
simply sidestep by renouncing variables altogether.

What, then, is Fregean predicate logic? While a complete answer will be provided
in the next two sections, we can easily give a first glimpse of its distinctive syntactic
features. Recall that, on a Tarskian approach, the sentence ∃x(Rxa∧ Px) is generated
from the atomic formulas Rxa and Px byfirst forming the conjunction (Rxa∧Px) and
then prefixing it with the quantifier ∃x . Frege, by contrast, would build ∃x(Rxa∧ Px)
in the following way: Begin with atomic formulas Rba and Pb, form the conjunction
(Rba ∧ Pb), erase all occurrences of the name b to obtain the compound predicate
(Rξa ∧ Pξ), with ξ marking the gaps resulting from the removal of b, and finally
apply quantification by prefixing this predicate with ∃x , simultaneously filling the
gaps with x . In the Fregean approach, variables thus only ever occur in conjunction
with quantifiers; there are no free occurrences of variables in any well-formed Fregean
expression, and hence there is not, properly speaking, any binding of variables.9

The principal challenge in developing Fregean predicate logic is the construction
of a compositional semantics. In fact, it has been claimed that such an undertaking is
hopeless. For instance, Janssen (2011, 509; 2012, 38) suggests that no compositional
semantics is available for a Frege-style predicate logic, and Fine (2003, 614; 2007, 6)
argues that there is no viable, or at least, plausible, semantics for a Fregean approach
to first-order syntax.10

Fine’s worries run along the following lines.

According to [the Fregean] approach […] a closed quantified sentence, such as
∃x B(x) is to be understood on the basis of one of its instances B(c)—the intuitive
idea being that from an understanding of B(c), wemay acquire an understanding
of what it is for an arbitrary individual to satisfy the condition denoted by B( )

and that, from this, we may then acquire an understanding of what it is for this
condition to be satisfied by some individual or other. But although the intuitive
idea behind the proposal may be clear, it is far from clear how the proposal is to
be made precise. (Fine 2003, 615)

9 Historically, approaches to first-order syntax that are broadly Fregean in spirit have been employed e.g.
by Hilbert and Bernays (1934), Lemmon (1965) and Schütte (1977).
10 Janssen makes this claim with reference to predicate logic as presented in Schütte (1977). It should be
noted that Schütte himself uses a quasi-substitutional semantics for quantification for which it is not obvious
that it is easily amenable to a compositional reformulation.
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Fine’s pessimism regarding the possibility of such a semantics is, I think, predicated
on a mistaken assumption as to how it would have to work. He suggests:

A certain semantic value is to be assigned to a closed instance B(c) of the
existential sentence ∃x B(x). Let us call it a “proposition,” though without any
commitment to what it is. A certain condition is then to be determined on the
basis of this proposition. But how?We took it to be the condition denoted by the
scheme B( ) which results from removing all displayed occurrences of the term
c from B(c). This suggests that the condition should likewise be taken to be the
result of removing all corresponding occurrences of the individual denoted by
c from the given proposition; indeed, we are given no other indication of how
the condition might be determined. It must therefore be presupposed that there
is an operation of “abstraction” which, in application to any proposition and any
occurrences of an individual in that proposition, will result in a certain condition
or propositional “form” in which the given occurrences of the individual have
been removed. Once given such a form, wemay then take the quantified sentence
∃x B(x) to predicate “existence” of it. (Fine 2003, 615)

It appears that, despite his official refusal to take a stand on the nature of propo-
sitions, Fine in fact takes them to be structured entities, roughly isomorphic to the
sentences expressing them, from which individuals can be removed much like names
can be erased within sentences. As we shall see in the course of making the intuitive
Fregean ideas precise, there is no need to posit structured propositions of this nature,
or to assume an operation of abstraction that deletes constituents occurring in such
propositions.11

The game plan for the remainder of this paper is as follows. In Sect. 2, I will present
the syntax of Fregean predicate logic in detail. Section 3 is devoted to a presentation of
Fregean semantics, including a compositional meaning assignment. In Sect. 4 I argue
at some length that this compositional meaning assignment justifies the classification
of variables asmeremarks of punctuation, akin to the parentheses. Themain ingredient
of this argument is the observation that variables could be completely eliminated from
Fregean predicate logic in favor of the graphical “bonds” once proposed by Quine as a
means to indicate the dependence of argument positions on outlying quantifiers. Sec-
tion 5 addresses the antinomy of the variable and the problem of representationalism.
I argue that neither issue arises in the context of Fregean predicate logic. The con-
cluding Sect. 6 reflects on the differences between Tarskian and Fregean approaches
to first-order logic.

Readers interested only in the mechanics of Fregean predicate logic or the chal-
lenges of providing a compositional semantics for first-order logic may thus confine
their attention to Sects. 2 and 3. Those curious about the status of variables in predi-
cate logic are encouraged to peruse Sects. 2–4 and 6. Readers wanting to know how
Fregean predicate logic escapes the antinomy of the variable should study Sects. 2 and
3 as well as subsection 5.1. Finally, anyone interested in how Fregean predicate logic
avoids representationalism will want to read Sects. 2 and 3 plus subsection 5.2.

11 See Humberstone (2000) for a thorough discussion of the difficulties involved in “abstracting” an object
from a proposition.
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2 Fregean syntax

We will assume the availability of an unlimited number of predicate symbols of each
non-zero arity. These will be notated by means of the letters P , Q, and R as metavari-
ables. The set of all predicate symbols of arity n is Pn , and the set of all predicate
symbols is P . We will similarly assume the availability of an unlimited number of
individual constants, or names, for which we’ll use a, b, c, and d as metavariables,
with indices if necessary. The set of all names is C. For reasons of simplicity, we do
not consider function symbols.12

Before we embark on defining the Fregean language LF , I want to point out that
it will be set up in such a way as to disallow vacuous quantification. This has several
reasons. One is that it is unclear whether vacuous quantification is a desirable feature
or just a limiting case that may ormay not be permitted depending on considerations of
economy and convenience, given that it does not add to the expressive power of predi-
cate logic. A number of authors in logic13 have seen fit to impose prohibitions against
vacuous quantification, and the standard view in linguistics seems to be that natural
languages do not countenance it.14 As it turns out, disallowing vacuous quantification
motivates a definition of the construction histories of well-formed expressions that
permits a particularly attractive formulation of a compositional semantics, a point to
which we shall return in due course. Finally, allowing vacuous quantification would
require counting as predicates sentences fromwhich nothing has been deleted, i.e. with
no gaps, which is unnatural in the Fregean context. I note, however, that the results
of this paper would still hold in the presence of vacuous quantification, though some
modifications would need to be made.15

The primitive symbols of LF are

1. the members of the sets P and C;
2. the sentential connectives ¬ and ∧;
3. the existential quantifier ∃;
4. an unlimited stock of individual variables v0, v1, v2, . . ., for which we use x , y,

and z as metavariables;
5. a blank space, notated as ξ ;
6. left and right parentheses.

The LF -sentences and LF -predicates, which together constitute the well-formed
expressions (wfe’s) of LF , are defined by simultaneous induction:

12 The addition of function symbols raises no new issues. It is important, however, that even in languages
with compound terms Fregean predicates can be generated only by erasing a primitive name from a sentence;
in other words, erasing properly compound terms must not be permitted. Frege himself does not abide by
this constraint, which, from a modern perspective, creates a host of problems for his syntax. See Pickel
(2010).
13 See e.g. Hilbert and Ackermann (1938, 54), Lemmon (1965, 140), Smith (2003, 245).
14 Thus May (1977, 46), Chomsky (1982, passim; 1995, 151), Kratzer (1995, 131), Heim and Kratzer
(1998, 126–127). See Potts (2002) for a dissenting view.
15 It might be noted here that standard presentations of Tarskian predicate logic permit vacuous quantifica-
tion. This is understandable insofar as the main advantage of Tarskian syntax is its context-freedom, which
a prohibition against vacuous quantification would destroy (cf. van Benthem 1987 or Marsh and Partee
1987).

123



The proper treatment of variables in predicate logic 217

1. Whenever P ∈ Pn and c1, . . . , cn are names, Pc1 . . . cn is an LF -sentence.
2. Whenever φ and ψ are LF -sentences, so are ¬φ and (φ ∧ ψ).
3. Whenever φ is an LF -sentence, and c is a name that has at least one occurrence

in φ, the result φc[ξ ] of replacing all occurrences of c in φ with the blank space ξ

is an LF -predicate.
4. Whenever π is anLF -predicate, and x is an individual variable that does not occur

in π , the result ∃x πξ [x] of simultaneously prefixing π with ∃x and replacing all
occurrences of ξ in π with x is an LF -sentence.

It is obvious thatLF -sentences (respectively,LF -predicates) contain no (respectively,
one or more) occurrences of ξ .

Some observations are in order. First, LF -wfe’s do not, in general, have unique
construction histories (we will use this term in an intuitive sense for the time being);
in other words, they are not freely generated by the syntactic operations from the
primitive symbols. For example, the LF -predicate Pξ can be obtained from Pa by
clause 3 for any name a whatsoever. Prima facie, this failure of uniqueness blocks
a straightforward recursive meaning assignment to LF -wfe’s, but we will see in the
next section that it is possible to get around this.

Second, the requirement, in clause 3, that the name c actually occur in the sentence
φ implements the prohibition against vacuous quantification.

Third, the requirement, in clause 3, that all occurrences of the name c must
be replaced by ξ is not part of Frege’s own syntax (cf. Frege 1893), in which
it is permissible to delete only some, but not necessarily all, occurrences of a
name from a sentence when forming a predicate.16 While it is clear that the
same expressions will be generated regardless of whether our stricter requirement
is implemented, Frege’s more lenient construction processes are in fact an obsta-
cle to a compositional semantics, for one and the same Fregean expression can
then have different construction histories that would confer on it different semantic
values.17

Fourth, the requirement, in clause 4, that the variable x not occur in φ has the
consequence that noFregeanwfe contains quantifierswith overlapping scopes towhich
the same variable is attached. This, too, is essential: Without this constraint, we could
build ∃x(Rxx ∧ ∃x¬Rxx) from (Rξξ ∧ ∃x¬Rxx) by replacing both occurrences
of ξ with x and prefixing the result with ∃x , but also from (Rξξ ∧ ∃x¬Rξ x) by
replacing the three occurrences of ξ with x and prefixing with ∃x . It is intuitively clear,

16 Lemmon (1965, 140) follows Frege in this.
17 Consider the LF -predicate (Pξ ∧ ¬Pd). According to our definition, this must have been constructed
from (Pc∧ ¬Pd) for some name c other than d. But if we were allowed to replace only some occurrences
of a name by a variable, this predicate could also have been obtained from (Pd ∧ ¬Pd). Now the intuitive
idea behind Frege’s way of forming predicates is that we obtain the extension of φ(ξ) by looking at some
sentence φ(a) from which φ(ξ) arises through deletion of a, and letting the reference of a vary. Clearly we
will get different extensions for (Pξ ∧ ¬Pd), though, depending on whether we vary the reference of c in
(Pc∧¬Pd) or we vary the reference of d in (Pd∧¬Pd)—we’ll get the empty extension in the latter case,
but not necessarily in the former. Thus the extension of the predicate would be determined in incompatible
ways if we relaxed the requirement under discussion.
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though, that (Rξξ ∧ ∃x¬Rxx) and (Rξξ ∧ ∃x¬Rξ x) will, in general, have different
extensions.18

Fifth, as was remarked in Sect. 1, there is no variable binding in Fregean predicate
logic: Variables are introduced at the same time as their quantifiers; there is nothing
“free” in a Fregean wfe that could become “bound” upon introduction of a quantifier.

We next introduce as an additional level of syntax Fregean construction histories,
or F-construction histories for short. These can be viewed as analogues ofMontague’s
(1973) analysis trees or of generative grammar’s logical forms—items that, in their
respective frameworks, serve as the input to semantic evaluation.19 In the investigation
of Fregean predicate logic, it will be instructive to explore how meanings can be
assigned to both well-formed expressions and F-construction histories.20

F-construction histories, then, are certain inductively defined finite sequences σ =
〈s0, . . . , sn〉.21 Informally, the first entry (σ )0 of an F-construction history, which we
will call its head, indicates the type of wfe being constructed: If the head is a predicate
symbol, the generated wfe is an atomic formula; if it is the negation (conjunction)
sign, the generated wfe is a negation (conjunction); if it is a name, the generated wfe
is a predicate (indeed, a predicate obtained by deleting that name from a sentence);
and if it is a quantifier, the generated wfe is a quantified sentence. The second-to-
last entry (σ )n−1, which we will also write as N (σ ), is called the name record and
contains the names that occur in the generated wfe; it is crucial to keep such a record
in order to be able to rule out vacuous quantification (and as we shall see, it also
enables a particularly elegant compositional semantics). The final entry (σ )n , called
the variable record and alternatively written V (σ ), contains the variables occurring
in the generated expression; this is important in order to obviate expressions in which
quantifiers with overlapping scopes are attached to the same variable.

Officially:

1. If P ∈ Pn and c1, . . . , cn ∈ C, then the (n + 3)-tuple

〈P, c1, . . . , cn, {c1, . . . , cn},∅〉
is an F-construction history.

2. Ifσ is anF-constructionhistorywhosehead is not amember ofC (i.e. the expression
generated by σ is a sentence, not a predicate), then the quadruple

〈¬, σ, N (σ ), V (σ )〉
is an F-construction history.

18 If, for instance, R is the identity relation, and the domain of the model under consideration has more
than one element, the first predicate denotes the empty set and the second denotes the entire domain. But
then we must assign incompatible truth values to ∃x(Rxx ∧ ∃x¬Rxx), for if the sentence is derived from
the first predicate, it must be false, whereas if it is derived from the second, it must be true.
19 See e.g. Pagin and Westerstahl (2010, §2) and Heim and Kratzer (1998, §3.2).
20 Given that Fregean well-formed expressions in general have multiple construction histories, it is not
entirely trivial that unique meanings can be assigned to the wfe’s, though we will see in the next section
that this is indeed the case.
21 Where σ = 〈s0, . . . , sn〉 is a finite sequence and 0 ≤ i ≤ n, we let (σ )i be si .

123



The proper treatment of variables in predicate logic 219

3. If σ and τ are F-construction histories whose respective heads are not in C, then
the quintuple

〈∧, σ, τ, N (σ ) ∪ N (τ ), V (σ ) ∪ V (τ )〉

is an F-construction history.
4. If σ is an F-construction history whose head is not a member of C, and c is in

N (σ ), then the quadruple

〈c, σ, N (σ )\{c}, V (σ )〉

is an F-construction history.
5. If σ is an F-construction history whose head is amember of C, and x is any variable

not in V (σ ), then the quintuple

〈∃, x, σ, N (σ ), V (σ ) ∪ {x}〉

is an F-construction history.

FromeachF-construction historyσ wecan read out a surface stringyield(σ ) consisting
of primitive symbols of LF . Technically the function yield is defined by recursion on
σ , as follows.

1. yield(〈P, c1, . . . , cn, {c1, . . . , cn},∅〉) = Pc1 . . . cn
2. yield(〈¬, σ, N (σ ), V (σ )〉) = ¬ yield(σ )

3. yield(〈∧, σ, τ, N (σ ) ∪ N (τ ), V (σ ) ∪ V (τ )〉) = (yield(σ ) ∧ yield(τ ))

4. yield(〈c, σ, N (σ )\{c}, V (σ )〉) = (yield(σ ))c[ξ ]
5. yield(〈∃, x, σ, N (σ ), V (σ ) ∪ {x}〉) = ∃x (yield(σ ))ξ [x]
It is intuitively clear that the yields of F-construction histories are precisely the

well-formed expressions of LF , that the yield of an F-construction history σ is an
atomic formula (respectively negation, conjunction, predicate, quantified sentence) if
and only if σ ’s head (σ )0 is a predicate symbol (respectively the negation sign, the con-
junction sign, a name, a quantifier), that N (σ ) contains precisely the names occurring
in yield(σ ), and that V (σ ) contains precisely the variables occurring in yield(σ ).

As we noted informally above, the function yield is obviously not injective, since
e.g.

yield(〈a, 〈P, a, {a},∅〉,∅,∅〉) = Pξ = yield(〈b, 〈P, b, {b},∅〉,∅,∅〉).

Thus we cannot uniquely associate an F-construction history with each LF -wfe. As
we will see in the next section, however, this failure of uniqueness is semantically
benign.

Though we will not be making use of such a representation, I note that F-
construction histories can alternatively be defined as labeled trees (to which we’ll
refer as FCH-trees). The item labeling the next-to-last daughter of an FCH-tree’s root
is called the tree’s name record; the item labeling the last daughter is the tree’s variable
record. For convenience, we label the tree’s root with either S (for “sentence”) or P
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(for “predicate”), depending on the kind of expression being constructed. Specifically,
we have the following construction rules.

Atomic FCH-trees:Where P is an n-ary predicate symbol and a1, …, an are names,
the following labeled tree is a sentential FCH-tree.

Negative FCH-trees: Where

is a sentential FCH-tree with name record X and variable record Y , so is

Conjunctive FCH-trees: Where

and

are sentential FCH-treeswith name records X andW , respectively, andvariable records
Y and Z , respectively, the labeled tree

is a sentential FCH-tree.
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Predicative FCH-trees: Where

is a sentential FCH-tree whose name record can be written as the disjoint union of a
set X and the singleton {c}, the labeled tree

is a predicative FCH-tree.

Existential FCH-trees:Where

is a predicative FCH-tree of whose variable record Y the variable x is not a member,
the labeled tree

is a sentential FCH-tree.
The yield function on FCH-trees can obviously be defined in much the same way

as in the case of the original F-construction histories. By way of example, here is an
FCH-tree that yields the LF -sentence ∃x(Px ∧ Rxb):

S

∃ x P

a S

S

P a {a} ∅

∧ S

R a b {a, b} ∅

{a, b} ∅

{b} ∅

{b} {x}
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It is readily apparent from the tree versions of Fregean construction histories that the
names occurring in atomic sentences propagate up through FCH-trees and disappear
only, if ever, at predicate-forming steps. The prima facie reason for letting names
float to the top level of FCH-trees is that we want to exclude vacuous predicates (i.e.
predicates that contain no gaps), so that at predicate-forming stages, we need to know
which names are available for deletionwithout first constructing the yielded expression
and identifying the names that occur in that string. As we shall see in the discussion
of compositionality, however, there is a deeper, semantic reason to make the names
occurring in the generated expression prominent at the top level.

3 Fregean semantics

AmodelM is a triple (M, (PM)P∈P , (cM)c∈C), where M =: dom(M), the domain of
M, is a non-empty set, (PM)P∈P is a family of relations over M indexed by the set P
of predicate symbols such that, for each P ∈ Pn , PM ⊆ Mn ; and (cM)c∈C is a family
of members of M indexed by the set C of names. We refer to PM as the interpretation
of P inM, and to cM as the interpretation of c inM.

Where c is any name in C, we say that a model M is a c-variant of a model N,
M ∼c N, just in case M and N are exactly alike except possibly in the interpretation
they assign to the name c, that is, just in case dom(M) = dom(N), PM = PN for
each P ∈ P , and dM = dN for each d ∈ C\{c}. Where u ∈ M , we let Mu

c be the
c-variant of M that interprets c as u.

Now let the reference �c�M of a name c ∈ C in a model M be the M-interpretation
cM of c, and let the reference �P�M of an n-ary predicate symbol P ∈ Pn in a
model M be the characteristic function, relative to Mn , of the M-interpretation PM

of P . Thus for u1, . . . , un ∈ M , �P�M(u1, . . . , un) = t if 〈u1, . . . , un〉 ∈ PM, and
�P�M(u1, . . . , un) = f otherwise. Let H¬ be the unary truth function corresponding
to negation, and let H∧ be the binary truth function corresponding to conjunction.
Finally let HM∃ be the characteristic function, relative to the powerset of M , of the
non-empty subsets of M .

The reference �σ �M of an F-construction history σ in a model M is defined by
recursion on σ .

1. �〈P, c1, . . . , cn, {c1, . . . , cn},∅〉�M is �P�M(�c1�M, . . . , �cn�M).
2. �〈¬, σ, N (σ ), V (σ )〉�M is H¬(�σ �M).
3. �〈∧, σ, τ, N (σ ) ∪ N (τ ), V (σ ) ∪ V (τ )〉�M is H∧(�σ �M, �τ�M).
4. �〈c, σ, N (σ )\{c}, V (σ )〉�M is the set {u ∈ M : �σ �M

u
c = t}.

5. �〈∃, x, σ, N (σ ), V (σ ) ∪ {x}〉�M is HM∃ (�σ �M).

Given that well-formed Fregean expressions, in general, have multiple construction
histories, it is not immediately obvious that we can define references also for the LF -
wfe’s themselves. But it is straightforward, if somewhat tedious, to show that any two
F-construction histories with the same yield will have the same reference in any given
model:

Unique Interpretability: If yield(σ ) = yield(τ ), then �σ �M = �τ�M.

The result is, in any case, intuitively plausible: As is easily seen, any two construc-
tion histories of a given expression φ must have the same structure in terms of the
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sequence of construction steps that have been applied; they can differ only in the
choice of names that figure in the constituent atomic sentences, provided those names
are deleted at corresponding predicate-forming steps. But the nature of the deleted
name has no influence on the extension of the predicate so constructed. To take
the simplest case, let σ be 〈P, a, {a},∅〉 and let τ be 〈P, b, {b},∅〉. Then σ yields
the atomic sentence Pa and τ the atomic sentence Pb. Now σ ′ = 〈a, σ,∅,∅〉 and
τ ′ = 〈b, τ,∅,∅〉 both yield the predicate Pξ for which it doesn’t matter whether we
describe its extension in a model M as {u ∈ M : �〈P, a, {a},∅〉�Mu

a = t} or as
{u ∈ M : �〈P, b, {b},∅〉�Mu

b = t}, since these are identical: �σ �M
u
a =

�P�M
u
a (�a�M

u
a ) = χPMu

a (u) = χPM(u) = χ
PMu

b
(u) = �P�M

u
b (�b�M

u
b ) = �τ�M

u
b .

GivenUnique Interpretability, yield’s failure to be injective is no barrier to assigning
references to LF -wfe’s: We may let the reference �φ�M of an LF -wfe φ in a modelM
be the reference �σ �M of any F-construction history σ with yield(σ ) = φ.

Alternatively, we can define the M-references of LF -wfe’s directly by way of the
following clauses.

1. The M-reference �Pc1 . . . cn�M of an atomic sentence of the form Pc1 . . . cn is
�P�M(�c1�M, . . . , �cn�M).

2. The M-reference �¬φ�M of a negation ¬φ is H¬(�φ�M).
3. The M-reference �(φ ∧ ψ)�M of a conjunction (φ ∧ ψ) is H∧(�φ�M, �ψ�M).
4. The M-reference �φc[ξ ]�M of a predicate φc[ξ ] is the set {u ∈ M : �φ�M

u
c = t}.

5. The M-reference �∃xπξ [x]�M of an existential sentence ∃xπξ [x] is HM∃ (�π�M).

Note that, despite the invisibility of c in φc[ξ ], �φc[ξ ]�M is well-defined: If φc[ξ ]
equals ψd [ξ ], Unique Interpretability ensures that {u ∈ M : �φ�M

u
c = t} is identical

with {u ∈ M : �ψ�M
u
d = t}.

Let us now investigate the question of the compositionality of Fregean semantics.
By way of preparation, I want to point out and address a problem with the Tarskian
meaning assignment as given in Sect. 1.

Recall that the Tarskian meaning of a formula φ is the function on the set of
variable assignments over the background model M that maps each assignment that
satisfies φ inM to t and each assignment that fails to satisfy φ to f. Recall, too, that a
closed formula, or sentence (i.e. a formula without free occurrences of any variables),
is either satisfied in M by all assignments or by none. Indeed this is the basis for
Tarski’s definition of truth (as opposed to satisfaction by an assignment) in a model:
Only closed formulas are true or false in M, and truth amounts to satisfaction by all
assignments (equivalently, satisfaction by some assignment or other). Thus there are
only two possible Tarskianmeanings for a closed formula: Either the constant function
mapping every assignment to t, or the constant function mapping every assignment to
f. In other words, all closed formulas true in M have the same meaning (to wit, the
constant function with value t), and all formulas false inM also have the samemeaning
(to wit, the constant function with value f). For example, if the interpretation PM of
the unary predicate symbol P in the background model M is empty, the sentences
∀x Px and ∃x Px have the same Tarskian meaning. Anyone who thinks of meanings
as truth conditions must find this unsatisfactory: Whatever truth conditions might be,
∀x Px and ∃x Px do not have the same truth conditions.
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We can fix this problem by introducing a dependency of meanings on models in
addition to the dependency on variable assignments, say by defining the meaning of
a formula φ to be the function that maps any modelM to our old meaning of φ when
the fixed background model is M. Then the meaning of ∃x Px , for example, is no
longer a constant function—it maps those modelsM in which PM �= ∅ to the function
that maps all assignments over M to t, and those models M in which PM = ∅ to the
function that maps all assignments overM to f; clearly there are models of both kinds.
It is then natural to think of a sentence’s truth conditions as the class of those models
that the formula’s meaning maps to the constant function on the set of assignments
over M whose value is t, i.e. the class of models in which the sentence is true.

Given these observations regarding meaning assignments for Tarskian predicate
logic, it won’t come as a surprise that the Fregean meanings we’re about to construct
will likewise be functions defined on the class of all models; indeed, the Fregean
meaning—or sense, as we will also call it, in deference to Frege—of any relevant
linguistic item s is going to be the function that maps any model M to the reference
�s�M of s inM.

Wewill begin by examining the assignment of senses to thewell-formed expressions
ofLF ; the sense assignment to F-construction histories will be considered later. Given
our recipe for the construction of Fregean meanings, the sense �c� of a name c is the
function thatmaps eachmodelM to �c�(M) := �c�M, i.e. the reference of c inM, which
is just the interpretation cM of c inM. Similarly, the sense �P� of a predicate symbol
P ∈ Pn is the function that maps each model M to the reference �P�(M) := �P�M

of P in M, i.e. to the characteristic function of the interpretation PM of P in M. The
sense �¬� of the negation symbol is the constant function that maps each model M
to the reference �¬�(M) := �¬�M := H¬ of ¬ in M. Similarly the sense �∧� of the
conjunction symbol is the constant function mapping each model M to the reference
�∧�(M) := �∧�M := H∧ of ∧ in M. The sense �∃� of the existential quantifier is the
function that maps each modelM to the reference �∃�(M) := �∃�M := HM∃ of ∃ inM,
i.e to the characteristic function of the set of non-empty subsets of the domain M of
M. This completes the Fregean meaning assignment for the lexical items of LF . We
note that the variables, the gap marker, and the parentheses are not assigned senses
and thus do not count as lexical items.

For the LF -sentences and predicates, we have the following semantic clauses.

1. �Pc1 . . . cn� is the function that maps any model M to

�P�(M)(�c1�(M), . . . , �cn�(M)).

2. �¬φ� is the function that maps any model M to

�¬�(M)(�φ�(M)).

3. �(φ ∧ ψ)� is the function that maps any model M to

�∧�(M)(�φ�(M), �ψ�(M)).

4. �φc[ξ ]� is the function that maps any model M to {u∈dom(M) | �φ�(Mu
c ) = t}.
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5. �∃x πξ [x]� is the function that maps any model M to �∃�(M)(�π�(M)).

Now is this meaning assignment compositional? Let us first consider the Principle of
Compositionality in the following form:

Rule-to-Rule Compositionality
For every syntactic rule α there is a semantic operation
rα such that �α(e1, . . . , en)� = rα(�e1�, . . . , �en�).

With the exception of clause 4, the semantic clauses obviously abide by this form of
the principle. Clause 4, however, is problematic. Let α be the syntactic rule that takes
a sentence φ and a name c and outputs the result of deleting all occurrences of c in φ;
i.e. α(φ, c) = φc[ξ ]. The corresponding semantic operation rα should take as inputs
the sentential sense �φ� and the name sense �c� and output the function

λM.{u∈dom(M) | �φ�(Mu
c ) = t}.

Unfortunately, though, while λM.{u∈dom(M) | �φ�(Mu
c ) = t} is obviously a function

of �φ�, it does not seem to be a function of �c�, but rather of c—that is, not of the
name sense �c� but of the syntactic item c itself.

We could try to finesse the issue by relegating the role of c in the syntactic rule
from an argument to an index. In other words, instead of having a single syntactic
rule α that takes a sentence and a name and deletes all occurrences of the name in the
sentence, we could have infinitely many rules αc, one for each name c, such that αc

takes a sentence as argument and deletes all occurrences of c from it. That seems like
cheating, however, as it means obscuring the fact that deletion of c and deletion of d
are instances of the same kind of syntactic operation; the theory would be treating αc

and αd as completely unrelated rules.
A parallel problem arises in the context of Tarskian predicate logic, where the

quantifier clause relies on the relation of x-variance between assignments, a relation
that makes explicit reference to a variable qua syntactic item. For the Tarskian case,
Zimmermann and Sternefeld (2013, 242) offer a fix that can be adapted to our Fregean
setting: Observe that, if c and d are distinct names, there is a model M for which
�c�(M) = cM �= dM = �d�(M), so if we let const be the function defined on senses
of names that maps any such sense s to the unique name c such that, for all M,
s(M) = cM, we can replace mention of c in clause 4 by mention of const(�c�). Then
�φc[ξ ]�(M) can be written as

{u∈dom(M) | �φ�(Mu
const(�c�)) = t},

and the sense of the LF -predicate φc[ξ ] is now expressed as a function exclusively of
the senses of φ and of c.

At this point, we have accomplished what Fine suggests isn’t viable. From a grasp
of the sense of a sentence B(c) we obtain a grasp of the sense of the predicate B(ξ),
or in Fine’s notation, B( ), by realizing that the association of the name c with its
referent cM is a merely conventional matter and figuring out how we would compute
the reference of B(c) if c had any of its other possible references in M . The set of those
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possible references of c which make B(c) true then serves us as the reference of B(ξ).
Finally, we predicate “existence” of B(ξ) bymeans of ∃x B(x). Note, too, that we have
accomplished this entirely within the resources of truth-conditional semantics; we did
not need to posit propositions as structured entities from which constituents could be
removed in a way akin to the removal of a name from a sentence.

I suggested earlier that it would beworthwhile to explore the consequences of letting
F-construction histories, rather than LF -wfe’s, be the bearers of meaning. Apart from
the fact that this strategy is well established in formal semantics, there are a number of
substantive advantages to taking this route. One of them is that our sense assignment
to the sentences and predicates of LF is somewhat difficult to assess in terms of a
variant formulation of Compositionality that I’ll call Constituent Compositionality,
for want of a better term.

Constituent Compositionality
The meaning of a compound linguistic item is a function of the meanings of
its immediate constituents and the manner in which they are put together in the
compound.

This version of the principle presupposes that there is a unique set of linguistic items
that we can identify as the constituents of a given compound. This raises an immediate
problem with LF -predicates, for what are the immediate constituents of (Raξ ∧ Pξ),
for example? The pair consisting of the name b and the sentence (Rab ∧ Pb) has as
good a claim as the pair consisting of the name c and the sentence (Rac ∧ Pc), as
well as infinitely many other such pairs. Relatedly, whichever pair or pairs we want
to pick, we’ll have to count as a constituent a name that doesn’t even occur in the
predicate—perhaps not an insuperable difficulty, but certainly an oddity.

Another reason for wanting to explore assigning meanings to Fregean construction
histories relates to our invoking the syntax-valued function const above. Its purpose
was, the reader will recall, to eliminate the dependency of predicative senses on syn-
tactic items. But why should the semantic machinery contain a syntax-valued function
at all? Of course we don’t actually need to introduce such a function explicitly.22 We
could write �φc[ξ ]�(M) as

{u ∈ M : for some β ∈ C such that for all models K, �β�(K)=�c�(K), �φ�(Mu
β)= t},

which eliminates mention of const in favor of quantification over the set C. But
that doesn’t really settle the matter. One might well object to having to quantify
over a syntactic category (in this case, C) in order to specify a meaning assignment.
The compositional apparatus, it might seem, should really be autonomous from the
syntax.23 We should note, however, that quantification over syntactic categories in our
definition of senses is more pervasive than we have so far made out: The modelMu

c is
defined in terms of c-variance, and as soon as we invoke c-variance (never mind how
we effect reference to c), we’re quantifying over the members of both C and P . After

22 Thanks to Ede Zimmermann for pointing this out.
23 This concern applies equally to the Zimmermann–Sternefeld trick when applied in the Tarskian context.
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all, by definition, modelsM and N are c-variants if, and only if, dom(M) = dom(N),
for every a ∈ C\{c}, aM = aN, and for every P ∈ P , PM = PN.24

Let’s take these observations as sufficient motivation to examine the assignment of
senses to F-construction histories. Aiming for satisfaction of Constituent Composi-
tionality, let’s say that the immediate constituents of an F-construction history of the
form 〈s0, . . . sn〉 are its entries s0, …, sn .25 Let’s further say that the construction his-
tory is atomic if s0 is a predicate symbol, negative if s0 is the negation sign, conjunctive
if s0 is the conjunction symbol, predicative if s0 is a name, and existential if s0 is the
existential quantifier. We then have to show that the sense of an F-construction history
〈s0, . . . sn〉 is a function of the senses of s0, …, sn and of the kind of construction
history it is.

As we said above, the Fregean sense of any relevant linguistic item s is the function
on the class of all models that maps amodelM to the Fregean reference �s�M of s inM.
We’ve already explained what this means for the primitive meaning-bearing symbols
of LF , so it remains to consider the senses of the F-construction histories. These turn
out to be subject to the following recursive clauses.

1. If τ is an F-construction history 〈P, c1, . . . , cn, {c1, . . . , cn},∅〉, its sense �τ� is
the function that maps any model M to the result

�τ�(M) := �P�(M)(�c1�(M), . . . , �cn�(M))

of applying the value at M of the sense �P� of P to the sequence of values at M
of each of the senses �c1�, …, �cn� of c1, . . . , cn , respectively.

2. If τ is an F-construction history 〈¬, σ, N (σ ), V (σ )〉, its sense �τ� is the function
mapping any M to the result

�τ�(M) := �¬�(M)(�σ �(M))

of applying the value �¬�(M) of the sense �¬� of ¬ at M to the value �σ �(M) of
the sense �σ � of σ at the argument M.

3. If τ is an F-construction history 〈∧, σ, ρ, N (σ ) ∪ N (ρ), V (σ ) ∪ V (ρ)〉, its sense
�τ� is the function that maps any model M to the result

�τ�(M) := �∧�(M)(�σ �(M), �ρ�(M))

of applying the value �∧�(M) of the sense �∧� of ∧ at M to the ordered pair
consisting of the values at M of the senses �σ � and �ρ� of σ and ρ, respectively.

24 Similarly the Tarskian must already quantify over the set of variables as soon as x-variance between
variable assignments comes in (never mind how reference to x itself is effected), since g ∼x h if, and only
if, g(y) = h(y) for every y ∈ V \{x}.
25 Since we encode the names occurring in anLF -wfe within its construction history σ as a finite set N (σ ),
we need to say what the meaning of a finite set X of names is: It will be the finite set of the meanings of
the members of X . Note that the set V (σ ) of variables occurring in the wfe constructed by σ , while being
a syntactic constituent of σ , will not be assigned any meaning; its function is, as it were, purely syntactic.
We will have occasion to return to this point below.
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4. If τ is an F-construction history 〈c, σ, N (σ )\{c}, V (σ )〉, its sense �τ� is the func-
tion that maps any M to

�τ�(M) := {u ∈ M : �σ �(Mu
const(�c�)) = t}.

5. If τ is an F-construction history 〈∃, x, σ, N (σ ), V (σ ) ∪ {x}〉, its sense �τ� is the
function that maps any model M to the result

�τ�(M) := (�∃�(M))(�σ �(M))

of applying the value atM of the sense �∃� of ∃ to the value atM of the sense �σ �
of σ .

It is now obvious that our sense assignment to F-construction histories abides by
Constituent Compositionality. Moreover, every constituent is, in a reasonable sense,
actually present in the compound of which it is a constituent.26

It remains to address the worry about invoking the syntax-valued function const,
or alternatively, quantification over syntactic categories, in the predicative semantic
clause. As a first step, recall the familiar result in Tarskian predicate logic, variously
called the local determination lemma or the coincidence lemma, according to which
any two variable assignments that agree on the variables occurring free in a given
formula either both satisfy or both fail to satisfy the formula. The analogous result
in Fregean predicate logic is that, if σ is an F-construction history and the models M
and N have the same domain, agree on the interpretation of every predicate symbol
in P , and also agree on the interpretation of all the names in N (σ ), the reference of
σ in M is the same as the reference of σ in N. If we say that models M and N are
name-variants, M ∼C N, just in case they have the same domain and agree on the
interpretations of all predicate symbols in P , we can restate this fact as follows: If
M ∼C N, and σ is an F-construction history such that �c�M = �c�N for each name
c ∈ N (σ ), then �σ �M = �σ �N.

Thus we may reformulate the semantic clause for predicative F-construction histo-
ries as follows:

4′. If τ is an F-construction history 〈c, σ, N (σ )\{c}, V (σ )〉, its sense �τ� is the func-
tion that maps any model M to the set of all u ∈ M such that, for some N ∼C M,
• �σ �(N) = t;
• u = �c�(N); and
• γ (N) = γ (M) for each element γ ∈ �N (τ )�.27

In this formulation, we see that �τ� is a function of the senses �N (τ )�, �σ �, and �c�
of τ ’s immediate constituents N (τ ), σ , and c. Note, too, that there is no reference to
a particular syntactic item, no use of a syntax-valued function, and no quantification
over the members of C, in clause 4′.

26 Our F-construction histories are set-theoretic constructs rather than expressions, so we can’t rightly say
that the constituents are visible in the construction histories.
27 The final bullet point is equivalent to the condition that �b�(N) = �b�(M) for each name b ∈ N (τ ).
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We have not, however, eliminated quantification over syntactic categories entirely.
To be sure, we no longer need to quantify over names, but our definition of name-
variance still involves quantification over the set of predicate symbols, for M and N

are name-variants just in case dom(M) = dom(N) and PM = PN for every P ∈ P .
Thus quantification over syntax has been reduced, but not eliminated.

We can do better. Recall that the reason we were able to eliminate quantification
over C in the move from clause 4 to clause 4′ was that an F-construction history
contains a record of all the names relevant to its semantic evaluation: Instead of asking
for c-variance, it was enough to ask, in 4′, for agreement on the interpretation of
the names explicitly listed in the name record (as well as agreement on all predicate
symbols, and domain identity). But actually, requiring agreement on the interpretation
of all predicate symbols is overkill: Two models with the same domain will agree on
a sentence’s truth value as soon as they agree on the interpretations of the names and
the predicate symbols occurring in the sentence. Now recall that the F-construction
histories carry a name record in order to prevent vacuous first-order quantification.
If we take first-order logic to be a fragment of higher-order logic (as Frege certainly
did), we should take precautions also against vacuous second-order quantification.
For this purpose, we will need the F-construction histories σ to also carry a predicate
record P(σ ) that lists all the primitive predicate symbols occurring in the yielded
expressions, so that we know which predicate symbols are available for deletion when
creating higher-order predicates.

It follows that, if we were to revise28 our definition of F-construction histories in
such a way that they also contain a predicate record, we could reformulate clause 4′
in a way that completely eliminates any reference to syntax, even quantification over
the members of syntactic categories:

4′′. If τ is an F-construction history 〈c, σ, N (σ )\{c}, P(σ ), V (σ )〉, its sense �τ� is
the function that maps any model M to the set of all u ∈ M such that, for some
model N,
• dom(M) = dom(N);
• �σ �(N) = t;
• u = �c�(N);
• γ (N) = γ (M) for each element γ ∈ �N (τ )�; and
• �(N) = �(M) for each element � ∈ �P(τ )�.

While, for reasons of simplicity, we won’t officially integrate predicate records into
our F-construction histories, I propose that this is the way to ensure a fully satisfactory,
syntax-independent, compositional meaning assignment for predicate logic.29

28 The necessary changes are obvious: Call the final entry in a history the variable record, the next-to-last
entry the predicate record, and the second-to-last entry the name record. Atomic histories now have the
form 〈P, c1, . . . , cn , {c1, . . . , cn}, {P},∅〉; in every syntactic construction step other than conjunction we
simply carry along the predicate record, and in the conjunction step we take the union of the conjuncts’
predicate records to be the conjunctive history’s predicate record. Nothing else needs to be done as long as
we don’t venture into higher-order logic.
29 Analogous moves could be made for Tarski-style predicate logic, as long as Tarskian construction
histories are defined in such a way as to keep track both of the individual variables and of the predicate
variables occurring free in the yielded formula.
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4 The role of variables

The LF -variables are semantically idle in the sense that they aren’t assigned lexical
meanings. They do, however, play a syntactic role in that they serve to disambiguate
an expression’s construction history—the variable pattern in ∃x∀yRxy tells us that
the predicate to which non-emptiness is being attributed is ∀yRξ y, while that in
∃x∀yRyx indicates that being instantiated is attributed to the predicate ∀yRyξ . In this
the variables resemble the parentheses, which do not have lexical meanings either but
likewise serve to disambiguate an expression’s construction history—the bracketing
pattern in ((φ ∧ ψ) ∨ χ) tells us that φ ∧ ψ is being disjoined with χ , whereas the
bracketing pattern in (φ ∧ (ψ ∨ χ)) indicates that φ is being conjoined with ψ ∨ χ .
Moreover, just as variables only ever enter wfe’s together with a quantifier, parentheses
only ever enter wfe’s together with a binary propositional connective.

The variables differ from the parentheses, however, in that they show up as con-
stituents of F-construction histories, into which they are introduced via the existential
quantifier clause. This difference might make one hesitate to categorize variables with
the parentheses as mere devices of punctuation. Let’s ponder for a moment, how-
ever, what would happen if we omitted all mention of variables from F-construction
histories.

In otherwords, let’s consider, instead of F-construction histories, theQ-construction
histories definedbelow.30 It is obvious thatwecould assignmeanings toQ-construction
histories in just the same way as we did to F-construction histories, so if we cared
only about the histories, not the generated expressions, we could jettison variables
altogether.31

1. If P ∈ Pn and c1, . . . , cn ∈ C, then the (n + 2)-tuple

〈P, c1, . . . , cn, {c1, . . . , cn}〉
is a Q-construction history. (Its sense is, as before, the functionmapping anymodel
M to �P�(M)(�c1�(M), . . . , �cn�(M)).)

2. If σ is a Q-construction history whose head is not a member of C, then the triple

〈¬, σ, N (σ )〉
is a Q-construction history. (Its sense is, as before, the function mapping anyM to
�¬�(M)(�σ �(M)).)

3. If σ and ρ are Q-construction histories neither of whose heads is a name, then the
quadruple

〈∧, σ, ρ, N (σ ) ∪ N (ρ)〉

30 In the context of Q-construction histories, we let N (σ ) be the final entry in the finite sequence σ , for
obvious reasons.
31 For each step in the inductive generation of a Q-construction history, we indicate in parentheses the
corresponding clause for the compositional semantics to make it obvious that the meaning assignments can
easily be made, in a compositional fashion, even for these construction histories stripped of all information
regarding variables.
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is a Q-construction history. (Its sense is, as before, the functionmapping anymodel
M to �∧�(M)(�σ �(M), �ρ�(M)).)

4. If σ is a Q-construction history whose head is not a name, and c is in N (σ ), then
the triple

〈c, σ, N (σ )\{c}〉
is a Q-construction history. (Its sense is, as before, the function mapping anyM to
the set of all u ∈ M such that �σ �(Mu

const(�c�)) = t.)
5. If σ is a Q-construction history whose head is a member of C, then the triple

〈∃, σ, N (σ )〉
is a Q-construction history. (Its sense is, as before, the function mapping anyM to
(�∃�(M))(�σ �(M)).)

Interestingly, the Q-construction histories generate precisely the well-formed
expressions of a first-order logical notation once suggested in passing by Quine (1940,
70) and adopted as the official notation of Éléments de Mathématique by Bourbaki
(1954, chapter I, §1).32

Informally speaking, the idea is to establish the link between a quantifier occur-
rence and the argument places of predicates into which it reaches, not by means of
occurrences of the same variable, but by drawing a curved line, or bond, from the
quantifier occurrence to those argument places. Thus, for instance, what both Tarski
and Frege would write as

(∀x Rax ∧ ¬∀x Rxa)

is rendered in Quinean bond notation as

(∀ Ra• ∧ ¬∀ R•a) ,

what Tarski and Frege write as

∀x ∀y Rxy
becomes

∀ ∀R••,

and Tarski’s and Frege’s

∀y ∀x Rxy

32 Éléments de Mathématique uses Hilbert’s ε-operator rather than the usual quantifiers, but its “variable-
binding” notation is otherwise Quine’s. Other logicians who have noted the attractions of this notation
include Tennant (1978, 13–15), Kaplan (1986, 244), and Smith (2003, 215). In linguistics, Evans (1977) and
Higginbotham (1983) have employed versions of the same idea, calling it chaining and linking, respectively.
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turns into

∀ ∀R••.

Let us nowmake these informal suggestions more precise by defining the well-formed
expressions of the Quinean bond languageLQ . The primitive symbols ofLQ are those
of LF other than the variables, plus curved lines, henceforth called bonds, as well as
the argument place marker •. The LQ-sentences and LQ-predicates, which together
constitute thewell-formedQuinean expressions (theLQ-wfe’s for short), are generated
by a simultaneous inductive definition as follows.

1. Whenever P ∈ Pn and c1, . . . , cn are names, Pc1 . . . cn is an LQ-sentence.
2. Whenever φ and ψ are LQ-sentences, so are ¬φ and (φ ∧ ψ).
3. Whenever φ is an LQ-sentence, and c is a name that has at least one occurrence

in φ, the result φc[ξ ] of replacing all occurrences of c in φ with the blank space ξ

is an LQ-predicate.
4. Whenever π is an LQ-predicate, the result ex(π) of prefixing π with ∃, replacing

each occurrence of ξ in π with •, and drawing a bond from the new prefix ∃ to
each of the new occurrences of • is an LQ-sentence.

The LQ-wfe’s are generated by the Q-construction histories in the obvious way.
That is, we recursively define a function yield from the Q-construction histories to the
LQ-wfe’s as follows.

1. yield(〈P, c1, . . . , cn, {c1, . . . , cn}〉) = Pc1 . . . cn
2. yield(〈¬, σ, N (σ )〉) = ¬ yield(σ )

3. yield(〈∧, σ, τ, N (σ ) ∪ N (τ )〉) = (yield(σ ) ∧ yield(τ ))

4. yield(〈c, σ, N (σ )\{c}〉) = (yield(σ ))c[ξ ]
5. yield(〈∃, σ, N (σ )〉) = ex(yield(σ ))

By way of example, if R ∈ P3, we can make the Q-construction history

〈R, a, b, a, {a, b}〉,

for which

yield(〈R, a, b, a, {a, b}〉) = Raba.

From 〈R, a, b, a, {a, b}〉 we obtain the Q-construction history

〈b, 〈R, a, b, a, {a, b}〉, {a}〉,

whose yield is the LQ-predicate

Raξa.

We may go on to generate the Q-construction history

〈∃, 〈b, 〈R, a, b, a, {a, b}〉, {a}〉, {a}〉,
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which yields

∃ Ra•a.

Then we can construct the Q-construction history

〈¬, 〈∃, 〈b, 〈R, a, b, a, {a, b}〉, {a}〉, {a}〉, {a}〉,

with yield

¬∃ Ra•a.

Now we move on to the Q-construction history

〈a, 〈¬, 〈∃, 〈b, 〈R, a, b, a, {a, b}〉, {a}〉, {a}〉, {a}〉,∅〉,

whose yield is

¬∃ Rξ•ξ.

Finally we can generate the Q-construction history

〈∃, 〈a, 〈¬, 〈∃, 〈b, 〈R, a, b, a, {a, b}〉, {a}〉, {a}〉, {a}〉,∅〉,∅〉,

with yield

∃ ¬∃R•••.

It seems abundantly clear that the bonds of LQ are mere devices of punctuation:
Like the parentheses, they are not lexical items, and again like the parentheses, they
do not show up in the Q-construction histories, the compound bearers of meaning.
Since the variables of LF are nothing but a replacement for the Quinean bonds, they
too are mere punctuation, their presence in F-construction histories being due to a less
economical, though typographically more convenient, scheme of achieving unique
interpretability—to wit, the scheme of eliminating bonds by marking their beginnings
and ends with equiform variables.

5 The challenges

Asmentioned inSect. 1, twomain reasons for dissatisfactionwith the standardmeaning
assignment for Tarskian predicate logic are its representationalism and the antinomy of
the variable. In this section, we investigate whether Fregean predicate logic is subject
to the same objections.
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5.1 Fine’s antinomy

Fine (2003; 2007, chapter 1), itwill be recalled fromSect. 1, argues that themeanings of
distinct variables must both be distinct and identical. But an obvious response suggests
itself. After all, it is a crucial presupposition of the antinomy that variables have
meanings in the first place.33 This is, as we’ve seen, unwarranted: Fregean predicate
logic has a fully compositional semantics without attributing any kind of meaning to
variables, so the antinomy of the variable simply cannot arise there. Indeed, it cannot
even be formulated, since expressions such as “x > 0” and “y > 0” aren’t well-formed
in LF .

Perhaps, however, we need to be a little more open-minded about the shape Fine’s
antinomy might take in the context of Fregean predicate logic. To be sure, it doesn’t
work with variables, but the roles played by variables in Tarskian predicate logic are,
as it were, distributed among three kinds of symbols in LF : besides the variables
themselves, the members of C and the gap marker ξ . Can we reconstruct an antinomy
for one of these other categories of signs?

Let’s consider names first. Names clearly havemeanings, so themovewemadewith
respect to Fregean variables does not apply. Do distinct names c and d ever have the
same meaning? According to our Fregean34 semantics, the answer is in the negative,
since there will be models that interpret c and d by distinct objects, and hence the
function that maps each model to its interpretation of c is distinct from the function
that maps each model to its interpretation of d.35 Note, however, that we could easily
accommodate distinct but sense-identical names a and b by restricting the domain of
the sense function to the class of models that interpret a and b by the same object, or
in other words, by making the equation a = b a meaning postulate.36

33 Fine is fully aware of this assumption: “In stating the antinomy of the variable, we have presupposed
that variables have a semantic role; and it might be thought that this is the root cause of our difficulties”
(Fine 2007, 12).
34 Tarskian semantics, incidentally, gives the same answer, as long as Tarskian meanings are defined as
functions taking not just variable assignments, but also models as arguments—as they should; see Sect. 3.
35 A reviewer has raised the question whether this isn’t an unwelcome consequence for Fregeans. I see no
reason to think that it should be. Frege certainly held that distinct compound expressions can express the
same sense (and this is borne out by our formal Fregean semantics), but I am not aware of any place where
he suggests that this should be true of primitive expressions as well. In fact it seems overwhelmingly likely
that Frege would have objected to introducing into a “logically perfect” language distinct primitive symbols
with the same sense. On this topic see also (May 2006), especially p. 118.
36 Some care is required, though. Suppose we make a and b sense-identical by restricting the model space
to models that interpret a and b by the same object. Suppose M is such a model. Then the only a-variant
of M in the restricted model space is M itself, because any other a-variant interprets a and b differently.
Now consider the predicate Rξb, which we can obtain from Rcb by deleting c or (presumably) from Rab
by deleting a. If we compute �Rξb�M as {u ∈ M | for some N ∼c M, u = cN and �Rcb�N = t}, we obtain
�Rξb�M = {u ∈ M | 〈u, bM〉 ∈ RM}. But if we compute �Rξb�M as {u ∈ M | for some N ∼a M, u =
aN and �Rab�N = t}, we obtain either �Rξb�M = {aM}, if �Rab�M = t, or else �Rξb�M = ∅. So in
general �Rξb�M isn’t well defined. The simplest way to circumvent this problem is to require, for any two
names a0 and a1 intended to be sense-identical, that they be treated as the same name syntactically—in
other words, ai must not be deleted from a sentence without a1−i also being deleted, and ai ’s occurring in
an expression also counts as a1−i occurring in the expression. Alternatively, we could restrict the domain
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Both of these features—the general non-synonymy of distinct Fregean names and
the possibility of accommodating synonymous names via meaning postulates—seem
to be in accord with our intuitions. Surely the general case with two names is that they
have distinct meanings; after all, two names typically have distinct references even
in the intended model. At the same time it is possible for a linguistic community to
introduce a new name as a mere variant of an extant one, for example, the nickname
Marty in addition to the original nameMartin. These names will have the same senses
because the nickname has been introduced with the understanding that it abbreviates
the name Martin.

Fine’s own discussion (2007, 46–47) of the apocryphal story about Carl Hempel’s
being called Peter upon his arrival in Princeton actually illustrates how well these
features of Fregean semantics accordwith our intuitions. Fine considers two scenarios:
In one, Hempel’s fellow philosophers decide to use Peter as a variant of Carl, in
the other, Hempel is re-christened Peter shortly after moving to Princeton. As Fine
points out, there is an intuitive difference between the meanings of the statement
Carl is Peter in each of the two scenarios. In the first, the linguistic community has
effectively stipulated that Peter be used as a synonym of Carl, so that a member
of the community is in a position to know that the statement is true merely on the
basis of linguistic competence. No knowledge of facts about the intended model is
required. The statement can be recognized as true, Fregeans will say, by noting the
sense-identity ofCarl andPeter, which has been effected by the community’s insisting
that every model interpret the new name Peter by whatever individual interprets Carl.
The intended model needn’t be inspected in order to know the identity. But in the
second case, no linguistic convention ties the sense of the name Peter to the sense
of the name Carl; rather, the two names are tied, by the baptismal act, to the same
reference in the intended model. So to know that the identity statement is true, it is not
enough, in the second scenario, to know the (distinct!) senses of the names. We must
also have knowledge of facts specific to the intended model.

Fine himself calls the kind of knowledge required in the first scenario (that is,
knowledge of senses), semantic facts in the narrow sense, and the kind of knowledge
required in the second (that is, knowledge of references in a particularmodel), semantic
facts in the broad sense. But regardless of terminology, we clearly want the semantics
of names to reflect the intuitions that a given pair of distinct names is generally used
non-synonymously but can under special circumstances be stipulated to be synonyms.
Our Fregean semantics does just that. So since there does not seem to be any good
reason to expect that distinct names should, absent an explicit stipulation to that effect,
have the same senses, it is unlikely that any analog of the antinomy of the variable can
be generated for names in LF .

If we cannot refashion the antinomy of the variable as an antinomy of the name,
what about an antinomy of the gap marker? This seems even more hopeless. For
one thing, like the variables, the gap marker is not assigned any meaning in Fregean
semantics. Moreover, there is only one gapmarker, so even if it had ameaning it would

of the senses to the class of all models in which a and b are interpreted identically, but allow quantification
over the full model space when looking for a-variants in the semantic clause for predicates.
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make no sense to ask whether any two gap markers have the same meaning or distinct
meanings.

But perhaps this last argument is too quick. Indeed Pickel and Rabern (2016, §II.2)
claim that a Fregean predicate logic would fall prey to an antinomy of the gap marker.
Let us consider their argument.

Pickel and Rabern argue that Frege needs a means to distinguish a gappy expres-
sion ( ) ≤ ( ) in which both gaps are to be filled by the same symbol—a monadic
predicate—from a gappy expression ( ) ≤ ( ) in which the gaps may be filled with
distinct symbols (a dyadic predicate), and that once such a means is introduced the
antinomy of the variable will raise its ugly head again. They contend that

(…) if Frege were to introduce marks capable of typographically distinguishing
between these predicates, then that mark would need its own semantic signifi-
cance, which in this context means designation. (Pickel and Rabern 2016, 151;
emphasis added)

A quick but ultimately unsatisfactory reply would be to point out that we don’t have
any need for compound dyadic predicates in the development of LF , since Fregean
predicates only serve as arguments to the standard existential and universal quantifiers,
which each carry a single variable that fills the gaps marked by ξ . To be sure, we have
primitive predicates in LF that have two and more argument places, but as Dummett
(1973, 27–33) has pointed out in his classic exposition of Frege’s treatment of quan-
tification, attaching gap markers to primitive predicates, as Frege (1893) admittedly
does, is an unnecessary feature of the Grundgesetze syntax. This is borne out by the
fact that we had no need to do this in the system developed in Sect. 2. In other words,
as long as we restrict our attention strictly to first-order logic, we will never even
encounter the issue Pickel and Rabern raise.

We cannot rest contentwith this answer, however, for it is predicated on too narrow a
view of first-order logic. Suppose, for example, wewanted to introduce a newprimitive
universal-existential quantifier � that attaches to two variables simultaneously and
has the meaning of the ∀∃ combination: �xy φ(x, y) is to mean ∀x∃yφ(x, y). Such
a dyadic quantifier would have to take as its arguments properly dyadic predicates of
the kind Pickel and Rabern urge us to consider.37

A moment’s reflection reveals, however, that we can accommodate dyadic quanti-
fiers and dyadic compound predicates in a Fregean setting without running up against
a version of Fine’s antinomy. On the syntax side, we add the following two clauses to
the inductive definition of LF -wfe’s:

• If φ is an LF -sentence and c and d are distinct names that both occur in φ, then
the result φc,d [ξ, ζ ] of simultaneously substituting ξ for c and ζ for d in φ is a
dyadic LF -predicate.

• If π is a dyadic LF -predicate and x and y are distinct variables neither of which
occurs in π , then the result �xy πξ,ζ [x, y] of simultaneously substituting x for ξ

and y for ζ in π and prefixing with �xy is an LF -sentence.

37 See again Dummett (1973, 29–30).
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This necessitates the addition of the following two clauses to the inductive definition
of the F-construction histories:

• If σ is an F-construction history whose head is not a name, and c and d are in σ ’s
name record N (σ ), then

〈c, d, σ, N (σ )\{c, d}, V (σ )〉

is an F-construction history.
• If σ is an F-construction history whose head (σ )0 is a name and whose next
constituent (σ )1 is also a name, and x and y are distinct variables not in V (σ ),
then

〈�, x, y, σ, N (σ ), V (σ ) ∪ {x, y}〉

is an F-construction history.38

Needless to say, we will then define

yield(〈c, d, σ, N (σ )\{c, d}, V (σ )〉) = (yield(σ ))c,d [ξ, ζ ]

and

yield(〈�, x, y, σ, N (σ ), V (σ ) ∪ {x, y}〉) = �xy (yield(σ ))ξ,ζ [x, y].

On the semantics side, we first need to assign a lexical meaning ��� to �. We’ll say
that ��� is the function that maps a model M to ���(M) := ���M, which is the
function that maps a subset X of M2 to t if for every u ∈ M there is a v ∈ M such that
〈u, v〉 ∈ X , and to f otherwise. A model N is a c, d-variant of a model M, N ∼c,d M,
just in case N andM are identical except perhaps for the respective interpretations of
c and d.

It is then straightforward to extend the meaning assignment:

• �〈c, d, σ, N (σ )\{c, d}, V (σ )〉� is the function thatmaps amodelM to the reference
�〈c, d, σ, N (σ )\{c, d}, V (σ )〉�M of 〈c, d, σ, N (σ )\{c, d}, V (σ )〉 inM, this being
the set of pairs39

{〈u, v〉 ∈ M2 : for some N ∼c,d M, �c�(N) = u, �d�(N) = v, �σ �(N) = t}.

• �〈�, x, y, σ, N (σ ), V (σ ) ∪ {x, y}〉� is the function that maps any given model
M to the reference �〈�, x, y, σ, N (σ ), V (σ ) ∪ {x, y}〉�M of the F-construction
history 〈�, x, y, σ, N (σ ), V (σ ) ∪ {x, y}〉 inM, this being ���(M)(�σ �(M)).

38 To be pedantic, we would also have to reformulate the ordinary existential quantifier clause as follows:
“If σ is an F-construction history whose head is a name but for which (σ )1 is not a name, and x is a variable
not in V (σ ), 〈∃, x, σ, N (σ ), V (σ ) ∪ {x}〉 is also an F-construction history.”
39 Of course we can replace mention of the names c and d by mention of const(�c�) and const(�d�) as in
§3 above.
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It is obvious that neither ξ nor ζ has been assigned ameaning; pace Pickel and Rabern,
the significance of the gap markers is not founded on designation. Consequently there
is no antinomy of the gap marker either.

We should note that, even if one ignores the gap markers’ lack of meaning, the
antinomy as presented by Fine cannot get off the ground, for while an expression such
as ξ > 0 is certainly well-formed, ζ > 0 is not: There are no well-formed expressions
of the extended Fregean language in which ζ occurs without ξ . Accordingly there is
not even a temptation to think that ξ and ζ should be freely interchangeable, or that
ξ > 0 should mean the same as ζ > 0. It is the syntactic function of ξ to mark,
as it were, first argument places, and that of ζ , to mark second argument places, in
compound dyadic relations.

This last observation also bears upon the question of alphabetic innocence. For one
way to argue that standard Tarskian predicate logic is not alphabetically innocent is
to point out that the formulas x < y and w < z—or, for that matter, y < x—differ
only in their respective choices of variables, which is a purely conventional matter, so
that they ought to have the same meaning; yet on the standard compositional meaning
assignment they don’t. One might be tempted to construct a parallel conundrum for
Fregean predicate logic, for both ξ < ζ and ζ < ξ are indeed well-formed relational
predicates of the extended Fregean language. Clearly the senses of ξ < ζ and ζ < ξ

are distinct, for the former’s is the function mapping any model M to the set of pairs
〈u, v〉 ∈ M2 such that u <M v whereas the latter’s is the function mapping any model
M to the set of pairs 〈u, v〉 ∈ M2 such that v <M u.

Importantly, however, we have no reason to think of the difference between ξ < ζ

and ζ < ξ as being “merely conventional” in the same sense that, in the Tarskian
setting, the difference between x < y and y < x looks “merely conventional”. The
Tarskian conventionality consists in the fact that syntax gives us no reason to treat
any one variable differently than any other, so that it would indeed be arbitrary if
we required a semantics to make x < y stand for the less-than relation and y < x
for the greater-than relation. But Fregean syntax does give us ample reason to treat
ξ differently than ζ ; first because ξ may occur in a Fregean well-formed expression
without ζ also occurring, but not the other way round, and second, because the first
variable following � must replace the occurrences of ξ , whereas the second such
variable must replace the occurrences of ζ , in the relational predicate to which � is
applied. There is, that is, an intrinsic syntactic asymmetry between ξ and ζ , so that
ξ < ζ and ζ < ξ cannot plausibly be considered mere notational variants of each
other.40 In other words, we cannot generate mere notational variants of open Fregean
expressions—(relational) predicates—by permuting gap markers: Fregean predicate
logic is thus trivially alphabetically innocent.

40 There is a different, metaphysical issue here that it is crucial not to confuse with the requirement of
alphabetic innocence, namely the question whether a non-symmetric relation should be considered distinct
from its converse (Williamson 1985; Fine 2000). I take this to be a deep and interesting question, but by
adopting a set-theoretical metalanguage for our model theory, we have made the decision to simulate binary
relations as sets of ordered pairs and have thereby already answered in the affirmative the metaphysical
question whether the less-than relation {〈u, v〉 ∈ ω2 | u < v} is different from the greater-than relation
{〈u, v〉 ∈ ω2 | v < u}.
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5.2 Representationalism

In the introduction, we noted objections to the standard compositional semantics for
Tarski-style predicate logic that are based on Tarskian meanings being ultimately
constructed out of the variables themselves, that is, on the representationalism of
the semantics. More specifically, we distinguished between an “ontological purity”
concern that arises from the contamination of semantic values with non-semantic,
especially syntactic, items (even more especially, variables), and a “language tran-
scendence” concern that points to the impossibility of two Tarskian languages with
distinct sets of variables sharing even a single meaning.

If we want to compare Tarskian and Fregean predicate logic with respect to worries
arising from representationalism, there are at least three lines of inquiry to pursue. First,
andmost concretely,we’llwant to knowwether it is possible for twoFregean languages
with distinct sets of variables to express the same meanings (we already know that
this is not the case for Tarskian predicate logic). This addresses the question in how
far the two approaches are impacted by language transcendence issues with respect to
variables in particular. Second, we should ask whether there are other possible sources
(besides variables) of language-dependence of Tarskian and Fregean meanings, and
whether, where either or both semantics are affected, we can remove this language
dependence by reformulating them. Third, we need to investigate how ontologically
pure the two semantics (possibly reformulated for language independence) are, that
is, to what extent their respective meanings are constructed out of material that is
extraneous to semantics.

The first point is easily disposed of: Any two Fregean languages with the same
names and predicate symbols express the same meanings, regardless of their sets of
variables. For let the languageL′ be exactly likeLF , except that, instead of the variables
v0, v1, v2, . . ., L′ uses the variables w0,w1,w2, . . . Then of course the two languages
will have different construction histories and different expressions. However, simple
inspection of the definitions reveals that the senses assigned to the construction histo-
ries and well-formed expressions of the two languages will be exactly the same, since
variables simply do not contribute to senses.41

Thus with respect to variables, Tarskian meanings are language-dependent, while
Fregean meanings are not. But what about names and predicate symbols? Recall that
models assign interpretations to the members of C and of P; that is, models contain
interpretation functions defined on sets of linguistic entities. But Fregean and (as
argued in Sect. 3 above) Tarskian meanings are functions on the class of models,
so if two languages, whether Fregean or Tarskian, differ in their names or predicate
symbols, and accordingly do not have the same models, they cannot express the same
meanings.

41 More precisely, for any sentence φ of either language, let X be the finite set of variables occurring in φ;
then for any one-one function f from X into the set of variables of the other language, the result of replacing
each occurrence of a member x of X in φ by an occurrence of f (x) is a sentence of the other language
that has the same sense as φ. For example, the LF -sentence ∃v0(Pcv0 ∧ ∀v1Rv0v1) is assigned the same
function from models to truth values as its sense as the L′-sentence ∃w47(Pcw47 ∧ ∀w16Rw47w16).
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Now this wouldn’t be particularly alarming if we were interested only in formal
languages, for there isn’t much prima facie pressure to think that distinct formal lan-
guages should be able to express the same abstract meanings. But of course the reason
we’re interested in these formal languages is that they can, when suitably interpreted,
go proxy for natural languages. Natural languages, however, are translatable into one
another, which suggests that they do in fact manage to express the samemeanings. So
the language-transcendence worry that arises from building meanings out of syntax is,
more precisely, this: How can intertranslatable languages that differ in their relevant
syntactic building blocks nevertheless express the same meanings?

We will investigate this issue with respect to Fregean languages first. So let’s sup-
pose that {Li | i ∈ I } is the set of all relevant Fregean languages, where each Li has
Ci as its set of names and Pi as its set of predicate symbols.42 Suppose further that,
for distinct i and j , the sets Ci , C j ,Pi ,P j are pairwise disjoint.

The assumption that any two Fregean languages are intertranslatable is cashed out
formally as the existence of a system of dictionaries for (Li )i∈I , by which we mean a
family ϕ = (ϕ

j
i )i, j∈I , doubly indexed by I , of functions ϕ

j
i from Ci ∪ Pi to C j ∪ P j

with the following properties:

(a) ϕ
j
i maps Ci one-one onto C j and Pi one-one onto P j .

(b) If P ∈ Pi is n-ary, so is ϕ
j
i (P) ∈ P j .

(c) ϕi
i is the identity function on Ci ∪ Pi .

(d) ϕk
j ◦ ϕ

j
i = ϕk

i .

Clauses (a) and (b) ensure that names are translated as names, and n-ary predicates are
translated as n-ary predicates; moreover, by clause (a) each ϕ

j
i is a bijection. Clause

(c) means that a language is translated into itself by changing nothing. Clause (d)
formally captures the idea that, if we first look up the French translation of an English
expression in an English–French dictionary, and then look up the German translation
of that French expression in a French–German dictionary, we end up with the same
German expression as if we had looked up the German translation of the original
English expression in an English–German dictionary. Together with (a), clauses (c)
and (d) imply that ϕi

j is the inverse of ϕ
j
i .

Given any i ∈ I , c ∈ Ci , and P ∈ Pi , let [c] be {ϕ j
i (c) | j ∈ I }, and let [P] be

{ϕ j
i (P) | j ∈ I }. So [c] is the set consisting of c and all of its translations into some

L j , and similarly for [P]. We call [c] the translational equivalence class of c, and
similarly [P] the translational equivalence class of P .43 Note that, by condition (b),
all members of [P] have the same arity, which we will therefore also call the arity of
[P]. Let C be the set {[c] | c ∈ ⋃

i∈I Ci } and let P be the set {[P] | P ∈ ⋃
i∈I Pi }.

The existence of these translational equivalence classes, guaranteed by the systemof
dictionaries ϕ, now allows us to deparochialize our models (and hence our meanings),
that is, to make them independent of any particular language Li .

42 We can leave it open whether distinct Li have the same or distinct sets of variables, since we already
know that the choice of variables does not affect Fregean senses.
43 Here names c and d in

⋃
i∈I Ci are equivalent in the requisite sense just in case there are i, j ∈ I such

that ϕ j
i (c) = d, and similarly for predicate symbols.
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A schmodel S is a triple (S, (πS)π∈P, (γS)γ∈C), where S, the domain of S, is
a non-empty set, (πS)π∈P is a family of relations over S indexed by the set P of
translational equivalence classes of predicates such that, whenever π ∈ P is n-ary,
πS ⊆ Mn ; and (γS)γ∈C is a family of members of S indexed by the set C of trans-
lational equivalence classes of names. We refer to πS as the interpretation of π in
S, and to γS as the interpretation of γ in S. Where γ ∈ C, schmodels S and S′
are γ -variants, S ∼γ S′, just in case S and S′ are identical except possibly in their
interpretation of γ . For u ∈ S, Su

γ is the γ -variant of S that interprets γ as u.

Note that for each i ∈ I , a schmodel S = (S, (πS)π∈P, (γS)γ∈C) uniquely deter-
mines an Li -model Si = (Si , (PSi )P∈Pi , (c

Si )c∈Ci ), which we might call the i-th
projection ofS: Simply let Si = S, PSi = [P]S, and cSi = [c]S. Moreover, for each
i ∈ I , every Li -model M uniquely determines a schmodel SM of which it is the i-th
projection: IfM is (M, (PM)P∈Pi , (c

M)c∈Ci ), letSM be (M, (πSM
)π∈P, (γSM

)γ∈C),

where πSM
is PM for the unique P ∈ Pi for which π = [P], and γSM

is cM for the
unique c ∈ Ci for which γ = [c].44

We can easily formulate the Fregean semantics for each individual language Li in
terms of schmodels S = (S, (πS)π∈P, (γS)γ∈C): The schmeference �c�S of a name
c ∈ Ci relative to the schmodel S is the interpretation [c]S of [c] ∈ C in S (which
is also the interpretation of c in the i-th projection of S), and the schmeference �P�S

of a predicate P ∈ Pi relative to the schmodel S is the characteristic function of the
interpretation [P]S of [P] ∈ P in S (in other words, of the interpretation of P in the
i-th projection ofS). The schmeferences of ¬, ∧, and ∃ relative to schmodelS are, as
in the case of models, the truth functions H¬ and H∧ and the characteristic function
HM∃ , relative to the powerset of S, of the non-empty subsets of S.

The schmeferences relative to a schmodel of the Li -construction histories and the
Li -well-formed expressions can be defined essentially as for the original Fregean lan-
guageLF .45 Schmeferences relative toS are thus identical to the respective references
relative to the i-th projection ofS. Finally, the schmense of anLi -construction history
or an Li -well-formed expression is just the function that maps each schmodel to the
schmeference of the construction history or expression relative to that schmodel. Given
the one-one correspondence between schmodels andLi -models, as well as the identity
of schmeferences in schmodels and references in their i-th projections, we see that
it makes no difference to the logical relations between well-formed Li -expressions
whether we formulate their semantics in terms of models or in terms of schmodels.

However, the building blocks of the schmenses of each of the languages Li are
the schmodels, and schmodels are not, like models, language-dependent, for each
schmodel interprets not just a single language, but all of them simultaneously. Accord-
ingly, any two languages Li and L j express exactly the same schmenses. So the move

44 πSM
is well defined because whenever [P] = [Q] for P, Q ∈ Pi , we must have that Q = ϕ

j
i (P) for

some i, j ∈ I by definition of [P] and [Q], but then since Pi and P j are by assumption disjoint whenever

i �= j we must have i = j and hence Q = ϕii (P) = P . Similarly for γSM
.

45 For example, the schmeference �π�S of an Li -predicate π in a schmodel S can be defined as the set

{u ∈ S | for some S′ ∼[c] S, u = �c�S
′
and �πξ [c]�S′ = t}, where c is any name in Ci that doesn’t occur

in π .
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from models to schmodels completely eliminates any language-dependence of inter-
translatable families of Fregean languages.

Before we return to the Tarskian side of things, let us ask how ontologically pure
the schmenses are, that is, let us ask whether they are built out of material that is
intrinsically semantic. This is admittedly a somewhat vague question, but I am inclined
to think that the answer is yes. Themodels, building blocks of senses, contain functions
defined on names and predicates, which are syntactic items and as such extrinsic to
semantics. The schmodels, however, instead contain functions defined on translational
equivalence classes of names and of predicates, and translation is arguably a semantic
phenomenon—the translational equivalence classes simply encode an equivalence
in lexical meaning. One might worry that these translational equivalence classes are
themselves constructed out of bits of syntax in that they contain the names andpredicate
symbols of particular languages as elements. But this is really an artifact of the set-
theoretic machinery we’re deploying at the meta-level. Friends of Fregean abstraction
could simply replace these equivalence classes with the abstracts generated by the
following abstraction principle, where μ and ν range over

⋃
i∈I Ci ∪ ⋃

i∈I Pi :

@(μ) = @(ν) ↔ ∃i, j ∈ I : ϕ
j
i (μ) = ν.

There is then no obvious reason to think that these abstracts are literally constructed
out of names and predicate symbols. If this is correct, our schmenses are indeed made
exclusively of intrinsically semantic material.

What about Tarskian predicate logic? Clearly any representationalism that is due to
the dependence of Tarskian meanings onmodels (in that models contain interpretation
functions for names and predicate symbols) can be resolved along the lines we just
developed for Fregean predicate logic, that is, by replacing models with schmodels.
But there is an additional complication in the Tarskian case in that the meanings
are constructed not only out of models (which we might replace with schmodels)
but also out of variable assignments. The replacement of models by schmodels does
nothing to make Tarskian meanings independent of the choice of variables, so prima
facie Tarskian predicate logic seems to be stuck with both language dependence and
ontological impurity.

Perhaps that’s too quick. Let’s see whether we can, by pushing the techniques just
developed for the Fregean case, tame the variables as a specifically Tarskian source of
representationalism.

Since we already know how to eliminate any language-dependence that is due to
names or predicate symbols, we’ll stick throughout with the original, fixed sets C of
names and P of predicates. Suppose that for each i ∈ I , Vi is a countably infinite
set disjoint from C and from P , and that, for distinct i and j in I , Vi and Vj are
disjoint. For i ∈ I , let Li be the Tarskian language whose set of variables is Vi . Let
ϕ = (ϕ

j
i )i, j∈I be a family, doubly indexed by I , of bijections ϕ

j
i : Vi → Vj with the

following properties:

(a) ϕi
i is the identity function on Vi .

(b) ϕk
j ◦ ϕ

j
i = ϕk

i .

For later reference, let’s call such families systems of variable-set bijections.
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Systems of variable-set bijections are to variables what systems of dictionaries are
to names and predicate symbols. There is one intuitive difference, however, that will be
significant later: Names and predicate symbols correspond to the names and predicates
of natural languages, and real-life dictionaries provide translations for the names and
predicates of natural languages. They do not, of course, do this at random; which
Germanwords a dictionary pairs with which English words is empirically constrained:
Next to tablewe find Tisch, notFisch, because German speakers use the former, not the
latter, for the communicative purposes for which English speakers use table. There is,
therefore, some justification for assuming that for any two intertranslatable languages,
there is a unique, canonical dictionary covering their lexical expressions (here, names
and predicates), and this is an assumption we did indeed make when we showed how
to make Fregean meanings independent of particular languages.

The variables of our formal languages, however, presumably correspond to things
like traces, or indices on pronouns, in natural languages. These are invisible to the lex-
icographer in the field who composes dictionaries. Consequently there is no empirical
constraint on the English translation of the French trace f8; the English trace t3 is just
as eligible as t143. There simply isn’t a fact of the matter whether f8 translates as t3
or as t143.46 That is to say, even for intertranslatable languages, there is no canonical
translation of their respective traces and pronoun indices.47 We shall return to this
observation shortly.

For x ∈ Vi , let [x]ϕ be {ϕ j
i (x) | j ∈ I }, and let Vϕ be {[x]ϕ | x ∈ ⋃

i∈I Vi }. We’ll
call the members of Vϕ the ϕ-variables. Given a model M, a ϕ-variable assignment
is a mapping from Vϕ into the domain of M. Where x ∈ ⋃

i∈I Vi , we say that the
ϕ-variable assignments G and H are x-variants of each other, G ∼x H , if G and H
agree on all ϕ-variables except possibly [x]ϕ .

We can now assign ϕ-meanings to the well-formed formulas of each Li in pretty
much the same way we did in Sect. 1, except that we’ll use ϕ-variable assignments
instead of ordinary, language-specific variable assignments. So fix a model M and
let Gϕ be the set of all ϕ-variable assignments in M.48 The ϕ-meaning �P�ϕ of an
n-place predicate symbol P ∈ P is the constant function that maps each ϕ-variable
assignment to the characteristic function of the interpretation PM of P in M. The
ϕ-meaning �a�ϕ of a name a ∈ C is the constant function that maps each ϕ-variable
assignment to the interpretation aM of a inM. The ϕ-meaning �x�ϕ of an Li -variable
x is the function that maps each ϕ-variable assignmentG toG([x]ϕ). The ϕ-meanings
of ¬, ∧, and ∃ are the constant functions that map any ϕ-assignment to H¬, H∧ and
HM∃ , respectively. The ϕ-meanings of Li -formulas are defined as expected.49 As is

46 In fact, there is no way of knowing whether English and French have the same or distinct classes of
traces or, for that matter, whether distinct speakers of English employ the same or distinct classes of traces.
47 If you are tempted to think that there’s something canonical about translating each French trace fi as
the English trace ti , imagine a language whose traces τq are indexed not by the natural numbers but by, say,
the rationals. What is the natural number index on the English trace that τ3.853 canonically translates to?
48 To simplify exposition, we will for the time being ignore the necessity, discussed in §3, of making
Tarskian meanings dependent on models.
49 In particular, for the quantifier case, �∃xφ�ϕ is the function that maps any ϕ-variable assignment G to
�∃�ϕ(G)({u ∈ M | for some H ∼x G, u = �x�ϕ(H) and �φ�ϕ(H) = t}).
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easy to see, the same ϕ-meanings are expressible in Li and L j : For any Li -formula
φ, the ϕ-meaning it has in Li is expressed in L j by the L j -formula that arises from
φ if one replaces each variable occurring in φ by its ϕ

j
i -image. The ϕ-meanings are

thus independent of any particular language Li .
Alas, the ϕ-meanings are dependent on ϕ, the system of variable-set bijections—

change the system, and you change the meanings. And there is no canonical ϕ that
we could just fix on. But this arguably means we haven’t made any progress on the
language-independence front after all. For any particular ϕ, we’ve replaced the indi-
vidual languagesLi made up, inter alia, of the names in C, the predicates inP , and the
variables in Vi , by a new superlanguage Lϕ , made up of the names in C, the predicates
in P , and the ϕ-variables in Vϕ , and we’ve simply applied the old meaning construc-
tion to the superlanguage Lϕ . But given the existence of a multitude of systems of
variable-set bijections ϕ, we’re now looking at a multitude of superlanguages Lϕ with
different sets Vϕ of ϕ-variables, so that the meanings constructed for a superlanguage
Lϕ will be disjoint from the meanings constructed for a different superlanguage Lϕ′

.
The transcendency problem has caught up with us, one level up.

We can put the point more metaphysically as follows: As long as ϕ and ϕ′ are both
systems of variable-set bijections, the ϕ-meanings have as good a claim to being the
true Tarskian meanings as do the ϕ′-meanings; by the Principle of Sufficient Reason,
the ϕ-meanings are the true Tarskian meanings if and only if the ϕ′-meanings are.
Since they can’t both be the true meanings, neither of them is.50

As a last-ditch effort, we might propose to define the true Tarskian meanings—the
Meanings, let’s say—as functions mapping systems of variable-set bijections ϕ (and,
strictly speaking, models M) to the ϕ-meanings relative to M. Thus, for example,
the Meaning of the Li -formula ∃xφ would be the function that maps each system
of variable-set bijections ϕ (and each model M) to the function that maps any ϕ-
assignment G over M to the result of applying HM∃ to the set

{
u ∈ M | for some H ∼x G, u = �x�ϕ(H) and �φ�ϕ(H) = t

}
.

Since we’ve now abstracted from ϕ bymaking it an additional argument, theMeanings
are no longer dependent on the choice of a system of variable-set bijections.

Does this mean that we’ve banished the specter of representationalism from
Tarskian predicate logic? I think not. For one thing, the Meanings score no better
on ontological purity than the original Tarskian meanings, for they are built out of
variable-set bijections and thus, ultimately, out of bits of syntax (namely the variables
of all the Li ), which was deemed objectionable in our original Tarskian meanings.

Moreover, the Meanings are hard to justify intuitively as playing the role of mean-
ings. If meanings are creatures that enable us to identify the reference of an expression,
relative to some factual background, it seems plausible that meanings take models (or
schmodels) as arguments (as our original Fregean and Tarskian meanings do), since
models (or schmodels) formally represent factual backgrounds. Perhaps it is also
intuitively plausible to think that meanings take (“salient”) variable assignments as

50 See Benacerraf (1965) for another application of this principle.
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arguments (as our original Tarskian meanings do); such is, in any case, often assumed
without much argument.51 But why should meanings take a system of variable-set
bijections as argument? And which such system should the Meaning be applied to if
we want to find out what the reference of an expression is? I suspect that there are
no good answers to these questions. If this is correct, there is no way of delivering
Tarskian predicate logic from the evils of representationalism.

6 Conclusion

What have we accomplished? We’ve provided a compositional, non-representational
semantics for a Frege-style predicate logic that is immune to the antinomy of the
variable and that, while it eschews variable assignments as does e.g. Quine’s predicate–
functor logic, nevertheless retains the familiar quantifier–variable mechanism for the
expression of generality. This shows conclusively that the somewhat mysterious phe-
nomenon of variable “binding” is an artifact of a particularway of presentingfirst-order
logic—in Fregean predicate logic, there simply is no “binding” of items that previously
were “free”.

We also saw that the reason why Fregean predicate logic escapes the problems of
its Tarskian cousin is that it manages to get by without assigning lexical meanings to
variables. Why exactly does Tarski-style first-order logic, but not Fregean predicate
logic, invite the idea that variables havemeanings? The answer, I submit, has to dowith
the number of logical roles played by variables within the well-formed expressions
of the respective systems. In Fregean wfe’s, the variables perform a single function,
namely that of punctuating quantified sentences. This is clearly a role the variables play
in Tarskian predicate logic as well. But only bound occurrences of variables function
in this way, and since Tarskian predicate logic allows free occurrences of variables
in its well-formed expressions, it obviously countenances a second role for variables,
and this second role is essentially one of reference (the reference of a variable being
provided by an externally given variable assignment).

We thus have a case of overloading a single character here; within well-formed
expressions, the letter “x” sometimes functions like a name, and sometimes like a
punctuationmark. This is not in itself problematic—after all, the context alwaysmakes
clear which function is accorded to a variable occurrence—but it can become so if
the conceptual distinctions between the different roles are not clearly observed. As
Wittgenstein (1922) points out:

TLP 3.323: In the language of everyday life it very often happens that the same
word signifies in two different ways—and therefore belongs to two different
symbols (…)
TLP 3.324: Thus there easily arise the most fundamental confusions (of which
the whole of philosophy is full).

51 Usually one thinks more generally of contexts as constituting these additional arguments, but in simple
cases the context just reduces to a variable assignment.
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Fine’s antinomy of the variable is, I think, a case in point, even if its setting is not
the “language of everyday life” but a formal one: The existence of referential uses
of variables makes them seem very much like names, which invites the idea that
they should be treated as lexical items with full-fledged meanings. Indeed, against the
background of a variable assignment g, a variable x on its free occurrences really just
is a name, and its reference is its assigned value g(x). As such, x and y in general have
different references—to wit, g(x) and g(y)—and therefore they must have different
meanings.

Now because we use these same characters, which are meaningful when occurring
free, also within expressions of generality—such as (∃x) (x > 0) and (∃y) (y > 0)—
we are seduced into thinking that, when they occur in this role, they must still have
meaning. And since, within expressions of generality, one variable is essentially as
good as any other, we are further seduced into thinking that any two variables must
have the same meaning.

Fregean predicate logic completely avoids overloading one character with several
logical roles; or, to put it in Tractarian terms, it avoids using one sign within several
symbols. In particular, the variables are never anything but punctuation marks and are,
as such, devoid of lexical meaning. The availability of the Fregean approach therefore
enables us to realize, and thereby dissolve, this conceptual confusion engendered by
Tarskian syntax. To quote the Tractatus one last time:

TLP 3.325: In order to avoid these errors, we must employ a symbolism which
excludes them, by not applying the same sign in different symbols (…)

Given these advantages of the Fregean over the Tarskian approach, we have, I think,
given a definitive answer to the question whether variables in predicate logic, broadly
understood, carry meaning: They do not. Rather, their function is exhausted by pro-
viding punctuation in well-formed expressions in much the same way parentheses
do.

Finally, our results provide some perspective to the evaluation of the relative merits
of Frege’s and Tarski’s accomplishments in the foundations of quantification theory.
There is no doubt that, by modern standards, the details of the syntax developed by
Frege in Grundgesetze leave a lot to be desired, as Pickel (2010) correctly points out,
but in the light of our investigation it strikes me as going too far to claim that “what has
been heralded as Frege’s greatest innovation—his theory of iterated quantification—
was, in fact, unsatisfactory” (Pickel 2010, 272); the more so when it is contrasted with
Tarski’s achievement in the following way:

The Tarskianmethod for constructing sentences and its corresponding semantics
were genuine innovations. The development required a complete rethinking of
the semantic properties of sentences. In order to think about how one sentence
contributes to the semantic value of a sentence that contains it, Tarski was forced
out of thinking that the semantic contribution a sentence makes to a sentence that
contains it (even in an extensional context) is its truth-value. The fundamental
semantic property of a sentence, Tarski realized, is not that it has a certain
truth-value, but that it is satisfied by certain sequences. I will not here defend the
success of Tarski’s project. I want to note that it is different from and a significant
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improvement over Frege’s treatment of the semantics of quantification (Pickel
2010, 272).

Of course Frege held that the contribution a sentence φ makes to the truth value of a
sentence ψ(φ) that contains it is φ’s truth value—because it is. Frege’s great insight,
one that is easily lost sight of in the Tarskian framework, was that a quantified sentence
such as ∃x(Px ∧ Rax) does not contain a “sentence” (Px ∧ Rax) (which, in Fregean
syntax, isn’t even well-formed), but is rather composed of the predicate (Pξ ∧ Raξ),
the quantifier ∃, and punctuation x . . . x . . . x . . . Moreover, as the viability of the
Fregean framework for quantification theory shows, the satisfaction of a formula by
a variable assignment (or, alternatively, if the variables are indexed by the natural
numbers, by a sequence of objects) is not a fundamental semantic property, but rather
an artifact of doing predicate logic Tarski-style.52 I therefore see no basis for the
claim that Tarski’s approach to predicate logic constitutes “a significant improvement
over Frege’s treatment of quantification,” notwithstanding Tarski’s numerous and deep
contributions to logic otherwise.53
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