
Abstract Taking as its starting point significant similarities between a formal lan-
guage model—Grammar Systems—and a grammatical theory—Autolexical Syn-
tax—in this paper we suggest the application of the former to the topic of the latter.
To show the applicability of Grammar Systems Theory to grammatical description,
we introduce a formal-language-theoretic framework for the architecture of natural
language grammar: Linguistic Grammar Systems. We prove the adequacy of this
model by highlighting its features (modularity, parallelism, interaction) and by
showing the similarity between this framework and accepted and well-known
grammatical models (e.g. Autolexical Syntax).
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1 Introduction

It has been pointed out by several authors (cf. Sadock 1991; Jackendoff 1997) that much
of the linguistic research of the second half of the 20th century was carried out following
goals, assumptions and methodological tools introduced in the late 1950s which have
subsequently revealed themselves to be neither well-founded nor necessary. Some
examples of those ideas that have guided a large part of linguistic studies are:

– Syntactocentrism: ‘The fundamental generative component of the computational
system is the syntactic component; the phonological and the semantic components
are ‘interpretative’’ (Jackendoff 1997, p. 15);
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– Hierarchicality: ‘The organizational dimensions of language are ‘levels’ obtainable
from one another in a certain fixed order, depriving them of any genuine autonomy’
(Sadock 1991, p. 5);

– Derivationalism: ‘The computational system takes representations of a given form
and modifies them. That is, the computational system performs derivations, rather
than, for example, imposing multiple simultaneous constraints’ (Jackendoff 1997,
p. 12). ‘Grammars make use of rules that apply to full representations of expres-
sions and produce from them distinct representations’ (J.M. Sadock, unpublished);

– Substitution as the only operation: ‘The fundamental operation of the computa-
tional system is the substitution of one string or structural complex for another in a
phrase marker’ (Jackendoff 1997, p. 13);

– Non-redundancy: ‘A working hypothesis in generative grammar has been that the
language faculty is nonredundant, in that particular phenomena are not ‘overde-
termined’ by principles of language’ (Jackendoff 1997, p. 14).

Many of the above assumptions have been abandoned by grammatical theories
not directly linked to the generativist tradition such as GPSG (Gazdar, Klein,
Pullum & Sag 1985), Montague grammar (Partee 1976), categorial grammar
(Buszkowski, Marciszewski & van Benthen 1988), HPSG (Pollard and Sag 1994),
LFG (Bresnan 2001), word grammar (Hudson 1984), role and reference grammar
(Van Valin 1993), autolexical syntax (Sadock 1991), and Jackendoff’s model
(Jackendoff 1997). In this paper, we use autolexical syntax to show how grammar
systems are suitable for natural language description.

By comparing autolexical syntax with grammar systems theory and by pointing
out the great deal of similarity between these two theories, we suggest that grammar
systems may offer a formal framework for natural language grammar. We introduce
Linguistic Grammar Systems as a formal-language-theoretic grammatical model. We
show that both autolexical syntax and grammar systems give good results in their
respective disciplines thanks to the same concrete features, namely:

– Modularity. According to Harnish and Farmer (1984, p. 257), a system can be
modular in at least two ways:

1. A system is externally modular when it operates only on a specific domain of
information, and has principles of operation that do not reach outside that
system, even though useful information must be available there;

2. a system is internally modular when it is analyzable into distinct, but interacting
subsystems.

According to Chomsky (1984, p. 17), there is internal modularity whenever there are
sub- systems with their own quite specific properties that interact in highly deter-
mined ways. Here, by modularity we mean the coexistence in a system of autono-
mous components. A system is thus considered to be modular if it is made up of
several independent (but interacting) components each of which has its own
alphabet, rules, etc.

– Distribution and cooperation. The terms distribution and cooperation will be used
whenever a complex task is distributed among a set of ‘modules or processors’ that
work together in a well defined way. According to Csuhaj-Varjú, Dassow,
Kelemen and Păun (1994), in the early 1980s the study of distributed systems of
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cooperating agents in artificial intelligence was characterized by Davis (1980) as
‘. . . concerned with those problems for which a single problem solver, single
machine, or single locus of computation seems inappropriate’. The preferred
methodology was formulated as a ‘turn to the use of multiple, distinct problem-
solvers each embodied in its own system’. An overall view of the present-day
concepts of such types of systems is presented in Werner (1989). From his defi-
nition of social goals which are achievable by distributed and cooperating systems
of agents, but are not achievable by any single agent, it follows that distributed
and cooperative systems can be considered as closely related to the complex
systems characterized by Simon (1982) as ‘made up of a large number of parts that
interact in a nonsimple way. In such systems the whole is more than the sum of the
parts, not in an ultimate, metaphysical sense but in the important pragmatic sense
that, given the properties of the parts and the laws of their interaction, it is not a
trivial matter to infer the properties of the whole’.

– Parallelism and interaction. In a system of autonomous components, there is
parallelism if every component of the system works simultaneously, in parallel. We
understand parallel models as opposed to serial, sequential or hierarchical models
where different representations are seen as levels obtainable from one another in a
certain fixed order. Representations of a high-level component are thus passed to a
lower-level component that modifies them and passes the resulting representation
on to a lower component, or what amounts to the same, the task of one component
of the system must be over before the task of another component begins. In
contrast, in a parallel and interactive model, components can perform their tasks
without being constrained by a serial and hierarchical structure.

As will be shown in this paper, it is possible to establish an analogy between
elements and function in autolexical syntax and in grammar systems. Taking this into
account, the main thesis of this paper is: Autolexical syntax is considered to be a
good grammatical theory; grammar systems and autolexical syntax present similar
traits and a coincident way of functioning; thus, grammar systems may offer a for-
mal-languages approach to linguistic issues. Note that our main goal is to show the
applicability of grammar systems—a theory widely investigated from the formal
point of view but whose possible applications have been scarcely considered—rather
than going into the concrete linguistic content of the modules that make up the
model proposed.

Formal language theory was conceived in 1950s as a tool for modelling and
investigating the syntax of natural languages. After 1964 it rapidly became a theory
for studying formal systems irrespectively of possible applications. Our approach is
directly the opposite: we start with a new branch of formal language theory, namely
grammar systems which was conceived as a purely theoretical model, and then show
how it could be applied.

The paper is organized into seven sections. Section 2 offers some formal language
prerequisites. Sections 3 and 4 introduce grammar systems and autolexical syntax,
respectively. In Section 5, a comparison is made between those two theories. Section
6 presents Linguistic Grammar Systems as a formal-language-theoretic model for
grammatical theory. Our conclusions are outlined in Section 7.
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2 Formal language prerequisites

Throughout the paper, we assume that the reader is familiar with the basics of
Formal Language Theory. In this section, we give some of the formal prerequisites
that are needed in order to understand the formalization presented in this work. For
further information on the theory of formal languages see Salomaa (1973) and
Rozenberg and Salomaa (1997).

A set is a collection of elements taken from some pre-specified universe. A set is
finite if it contains a finite number of elements, and otherwise it is infinite. A sequence
of elements, from some universe, is a list of elements possibly, but not necessarily,
with repetitions. Because the list is ordered by position, the elements are referred to
as the first, second and ith.

A finite, nonempty set V of symbols or letters is called an alphabet. A word or a
string over an alphabet V is a finite sequence of symbols from V . The empty word is
denoted by k and is the empty sequence of symbols. For an alphabet V ; we denote by
V � the free monoid generated by V under the operation of concatenation, i.e. the set
of all words over V . V þ denotes the set of all nonempty strings over V . The length of
a string x 2 V � (the number of symbol occurrences in x) is denoted by jxj. The
number of occurrences in x 2 V � of symbols U � V is denoted by jxjU .

Given two words x and y over V , their catenation is xy. kx ¼ xk ¼ x, for all x in V �.
For two words x and y over V , x is a prefix of y if y ¼ xz, for some z in V �. x ¼ y if x

is a prefix of y and jxj ¼ jyj. x is a proper prefix of y if it is a prefix, x 6¼ y, and y 6¼ k. A
suffix and proper suffix are defined similarly. x is said to be a subword of y if y ¼ wxz,
for some w and z in V �. x is a proper subword if x 6¼ y and x 6¼ k.

Let R and D be alphabets. Then a mapping h : R� ! D� is said to be a morphism if
hðkÞ ¼ k and hða1 . . . anÞ ¼ hða1Þhða2Þ . . . hðanÞ, for all a1 . . . an in R. A morphism is
also known as a homomorphism.

A natural generalization of the replacement of symbols by words as found in
morphisms is the replacement of symbols by sets of words, i.e. substitution. Let L be
a family of languages and R and D be two alphabets. Then a mapping r : R� ! 2D� is
said to be a substitution if rðkÞ ¼ fkg and rða1 . . . anÞ ¼ rða1Þ . . . rðanÞ, for all a1 . . . an

in R. If additionally, for all a in R, rðaÞ is in L, then we say that r is an L substitution.
Given an alphabet V , a language L over V is a subset of V �. Since languages are

sets, the Boolean operations of union, intersection and complement are applicable
and defined in the usual way. Given two languages L1 and L2, possibly over different
alphabets, the catenation of L1 and L2 is denoted L1L2 and equals the set
fx1x2 j x1 in L1 and x2 in L2g.

A Chomsky grammar is a quadruple G ¼ ðN ; T ; P ; SÞ where N is the nonterminal
alphabet, T is the terminal alphabet, S 2 N is the axiom (start symbol) and P is the
set of rewriting rules (or productions), written as x! y. A grammar is context-
sensitive when its rules are of the form x1Ax2 ! x1wx2, x1, x2, where w is strings over
VG, A 2 N , w 6¼ k. A grammar is context-free when all its rules are of the form A! x,
where A 2 N , x 2 V �G . A grammar is called regular when it contains only rules of the
form A! a, A! aB, a 2 T , A;B 2 N .

A direct derivation in G is denoted by ¼) (by ¼)G when we need this infor-
mation). The transitive (reflexive) closure of the relation ¼) is denoted by ¼)þ
(¼)�).

The language generated by G, denoted by LðGÞ, is LðGÞ ¼ fw j S ¼)�G w;w 2 T �g.
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We denote by RE, CS, CF, LIN, REG the classes of unrestricted, context-sen-
sitive, context-free, linear and regular grammars, respectively.

A rewriting system G ¼ ðV ;w; PÞ where V is an alphabet, w 2 V þ is an axiom and
P is a finite set of rewriting rules A! v, with A 2 V , v 2 V � is called a pure context-
free grammar. Rules of G are applied in derivations as follows: for two strings
x; y 2 V �, we say that x directly derives y in G, written as x ¼) y iff x ¼ x1ax2,
y ¼ x1vx2, x1; x2 2 V �, and a! v 2 P . The generated language is defined by
LðGÞ ¼ fx 2 V � j w ¼)� xg.

3 Grammar systems

Grammar systems theory is a branch of the field of formal languages that provides
syntactic models for describing multi-agent systems at a symbolic level using tools
from formal grammars and languages. The theory was launched in 1988 (Csuhaj-
Varjú and Dassow 1990), when Cooperating Distributed Grammar Systems were
proposed as a syntactic model of the blackboard architecture of problem solving (cf.
Nii 1989). One year later, Parallel Communicating Grammar Systems—very much
inspired by the ‘classroom model’ of problem solving—were introduced as a gram-
matical model of parallelism (Păun and Sântean 1989). Since 1988, the theory has
developed in several directions related to several scientific areas. Distributed and
decentralized artificial intelligence (Durfee, Lesser & Corkill 1989; Bond and Gasser
1988; Demazeau & Muller 1990), artificial life (Langton 1989; Păun 1995a), molec-
ular computing (Păun 1998), robotics, natural language processing, ecology, sociol-
ogy, etc. have suggested some modifications to the basic model and have given rise to
different variants and subfields of the theory (cf. Dassow, Păun & Rozenberg 1997).

Easy generation of noncontext-free structures using context-free rules, modu-
larity, parallelism, interaction, distribution, and cooperation are just some of the
advantages that grammar systems have over classical models, and mean that this
theory could be applied to several fields.

But, what is a grammar system? Roughly speaking, a grammar system is a set of
grammars working together, according to a specified protocol, to generate a lan-
guage. Note that while in classical formal language theory one grammar (or
automaton) works individually to generate (or recognize) one language, here we
have several grammars working together in order to produce one language.

There are two basic classes of grammar systems:

1. Cooperating Distributed Grammar Systems (CDGS) which work in a sequential
way.

2. Parallel Communicating Grammar Systems (PCGS) which function in parallel.

A CDGS consists of a finite set of generative grammars that cooperate in the
derivation of a common language. Component grammars generate the string in turns
(thus, sequentially), under some cooperation protocol. This system works as follows.
Initially, the axiom is the common sentential form. At each moment in time, one
grammar (and only one) is active, that is, it rewrites the common string, while the
rest of the grammars in the system are inactive. Conditions under which a compo-
nent can start/stop its activity on the common sentential form are specified by a
cooperation protocol. Terminal strings generated in this way form the language of
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the system. The basic model of CDGS presents sequentiality in its work and
homogeneity in the cooperation protocol; however, variants have been introduced
that have some parallelism in their function (teams) and that change the initial
homogeneity into heterogeneity of modes of cooperation (hybrid systems). The basic
model has been extended, also, by the addition of ‘extra’ control mechanisms. For
information about all these variants see Csuhaj-Varjú, Dassow, Kelemen & Păun
(1994); Dassow, Păun & Rozenberg (1997). Formally:

Definition 1 A CDGS of degree n, n � 1, is a construct:

C ¼ ðN ; T ; S;G1; . . . ;GnÞ;

where:

– N , T are disjoint alphabets;
– S 2 N is the axiom;
– Gi ¼ ðN ; T ; PiÞ, 1 � i � n, the so-called components of the system C, are usual

Chomsky grammars without axiom where:

� N is the nonterminal alphabet;
� T is the terminal alphabet;
� Pi is a finite set of rewriting rules over N [ T .

Definition 2 Let C be a CDGS as defined above. Let x; y 2 ðN [ T Þ�. Then, we write
x ¼)k

Gi
y, for 1 � i � n, iff there are words x1; x2; . . . ; xkþ1 such that:

(i) x ¼ x1, y ¼ xkþ1;
(ii) xj ¼)Gi xjþ1, i.e. xj ¼ x0jAjx00j , xjþ1 ¼ x0jwjx00j , Aj ! wj 2 Pi, 1 � j � k.

Moreover, we write:

x ¼)�k
Gi

y iff x ¼)k0
Gi

y, for some k0 � k;

x ¼)�k
Gi

y iff x ¼)k0
Gi

y, for some k0 � k;

x ¼)�Gi
y iff x ¼)k

Gi
y, for some k;

x ¼)t
Gi

y iff x ¼)�Gi
y, and there is no z 6¼ y with y ¼)�Gi

z.

Any derivation x ¼)k
Gi

y corresponds to k direct derivation steps in succession by
grammar Gi. � k-derivation mode corresponds to a time limitation, since the agent
can perform at most k derivation steps. � k-derivation mode represents competence,
since it requires the agent to perform at least k derivation steps. �-mode denotes an
arbitrary derivation: the agent can work on the sentential string as long as it wants to.
And finally, t-mode stands for a terminal derivation, where the agent must perform
derivation steps for as long as it can.

Definition 3 Let C be a CDGS, and denote D ¼ f�; tg [ fk;� k;� k j k � 1g. The
language generated by the system C in the derivation mode f 2 D is:

Lf ðCÞ ¼ fw 2 T � j S ¼)f
Pi1

w1 ¼)f
Pi2

. . . ¼)f
Pim

wm ¼ w;m � 1; 1 � ij � n; 1 � j � mg:

For formal results on this type of grammar systems, see Csuhaj-Varjú, Dassow,
Kelemen & Păun (1994, pp. 36–72); Dassow, Păun & Rozenberg (1997, p. 162).
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A PCGS consists of several usual grammars, each with its own sentential form. In
each time unit (a common clock divides the time into units in a uniform way for all
the components) each component uses a rule which rewrites the associated sen-
tential form. Cooperation among agents takes place thanks to the so-called query
symbols that permit communication among components. When a component
introduces a query symbol for another component, the latter sends its current sen-
tential form to the former, which replaces the query symbol with the string received.
One component is identified as the master, and the language generated by it (with or
without communication) is the language of the system. Formally:

Definition 4 A PCGS of degree n, n � 1, is a construct:

C ¼ ðN ;K; T ;G1; . . . ;GnÞ;

where:

– N ; T ;K are mutually disjoint alphabets;
– K ¼ fQ1;Q2; . . . ;Qng are called query symbols and they are associated in a one-

to-one manner to components G1; . . . ;Gn;
– VC ¼ N [ K [ T ;
– Gi ¼ ðN [ K; T ; Pi; SiÞ, 1 � i � n, the so-called components of the system, are usual

Chomsky grammars where:

� N is the nonterminal alphabet;
� K ¼ fQ1;Q2; . . . ;Qng is the set of query symbols;
� T is the terminal alphabet;
� Pi is a finite set of rewriting rules over N [ K [ T , for 1 � i � n;
� Si 2 N is the axiom, for 1 � i � n.

Definition 5 Given a PCGS C ¼ ðN ;K; T ;G1; . . . ;GnÞ as above, for two n-tuples
ðx1; x2; . . . ; xnÞ, ðy1; y2; . . . ; ynÞ, xi; yi 2 V �C , 1 � i � n, we write ðx1; . . . ; xnÞ ¼)
ðy1; . . . ; ynÞ if one of the next two cases holds:

(i) jxijK ¼ 0, 1 � i � n, and for each i, 1 � i � n, we have xi ¼) yi in grammar Gi, or
xi 2 T � and xi ¼ yi;

(ii) there is i, 1 � i � n, such that jxijK > 0; then, for each such i, we write
xi ¼ z1Qi1 z2Qi2 . . . ztQit ztþ1, t � 1, for zj 2 V �C , jzjjK ¼ 0, 1 � j � t þ 1; if jxij jK ¼ 0,
1 � j � t, then yi ¼ z1xi1 z2xi2 . . . ztxit ztþ1 [and yij ¼ Sij , 1 � j � t]; when, for some
j, 1 � j � t, jxij jK 6¼ 0, then yi ¼ xi; for all i, 1 � i � n, for which yi is not specified
above, we have yi ¼ xi.

Note that rules Qi ! x, 1 � i � n, are never used, hence we shall assume that such
rules do not appear.

We have denoted in the same way, by ¼), both the component-wise derivation
steps and the communication steps. As usual, by ¼)� we denote the reflexive
transitive closure of this relation, that is, the sequences of intercalated derivations
and communication steps.

The work of a PCGS is blocked when:

1. a component xi of the current n-tuple ðx1; . . . ; xnÞ is not terminal with respect to Gi,
but no rule of Gi can be applied to xi (this can happen both due to rules in Pi and to
communication);
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2. a circular query appears: if Gi1 introduces Qi2 , Gi2 introduces Qi3 and so on, until
Gik�1

, which introduces Qik , and Gik , which introduces Qi1 , then no derivation is
possible (communication has priority), but no communication (in this cycle) is
possible (only strings without query symbols occurrences are communicated).

Definition 6 The language generated by a PCGS C as above is:

LðCÞ ¼ fx 2 T � j ðS1; S2; . . . ; SnÞ ¼)� ðx; a2; . . . ; anÞ; ai 2 V �C ; 2 � i � ng:

So, we start from the n-tuple of axioms ðS1; . . . ; SnÞ and proceed by repeated
rewriting and communication steps, until component G1 produces a terminal string.
Note that in LðCÞ we retain the strings generated in this way on the first component,
without caring about strings generated by G2; . . . ;Gn. Component G1 is called the
master of the system.

The PCGSs we have presented in the above definitions are systems without any
restrictions on the use of query symbols, that is, each component Gi is allowed to
introduce a symbol Qj (obviously, when Gi introduces the symbol Qi, the derivation
is blocked by query circularity). Now,

Definition 7 Let C ¼ ðN ;K; T ;G1; . . . ;GnÞ be a PCGS. If only G1 is allowed to
introduce query symbols (formally, Pi � ðN [ T Þ� � ðN [ T Þ�, for 2 � i � n), then we
say that C is a centralized PCGS; in contrast, the unrestricted case is called non-
centralized.

Definition 8 A PCGS C ¼ ðN ;K; T ;G1; . . . ;GnÞ is said to be returning (to axiom) if,
after communicating, each component whose string has been sent to another com-
ponent returns to axiom. A PCGS is non-returning if in point (ii) of Definition 5, the
words in brackets, ½yij ¼ Sij ; 1 � j � t�, are erased. That is, after communicating, the
grammar Gij does not return to Sij , its axiom, but continues processing the current
string.

In PCGS, we also find variants of the basic model. Modifications in the type of
components or in the way strings are communicated produce several new types of
PCGS (cf. Dassow, Păun & Rozenberg 1997). Since they will be used in the defi-
nition of Linguistic Grammar Systems, we refer here to two variants of PCGS: the
so-called PCGS with communication by command and PCGS with renaming. For
formal results on PCGS see Csuhaj-Varjú, Dassow, Kelemen & Păun (1994, pp. 158–
176); Dassow, Păun & Rozenberg (1997, pp. 180–186).

PCGSs with communication by command (CCPC) were introduced in Csuhaj-
Varjú, Kelemen & Păun (1996). This type of PCGS was inspired by the data flow of
WAVE-like architectures of highly parallel processors, by connection machines, by
Boltzmann machines and by other parallel devices. In contrast to the PCGS pre-
sented above (where communication is done by request) in this new variant of PCGS
communication is done by command. This means that when a string derived in a
component of the system matches the pattern associated with another component, it
is sent to this latter component. So, we do not need a query symbol in the sentential
form of a component to get a string of another component. In this case, each
component sends its sentential form whenever its string matches the language
selector of another component of the system. A CCPC works in very much the same
way as a usual PCGS functions. We start with an initial configuration where each
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component has its own start symbol, and proceed with a sequence of alternating
rewriting and communication steps. As already mentioned, a sentential form can be
communicated only if it matches the language selector associated with the addressee
component. After communication, the component can either return to its axiom or
continue with its current string. As with the usual PCGS, communication has priority
over rewriting. And, as expected, the language of the system is the language gen-
erated by the component designated as the master. Formally:

Definition 9 A PCGS with communication by command (CCPC) is a construct:

C ¼ ðN ; T ; ðS1; P1;R1Þ; . . . ; ðSn; Pn;RnÞÞ; n � 1;

where:

– N and T are disjoint sets;
– N is the nonterminal alphabet;
– T is the terminal alphabet;
– ðSi; Pi;RiÞ, 1 � i � n, are the components of the system, where:

� Si 2 N is the axiom;
� Pi is the set of rewriting rules over N [ T ;
� Ri � ðN [ T Þ� is the selector language of the component i (Ri will be either

specified as a regular set or by a pattern1Þ:

Let us now look at how a CCPC functions. We start from an initial configuration
ðS1; . . . ; SnÞ. At any step, the state of the process will be described by an n-tuple
ðx1; . . . ; xnÞ of strings over N [ T . The system will modify the current configuration
either:

1. By rewriting steps. A rewriting step will be performed component-wise. There are
two main possibilities:

(a) Each component has to use a rule, rewriting its current sentential form, except
those components whose string is terminal which are allowed to do nothing.
This can be considered as a minimal derivation strategy: one rewrites exactly
until a target language is matched, or

(b) Each component has to perform a maximal derivation step, i.e. the rewriting
step is accomplished when no further rewriting is possible on the sentential
form of that component.

In both cases, at the end of the step, one checks whether or not a communication
step can be performed. That is, one checks if currently generated strings match

1 Having an alphabet A of constants and an alphabet V of variables, a pattern is a string over A [ V .
For a pattern p over A and V , the language associated with p, denoted by LAðpÞ, consists of all the

strings obtained from p by consistently replacing the variable occurrences with nonempty strings
over A (‘consistently’ means that all the occurrences of the same variable are replaced by the same
string).

For example, if A ¼ fa; bg and V ¼ fX1;X2g, then p ¼ aaX1X1bX2bb is a pattern. It defines the set
of all the strings over A starting with two occurrences of a, continuing with a replication of any string
over A, one occurrence of b, any string over A, and ending with a double occurrence of b. Therefore,
x ¼ aaðabbÞðabbÞbðbabÞbb has the form specified by this pattern, while y ¼ aaabbababbabbb does not.
So, we have LAðpÞ ¼ faawwbzbb j w; z 2 fa; bgþg.).

A grammar systems approach to natural language grammar 427

123



selector languages Ri. In the second case, a communication step must be performed,
otherwise the system cannot perform another derivation step. In the first case, if no
communication is to be performed, another rewriting step can be done.

In between those two cases we may also consider different derivation modes as k,
� k, � k steps, like in CDGS.

2. Or by communication steps. In order to define a communication step we have to
specify rules for:

– Defining the string to be communicated. This problem has at least two solu-
tions:

(a) Communication without splitting. In this case only complete current sen-
tential forms are considered as messages. If xi 2 Rj, then xi as a whole is
transmitted to the component j;

(b) Communication with splitting. In this case, for every decomposition
xi ¼ xi;1xi;2 . . . xi;k , k � 1, such that xi;j 2 Rsj , for some 1 � sj � n, 1 � j � k,
component i will produce the messages xi;1; xi;2; . . . ; xi;k which will be
transmitted to the matching components s1; s2; . . . ; sk .

– Solving the conflicts at target components. This problem can have several
solutions. Basically, the received messages can be:

(a) Adjoined to the current string of the addressee, or
(b) They can replace the string of the addressee.

In both cases we can consider that:

(a) Only one of the received messages is taken into account. Once again we
have two possibilities:
(i) Either we choose nondeterministically one message, or
(ii) We consider a priority relation, for instance, defined by the natural

ordering of the component sending messages.
(b) Or all the received messages concatenated in a specified order.

– Defining the next string for components that have transmitted messages. As in
the case of normal PCGS, a component that has submitted its string to another
component, without receiving new strings, can:
(a) Either return to its axiom, or
(b) Continue to process its current string.

Definition 10 Let C ¼ ðN ; T ; ðS1; P1;R1Þ; . . . ; ðSn; Pn;RnÞÞ; n � 1 be a CCPC working
with maximal derivations as rewriting steps, communicating without splitting the
strings, replacing the strings of the target component by a concatenation of the
received messages, in the order of the system components, and returning to axioms
after communication. For such system we define a rewriting step by
ðx1; . . . ; xnÞ ¼) ðy1; . . . ; ynÞ iff:

xi ¼)� yi in Pi and there is no zi 2 ðN [ T Þ� such that
yi ¼) zi in Pi ðif xi 2 T �; then yi ¼ xi; otherwise xi ¼)þ yiÞ.

A communication step denoted by ðx1; . . . ; xnÞ ‘ ðy1; . . . ; ynÞ is defined as follows.
Let:
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diðxi; jÞ ¼
k; if xi 62 Rj or i ¼ j,
xi; if xi 2 Rj and i 6¼ j

�

for 1 � i; j � n,

DðjÞ ¼ dðx1; jÞdðx2; jÞ . . . dðxn; jÞ

for 1 � j � n (this is the ‘total message’ to be received by the jth component), and:

dðiÞ ¼ dðxi; 1Þdðxi; 2Þ . . . dðxi; nÞ

for 1 � i � n (this is the ‘total message’ sent by the ith component, a power of xi

indicating to how many targets the ith component sends a message). Then for
1 � i � n, we define:

yi ¼
DðiÞ; if Di 6¼ k;

xi; if Di ¼ k and dðiÞ ¼ k;
Si if DðiÞ ¼ k and dðiÞ 6¼ k:

8<
:

In words, yi is either the concatenation of the received messages, if any exists, or it
is the previous string, when this component is not involved in communications, or it
is equal to Si, if this component sends messages but it does not receive them. Note
that a component cannot send messages to itself.

The language thus generated by the CCPC can be defined in the two following
ways:

1. As the set of all the terminal strings generated by a designated component of the
system, its master (as in usual PCGS where the first component is designated, by
convention, as being the master),

2. Or as the set of all the terminal strings generated by any component of the system.

In the formalization presented here, we consider the first case, that is, when the
language of the system is the one generated by the first component (the master).

Definition 11 Let C ¼ ðN ; T ; ðS1; P1;R1Þ; . . . ; ðSn; Pn;RnÞÞ, n � 1 be a CCPC as above;
then the language generated by C is defined as follows:

LðCÞ ¼ fw 2 T � j ðS1; . . . ; SnÞ ¼) ðxð1Þ1 ; . . . ; xð1Þn Þ ‘ ðy
ð1Þ
1 ; . . . ; yð1Þn Þ ¼) ðxð2Þ1 ; . . . ; xð2Þn Þ

‘ ðyð2Þ1 ; . . . ; yð2Þn Þ ¼) . . . ¼) ðxðsÞ1 ; . . . ; xðsÞn Þ; for some s � 1 such that w ¼ xðsÞ1 g
For formal results on CCPC see Dassow, Păun & Rozenberg (1997, p. 192).
PCGS with renaming appeared in 1996 and was aimed at solving some problems

in the generation of specific noncontext-free structures present in natural languages
(Păun 1996a). Consider the following three languages:

L1 ¼ fxx j x 2 fa; bg�g;

L2 ¼ fanbncn j n � 1g;

L3 ¼ fanbmcndm j n � 1g:
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All three can be generated using PCGS with context-free components; L1 and L2

can be generated even with right-linear systems; and a small number of components
suffices for their generation (for formal details cf. Csuhaj-Varjú, Dassow, Kelemen
& Păun 1994; Păun 1995b and Chitu̧ 1997).

If we now compare:

L3 ¼ fanbmcndm j n;m � 1g;
L03 ¼ fanbmanbm j n;m � 1g;

we will see that L3 is difficult to generate (PCGSs that generate it are complex and
have an intricate work) whereas L03 is easy to generate (cf. Păun 1995b). Clearly, the
difficulty of L3 rests on the correlation of an with cn and bm with dm where a 6¼ c and
b 6¼ d while in L03 letters that are correlated (a with a, and b with b) are the same. This
fact suggested the variant of PCGS with renaming. Formally:

Definition 12 A PCGS with renaming is a construct:

C ¼ ðN ;K; T ;G1; . . . ;Gn; h1; . . . ; hmÞ;

where:

– N ; T ;K are mutually disjoint alphabets;
– K ¼ fQ1;Q2; . . . ;Qng are called query symbols and they are associated in a one-

to-one manner to the components G1; . . . ;Gn;
– VC ¼ N [ K [ T ;
– Gi ¼ ðN [ K; T ; Si; PiÞ, 1 � i � n, the so-called components of the system, are usual

Chomsky grammars where:

� N is the non-terminal alphabet;
� K ¼ fQ1;Q2; . . . ;Qng is the set of query symbols;
� T is the terminal alphabet;
� Si 2 N is the axiom, for 1 � i � n;
� Pi is a finite set of rewriting rules over N [ T [ K [ K 0, for 1 � i � n, where

K 0 ¼ f½hj;Qi� j 1 � i � n; 1 � j � mg and each ½hj;Qi� is a symbol.

– hj : ðN [ T Þ� ! ðN [ T Þ�, 1 � j � m, are weak codes such that:

(i) hjðAÞ ¼ A, for A 2 N ;
(ii) hjðaÞ 2 T [ fkg, for a 2 T .

A PCGS with renaming works in the same way as a usual PCGS with only one
difference: whenever a ½hj;Qi� symbol appears in the sentential form of any of the
components of the system, it must be replaced not by wi, but by hjðwiÞ. The language
generated by a PCGS with renaming is, as in the case of the usual PCGS defined
above, the language of the ‘master’.

4 Autolexical syntax

Autolexical syntax (AS), which was conceived in 1985 in the United States within
the field of linguistics, represents a radical departure from the approaches used to
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model grammar dominant in 1980s. It is defined as a variety of nontransformational
generative grammar in which autonomous systems of rules characterize the various
dimensions of the linguistic representation. In this section, we give a brief outline of
this theory in order to compare it with grammar systems and thus highlight the
similarities between these two frameworks that were conceived of at the same time
but in two different research fields and in very distant places. For more information
about autolexical syntax, see Sadock (1985), Sadock (1991) and Schiller, Steinberg &
Need (1995).

Conceived as a theory of parallel grammatical representations, the crucial
assumption of AS is that components are independent mini-grammars each con-
taining information relating to a single aspect of grammar, and that they are related
to one another only by an interface system. This means that fully autonomous
systems of rules characterize the various dimensions of linguistic representation.
Each component is a self-contained system, with its own independent set of rules,
principles and basic vocabulary. The number of components of such a construct is a
matter of debate, but, as shown in Fig. 1, most studies have considered at least three
modules:

– Syntax, which specifies the phrasal constituent structures allowed by the language;
– Semantics, which provides representations of natural language expressions in

terms of logical relations;
– Morphology, which makes explicit the structure of all and only the grammatical

word-forms in the language.

Unlike what is assumed in other linguistic theories, modules are not hierarchically
related to one another. A module does not have to wait for the output of another to
carry out its task, but has the power to generate an infinite set of representations
quite independently of what is going on in any of the other components.

In order for an expression to count as fully well-formed, it must satisfy the inde-
pendent requirements of each of the modules, so that we can say that each module
acts as a filter on all the others. An expression that is syntactically well-formed may
thus not qualify as a sentence either because it does not have a well-formed semantic
parsing, or because there is no morphologically correct clustering of morphemes to it,
or for both reasons. However, when an expression is well-formed with respect to each

Fig. 1 Autolexical syntax
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dimension, it may still not be qualified as grammatical, if it does not pass the prin-
ciples relating representations contained in the fourth element shown in Fig. 1:
Interface. It can be considered as an overarching control center which checks whether
the members of a set of parsings from the individual components fit one another and
count as parsings of the same total expression. It thus coordinates the various rep-
resentations produced by the autonomous modules in order to form a grammatical
expression of language. It contains three basic elements:

1. Lexicon, which contains the basic vocabulary for each of the modules, as well as
information on the structural properties of each lexical item with respect to the
various autonomous components.

2. Paradigmatic Constraints, which capture important correspondences operating
across modules. A variety of intermodular correspondence is the existence of
some interpredictability between semantics and syntax, morphology and syntax,
and semantics and morphology.

3. Syntagmatic Constraints, which constrain mismatches between simultaneous
positions of a lexeme in representations from two modules. The degree of
allowable mismatch between the simultaneous positions of a lexeme in repre-
sentations from two modules is by no means unlimited. There are very powerful
principles that operate to constrain such mismatches (cf. Sadock 1991, p. 43).

The output of an autolexical grammar is a set of triples like the following:
frsyn; rsem; rmorg. Each triple corresponds to an expression of language to which
grammar ascribes syntactic, semantic, and morphological parsings. In order for a set
of triples to count as the total representation of an expression of language, it must
satisfy the following requirements:

1. each of the elements of the triple must be an adequate output of the corre-
sponding module;

2. the triple must respect the paradigmatic and syntagmatic constraints of the
interface; and

3. each component’s representation must be fully and correctly lexicalizable by
means of the same set of lexical items.

As for their generative power, the class of languages describable by auto-
lexical grammars that make use of strictly context-free components is beyond
the set describable in terms of individual single context-free phrase structure
grammars.

Autolexical syntax has been particularly successful in description of cliticization
and incorporation (cf. Sadock 1985, 1991). Both phenomena are analyzed as
allowable mismatches between syntax and morphology. But, those are not the only
phenomena tackled from the autolexical point of view. There is also an interesting
attempt to give an autolexical explanation to some more familiar syntactic phe-
nomena which in other linguistic theories have so far been treated in terms of
movement and deletion.

Before ending this section, let us considered some examples from Sadock (1991,
pp. 29–38) in order to illustrate how AS functions.
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Let us consider the English lexeme dog whose lexical content is the following:

– dog:

syntax ¼ N ½0�;
semantics ¼ F �1;

morphology ¼ N ½�0�:

In words, dog is a noun in the syntax, a noun stem in the morphology, and an
intransitive predicate in the semantics. The syntactic statement in the lexical entry
‘dog’ indicates that it may be found in structures like:

because of the existence of rule N ½2� �! Det N ½0� in English syntax.
The semantic statement of dog’s entry sanctions—on the basis of semantic rules

such as (1) F ¼ F �1ðxÞ and (2) Q ¼ Q�1ðF Þ- semantic structures as the following one:

And finally, since the English morphological module contains the rule
X�1 �! X�0; Y , the morphological part of dog’s lexical content allows it to be found
in structures such as:

If we take now a proper noun such as ‘Fido’ we would have a different repre-
sentation in the lexicon:
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– Fido:

syntax ¼ N ½2�;
semantics ¼ ½Q½Q½�1�DEF � ½F ½F ½�1�� � ���x��;
morphology ¼ N ½�1�:

The above lexical entry allows Fido to be found in structures like the following
ones (syntactic, semantic, and morphological, respectively):

After having seen how a lexeme is represented in the lexicon of an autolexical
grammar, let us now illustrate the filtering effect among modules. A structure like
*Fido dog is not an English sentence. However, from a semantic point of view, this
expression presents no problem and has the following semantic representation:

The above expression predicates the dogginess of Fido and it is quite compre-
hensible, though ungrammatical. What is wrong with it is that English contains no
syntactic rule that expands S as NP þ Pred. In this case, therefore, it is the syntactic
module of English that filters out a semantically unproblematic construction. So, as
already mentioned, for an expression to be acceptable it must receive a correct
analysis from each of the modules. This means that a syntactic well-formed structure
will not be considered as a language expression if it does not receive an acceptable
parsing in the semantic module or vice versa.
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123



An output of AS is a set of triples. In any triple, each element must be an output
of the appropriate component, but in addition the separate elements must pass the
congruity requirements imposed by the interface. One such requirement is that if
we want the triple to count as an expression of the language, each component’s
representation in a triple must be fully and correctly lexicalizable by means of the
same set of lexical items. In order to illustrate this idea, let us consider the following
three representations that could be considered as good outputs of the three modules
that make up our autolexical grammar. Now if we consider the following three
lexemes:

where (MF1): X�1 �! X�0; Y

– Fido:

syntax ¼ N ½2�
semantics ¼ ½Q½Q½�1�DEF � ½F ½F ½�1�� � ���x��
morphology ¼ N ½�1�

– bark:

syntax ¼ V ½0; SF 3�
semantics ¼ F �1

morphology ¼ V ½�0�
– -s:

syntax ¼ nil

semantics ¼ O�1

morphology ¼ ½V ½�1�V ½�0� � � ���

it is easy to see that they can lexicalize all three trees above, thus allowing such a
triple to be the representation of the English sentence Fido barks.

5 Autolexical syntax and grammar systems

The two theories we have presented in the above sections appeared more or less in
the same years in two different research fields. Grammar systems theory appeared in
Europe in 1988 within the field of formal language theory, and autolexical syntax was
conceived in the United States in 1985 within the area of linguistics. Both theories
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have interesting resemblances that deserve to be pointed out, particularly as we are
interested in showing the possible adequacy of grammar systems theory to account
for linguistic issues. If we are able to show that grammar systems have clear simi-
larities with autolexical syntax, and if we take into account the good results that the
latter has reached in the field of linguistics, we could say that the former (which has
similar traits) could also be suitable for describing the grammar of natural languages.

If seen as a theory of parallel grammatical representations where different mod-
ules work independently and collaborate in order to generate a well-formed linguistic
structure, AS has several ideas in common with grammar systems theory. In order to
see the analogies between AS and grammar systems, we compare this linguistic
theory with one of the variants of grammar systems, namely Parallel Communicating
Grammar Systems. In order to establish the analogy, we recall that in a PCGS there
are several grammars working independently and in parallel, with their own axioms,
alphabets and rules, and coordinated by a distinct element, the master. In this variant
of grammar systems, the language of the master, which is generated with or without
communication, can be considered the language of the system.

If we recall what was said in the two previous sections, we can easily observe the
following interesting similarities between AS and PCGS:

1. Modules in AS clearly correspond to component grammars in a PCGS.
2. In AS every module has its own primitives and rules; in PCGS, every grammar has

its own alphabet and rules.
3. The interface in AS corresponds to the master in PCGS. Both are coordinating

elements: in AS, representations given by each module are brought together to
form a grammatical expression of language through the interface; in PCGS it is
the master who, with the help of the rest of the grammars, produces the language
of the system.

4. In AS, every module works independently and in parallel; in PCGS, each grammar
works, in a parallel way, in its own string irrespectively of what is happening in the
rest of grammars.

5. In both cases, the output is provided by the coordinating element: in AS, the
output is a set of triples in which each element must be an output of the appro-
priate component and has to pass some requirements imposed by the interface.
The output is thus given by the interface which puts in correspondence the work of
modules (frsyn; rsem; rmorg); in PCGS, the language of the system is the one gen-
erated by the master, which has used strings generated by other grammars in order
to produce the output of the system (LðCÞ).

Table 1 Autolexical syntax and grammar systems: similarities

Autolexical syntax Grammar systems

Modules Component grammars
Each module = own primitives Each grammar = own alphabet
Each module = own rules Each grammar = own rules
Interface Master
Autonomy and parallelism Autonomy and parallelism
Output by the interface Output by the master
+ Generative power than modules + Generative power than components
Modularity Modularity
Distribution Distribution
Coordination Coordination
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6. Both AS and PCGS exceed the generative power of their component grammars.
7. Parallelism, modularity, distribution, autonomy, and coordination are important

notions in both theories.

These similarities are summarized in Table 1.
Taking into account similarities between elements and function in autolexical

syntax and grammar systems, and without forgetting the good results the former has
reached in explaining some linguistic phenomena that other grammatical theories
cannot easily handle, we suggest that the grammar systems theory can be applied
without much effort to linguistic issues and that, due to its features, it may offer
useful tools to account for arrangement and interaction of the various dimensions of
natural language grammar. This suitability is demonstrated by the following defi-
nition of Linguistic Grammar Systems (LGS).

6 Linguistic grammar systems

Since the basic definition of grammar systems would be too simple to fully account
for the intricate arrangement of components in grammar, we define an alternative
model which, by combining several properties of different variants of grammar
systems, may provide an adequate description of grammar architecture: Linguistic
Grammar Systems (LGS).

The LGS offers a highly modular general device in which properties such as
modularity, parallelism, interaction, coordination, and distribution can be captured.
We want to keep our LGS as framework-free as possible in order to show which
traits are indispensable in any model that seeks to account for natural language
grammar issues, and in order to isolate the features that make the most sense no
matter what specific machinery one chooses for writing grammars. We will focus on
the interaction among modules and on the general design of the system, rather than
giving a detailed account of every module.

In order to define LGS we have selected what we consider to be the most suitable
tools provided by grammar systems theory in order to obtain a model that meets the
requirements of the generation of grammatical representations. Since in this paper
we want to establish an analogy between our model and AS, the postulates of this
linguistic theory will guide decisions in the selection of grammar systems tools.
Consider the following ideas from Sadock (1991, p. 19):

– we take a grammar to be a set of subgrammars called modules;
– each of these modules is a grammar of an independent level of linguistic repre-

sentation;
– these modules are not hierarchically related to one another;
– a module need not wait for the output of another to do its work, but has the power

to generate (analyze) an infinite set of representations quite independently of
what is going on in any of the other components;

– each component is a self-contained system, with its own independent set of rules,
principles and basic vocabulary;

– the lexicon plays a special, transmodular role in the theory.

In order to capture every feature of the above list, we have to define LGS as a
PCGS (cf. Definitions 4–6). Such a variant offers the possibility to (1) have different
modules that represent independent levels of linguistic representation; (2) have

A grammar systems approach to natural language grammar 437

123



modules working in parallel and thus not hierarchically related; (3) account for an
independent set of rules, principles and basic vocabulary for each module (the
presence of different basic vocabulary led us to choose PCGS with separate
alphabets as defined in Mihalache (1996); (4) have a special, transmodular module:
the master.

The modular approach to grammar has been shown to have important conse-
quences for the study of language and has been used not only by AS but by other
grammatical theories. These range from Chomsky’s generative grammar to Jack-
endoff’s (1997) model, and to Harnish and Farmer’s (1984) modular theory or
Farmer (1984), where a theory of language is built as a system of rules and repre-
sentations factorable into independent but interacting subsystems. One of the main
advantages of modular grammars is that they can reduce the delays imposed by
nonmodular grammars. This reduction of delays is due to the fact that in modular
grammars subsystems of grammatical principles can be applied independently of
each other and in parallel (cf. Frazier 1988). The same idea of modularity has been
proposed by many authors in natural language processing (cf. Allen 1987; Altman
1987; Clifton and Ferreira 1987; Frazier 1988; Sabah 1997).

Now, we know that a PCGS can have any type of mechanism as its component, so
we have to establish which type of device we will have as modules of the PCGS we
have considered. Taking into account the advantages of modularity, we may think of
grammar as a modular system consisting of several parallel interacting components
(syntax, semantics. . .) which are internally modular (divided into several different
modules, as well). In fact, several authors have defended internal modularity in the
various dimensions of grammar. In Crocker (1991), for example, a highly modular
organization of syntax is suggested where modules are determined by the repre-
sentations they recover. The author proposes four modules in the syntactic proces-
sor, each related with a ‘representational’ or ‘informational’ aspect of grammar: (1)
Phrase Structure (X-Bar Theory, Move a); (2) Chains (Bounding Theory, Case
Filter); (3) Thematic Structure (h Theory); (4) Coindexation (Binding and Control
Theory). Also in Weinberg (1987) a modularization of the syntactic module is
proposed. The author argues that the syntactic processor first creates a basic syn-
tactic tree using phrase-structure, selectional, and subcategorization features
together with information retrieved using bounded amounts of prior context. Then,
from the first-stage representation it constructs another structure which it uses to
establish binding relationships between categories. Another example of internal
modularity, this time in semantic and phonological modules, is presented in Jack-
endoff (1990) where the author suggests that:

. . . meaning, like phonological structure, is organized into independent but
interacting tiers, each of which contributes a different class of conceptual
distinctions to meaning as a whole (Jackendoff 1990, p. 2).

Studies on modularity in morphology can be found in Everaert et al (1988). In
Wilson and Sperber (1991) there are some approaches to the internal modularity of
pragmatics, and also in Kasher (1991) where pragmatics is divided into three inde-
pendent parts, and again in Horn (1988) where it is argued that:

Conceptually distinct subcomponents of pragmatic analysis may be simulta-
neously called upon within a single explanatory account of a given phenome-
non, just as autonomous but interacting grammatical systems may interact to
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yield the simplest, most general, and most comprehensive treatment of some
linguistic phenomenon. (p. 115)

So, from the above examples it follows that not only can grammar as a whole be
regarded as a modular system consisting of several parallel interacting components
(syntax, semantics, phonology, etc.), but that also every component that builds up
grammar can be viewed as internally modular, since it is divided into several dif-
ferent modules as well. Thus, we need to account for two levels of modularity. The
first one, i.e. the one that states that LGS are made up of several modules, namely
syntax, semantics, pragmatics, etc., is already accounted for by postulating a PCGS
as the definition for our framework. One way to account for the second one, i.e. for
internal modularity of components that form LGS, is to consider that each module of
the framework is a CDGS, where different components work sequentially, cooper-
ating with each other in order to generate the language of the system, i.e. the
corresponding syntactic, semantic, phonological or any other structure. LGS could
thus be considered as a doubly-modular framework: it is modular first in that it is
made up of several modules that work in parallel; and second because every module
in the system is internally modular.

We have defined independent modules with different alphabets and different
rules. But, we also have to defend interaction among modules. The idea of inter-
action among different dimensions of grammar is widely accepted in the linguistic
literature. Some examples from Smith (1991) will help us to understand this
necessity. Consider a parser that has to parse the following sentences:

(1) The wealthy can eat soup.
(2) I saw the elderly man and child.
(3) As he unlocked the door with his key the fire engine arrived.

In (1) the parser will not be able to disambiguate can until it has seen the entire
sentence. In (2) a parser cannot decide whether elderly modifies only man or man
and child. Nor can it decide whether the prepositional phrase in (3) modifies un-
locked or arrived. So, from those examples it follows that many sentences have
multiple parses, and syntax is not able to choose between them without the help of
semantics. The fact that none of those ambiguities impede communication suggests
that semantics comes into play early in the process of sentence comprehension.
Something similar happens if we look at semantic ambiguities. Consider the fol-
lowing sentence:

(4) Marie flew John from New York to Boston.

If we use only the semantic module to analyze this sentence, we will have four
different interpretations: either Marie or John may be agent; either New York or
Boston may be the origin and the destination. To resolve these ambiguities we could
incorporate some information about word order and preposition, and thus introduce
syntax.

In spite of our assertion that syntactic structures are different from semantic ones
(and so consequently they may be generated by different modules), all the above
suggests that there should be interaction between syntax and semantics, both
modules should cooperate somehow with each other. The same can be said for other
dimensions of grammar.
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Bearing in mind the idea of interaction, let us consider the correspondence rules
outlined in Jackendoff (1997):

It appears that phonological structure and syntactic structure are independent
formal systems, each of which provides an exhaustive analysis of sentences in
its own terms. [. . .] Each of these requires a generative grammar, a source of
discrete infinity, neither of which can be reduced to the other. Given the
coexistence of these two independent analyses of sentences, it is a conceptual
necessity that the grammar contain a set of correspondence rules that mediate
between syntactic and phonological units. Such rules must be of the general
form: ‘Syntactic structure X must/may/preferably does correspond to phono-
logical structure Y’, pairing a structural description in syntactic terms with one
in phonological terms. [. . .] This prescription can be generalized to the struc-
ture of any interface between two distinct forms of representation. [. . .] The
correspondence rules do not perform derivations in the standard sense of
mapping a structure within a given format into another structure within the
same format: they map between one format of representation and another [. . .]
(p. 28).

Taking into account the above and having defined independent modules with
different alphabets and different rules, it appears that we have to find a way in GS of
establishing correspondences among modules. The mechanism we have chosen is the
one present in PCGS with renaming, namely, weak codes (cf. Section 3). As can be
noted, the idea of weak codes in PCGS with renaming is very close to the ‘corre-
spondence rules’ defended in a parallel model of grammar as is Jackendoff’s.

Continuing now with our analogy with AS, consider the following idea from
Sadock (1991):

There is an overarching control center, an interface protocol that checks to see
whether the members of a set of parsings from the individual components fit
one another and count as parsings of the same total expression. (p. 20).

The overarching control of AS may be represented in LGS by the master. In fact,
we consider the master as being a meta-module whose task consists of coordinating
strings generated by other modules in order to provide the language of the system. In
accordance to this idea, we have defined the master as a grammar system without an
axiom, that is, not able to start its work until the moment it receives strings from the
rest of the components. Note that the master doesn’t have an output filter, this is
because it does not send any string to any other component. Moreover, the master’s
input filter is defined over the union of terminal alphabets of components c2; . . . ; cn,
since only terminal strings from the point of view of ith component, with 2 � i � n,
are accepted by this coordinating element. The master’s task is to rewrite (lexicalize)
what the modules of the system have already generated as acceptable terminal
strings (always from a module point of view).

The above set of decisions is formally captured in the following definition:

Definition 13 A LGS of degree nþ m, with n;m � 1 is an ðnþ mþ 1Þ-tuple:

C ¼ ðK; ðc1; I1Þ; ðc2; I2;O2Þ; . . . ; ðcn; In;OnÞ; h1; . . . ; hmÞ;

where:
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– K ¼ fQ1; . . . ;Qn; q1; . . . ; qng are query symbols, their indices 1; . . . ; n pointing to
c1; . . . ; cn components, respectively. Q1; . . . ;Qn refer to the whole string of the ith
component, while q1; . . . ; qn make reference to a substring of the ith component.

– ðc1; I1; Þ; ðc2; I2;O2Þ; . . . ; ðcn; In;OnÞ are the components of the system:

� c1 ¼ ðN1; T1;G1; . . . ;Gk ; f1Þ, is the ‘master’ of the system, where:
� N1 is the nonterminal alphabet;
� T1 is the terminal alphabet;
� There is no axiom;
� Gr ¼ ðN1; T1; PrÞ, for 1 � r � k, is a usual Chomsky grammar, where:
þ N1 is the nonterminal alphabet;
þ T1 is the terminal alphabet;
þ Pr is a finite set of rewriting rules over N1 [ T1 [ K [ K 0, where
K 0 ¼ f½hj;Qi� j 1 � i � n; 1 � j � mg, and every ½hj;Qi� is a symbol.

� f1 2 f�; t;� k;� k;¼ kg is the derivation mode of c1.
� ci ¼ ðNi; Ti; Si;G1; . . . ;Gs; fiÞ, for 2 � i � n, is a CDGS where:
� Ni is the nonterminal alphabet;
� Ti is the terminal alphabet;
� Si is the axiom;
� Gr ¼ ðNi; Ti; PrÞ, for 1 � r � s, is a usual Chomsky grammar, where:
þ Ni is the nonterminal alphabet;
þ Ti is the terminal alphabet;
þ Pr is a finite set of rewriting rules over Ni [ Ti [ K [ K 0, where
K 0 ¼ f½hj;Qi� j 1 � i � n; 1 � j � mg, and every ½hj;Qi� is a symbol.

� fi 2 f�; t;� k;� k;¼ kg is the derivation mode of ci.
� Ii �

Sn
j¼2 T �j , i ¼ 1 is the input filter of the master.

� Ii �
Sn

j¼2ðNj [ TjÞ�, 2 � i � n, is the input filter of the ith component.
� Oi �

Sn
j¼1ðNj [ TjÞ�, 2 � i � n, is the output filter of the ith component.

– hj :
Sn

i¼1ðNi [ TiÞ� !
Sn

i¼1ðNi [ TiÞ�, 1 � j � m, are weak codes such that:

� hjðAÞ ¼ A, for A 2 N ;
� hjðaÞ 2 T [ fkg, for a 2 T .

We write Vi ¼ Ni [ Ti [ K [ K 0 and VC ¼
Sn

i¼1ðNi [ TiÞ [ K [ K 0.
The sets Ni, Ti, K, K 0 are mutually disjoint for any i, 1 � i � n.
We do not require Ni \ Tj ¼ ;, for 1 � i; j � n, i 6¼ j.
The above definition gives us a static view of LGS. A dynamic characterization of

those systems requires the definition of the derivation process. But, in order to define
the derivation process, we need to specify how the state of an LGS is to be under-
stood at any moment in time:

Definition 14 Given a LGS C ¼ ðK; ðc1; I1Þ; ðc2; I2;O2Þ; . . . ; ðcn; In;OnÞ; h1; . . . ; hmÞ, its
state is described at any moment by an n-tuple ðx1; . . . ; xnÞ, where each xi � V �i ,
1 � i � n, represents the string that is available at node i at that moment.

Let us continue with our remarks on the features of AS. Consider the following
assertions:

– ‘A module has the power to generate (or equivalently, analyze) an infinite set of
representations quite independently of what is going on in any of the other com-
ponents.’ (Sadock 1991, p. 20).
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– ‘AS radically separates syntax and semantics (as well as morphology and other
subsystems) into maximally simple modules that interact in potentially complex
ways.’ (Kathman 1995, p. 104).

It thus seems that we have to account for two different kinds of steps in the
derivation process:

1. rewriting steps. that will account for the generation of the representation associ-
ated with each component of the system. This means that every module in the
system rewrites its own string according to its specific rules and its derivation
mode, without taking much account of what is happening in the other modules.

2. and communicating steps. From the above assertions it would seem essential to
account for the interaction among modules (see the words in italics). To allow
interaction among modules, in grammar systems theory we have to use commu-
nication steps.

We believe that it might be interesting to have a combination of two types of
communication in LGS, namely communication by request and communication by
command (cf. Section 3). By postulating the two types of communication, compo-
nents could ask both for information from other modules if they need it, and send
information to other modules if they consider that their strings match the require-
ments of those modules. Suppose, for example, that the syntactic module needs some
semantic information in order to solve a possible ambiguity that appears in its syn-
tactic derivation. In such a situation, syntax would introduce a query symbol asking
the semantic component for help: i.e. communication by request. Now, if the semantic
module has already finished its derivation, it can send its string to the master: i.e.
communication by command. The following extract from Jackendoff (1997) suggests
the convenience of speaking of the two types of communication proposed here:

Suppose the auditory-to-phonological processor, in response to a speech signal,
dumps a string of phonetic information onto the phonology blackboard. The
immediate response of the phonology module is to try to break this string into
words in order to make it phonologically well formed. It sends a call
[this is a query symbol in our terms] to the lexicon: ‘‘Do you know of any
words that sound like this?’’. The lexicon [. . .] just sends back all candidates
that have phonological structure compatible with the sample structure sent it.
But it doesn’t just write these candidates on the phonology blackboard. In fact,
the syntactic and conceptual parts of words can’t be written on the
phonological blackboard. Rather the lexicon simultaneously sends
[this is a communication by command in our terms] the syntactic and con-
ceptual parts of the candidate items to the syntactic and conceptual black-
boards respectively, stimulating those modules to get busy (p. 104).

Another decision we have to make regards which modules can use query symbols.
In order to stress the idea of cooperation among modules, we have chosen to define a
noncentralized system (cf. Definition 7) in which every component is allowed to
introduce query symbols whenever it considers it necessary.

Regarding what can be interchanged in such communication steps, we defined two
possibilities in order to capture what might be needed in a framework that accounts
for grammatical issues: a module can send either its whole current string (whenever it
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is asked for it) or a subword2 of its current string. Note that by having communicating
subwords of a module’s string we are accounting for the fact that not all the infor-
mation present in one module is interesting for another one. For example, suppose
that phonology needs syntactic information in order to perform its derivation. The
information it needs is not every piece of syntactic information in the syntactic
module, but one specific piece. It might not need information regarding c-commands
relations but only information about word order. This decision is supported in
Jackendoff (1997, p. 103) as well as the necessity, already pointed out, of having weak
codes: ‘any single level of representation typically may receive fragmentary input from
a number of distinct sources [. . .] the best way to view the individual generative
grammars is as providing a repertoire for integrating and filling out fragmentary
information coming from other representations via correspondence rules’.

Taking into account that we have stated that every module produces different
structures (syntactic, semantic. . .), we do not want modules to re-start their deri-
vation every time they perform a communication step. This is why we have defined a
nonreturning PCGS instead of a returning one (cf. Definition 8).

We formally define derivation steps in the following terms:

Definition 15 Given a LGS C ¼ ðK; ðc1; I1Þ; ðc2; I2;O2Þ; . . . ; ðcn; In;OnÞ; h1; . . . ; hmÞ, for
two n-tuples ðx1; x2; . . . ; xnÞ, ðy1; y2; . . . ; ynÞ, xi; yi 2 V �i , 1 � i � n, we write
ðx1; . . . ; xnÞ ¼) ðy1; . . . ; ynÞ if one of the following cases holds:

1. jxijK ¼ 0, jxijK 0 ¼ 0, xi 62 Oi, and for all i, 1 � i � n, we have xi ¼) yi in the CDGS
ci, or xi 2 T �i and xi ¼ yi.
For each ci ¼ ðNi; Ti; Si;G1; . . . ;Gs; fiÞ, for 1 � i � n, with xi; yi 2 V �i we write
xi ¼)k

Gr
yi, for 1 � r � s, iff there exists x1; x2; . . . ; xkþ1 such that:

– xi ¼ x1, yi ¼ xkþ1;
– xj ¼)Gr xjþ1, i.e. xj ¼ x0jAjx00j , xjþ1 ¼ x0jwjx00j , Aj ! wj 2 Pr, 1 � j � k.

2. There is an i, 1 � i � n, such that jxijK > 0, then for each such i we write
xi ¼ z1Qi1 z2Qi2 . . . ztQit ztþ1 [or xi ¼ z1qi1 z2qi2 . . . ztqit ztþ1 for subword communica-
tion], t � 1, for zj 2 V �C , jzjjK ¼ 0, 1 � j � t þ 1; if jxij jðK[K 0Þ ¼ 0, 1 � j � t, then
yi ¼ z1xi1 z2xi2 . . . ztxit ztþ1 providing that yi 2 V �i ; when for some j, 1 � j � t,
jxij jðK[K 0Þ 6¼ 0, then yi ¼ xi; for all i, 1 � i � n, for which yi is not specified above we
have yi ¼ xi.

3. There is an i, 1 � i � n, such that jxijK 0 > 0, then for each such i we write
xi ¼ z1½hj;Qi1 �z2½hj;Qi2 � . . . zt½hj;Qit �ztþ1, [or xi ¼ z1½hj; qi1 �z2½hj; qi2 � . . . zt½hj; qit �ztþ1

for subword communication], t � 1, for zj 2 V �C , jzjjK 0 ¼ 0, 1 � j � t þ 1; if
jxij jðK[K 0Þ ¼ 0, 1 � j � t, then yi ¼ z1hjðxi1Þz2hjðxi2Þ . . . zthjðxit Þztþ1 providing that
yi 2 V �i ; when for some j, 1 � j � t, jxij jðK[K 0Þ 6¼ 0, then yi ¼ xi; for all i, 1 � i � n,
for which yi is not specified above we have yi ¼ xi.

4. ðx1; . . . ; xnÞ ‘ ðy1; . . . ; ynÞ iff yi ¼ xi 	 ðIi \ ð
Sn

j¼1;i6¼j Oj \ xjÞÞ; for i ¼ 1; . . . ; n.

Point 1 defines a rewriting step. In 2, we define a communication step by request
without renaming. In 3, we define a communication step by request with renaming.
And finally, in 4, we define a communication step by command.

2 This idea of communicating a substring of the current string of a specific module is already present
in Păun (1996b) where a new class of PCGS in which prefixes of the current sentential forms can be
communicated is introduced.
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The derivation process is carried out by alternating rewriting and communication
steps. After every rewriting step, we check whether a communication step (by re-
quest or command) is possible. If so, we perform it, if not, we continue derivation
with a new rewriting step. The process is finished when, after reaching a terminal
string, every CDGS in the LGS has sent by command its result to the master. As
soon as the master has all the strings generated by the various components of the
system, it applies its rules in order to unify or coordinate those strings, and thus
generates the language of the LGS.

Definition 16 The language generated by a LGS as above is:

LðCÞ ¼ fx 2 T �1 j ðk; S2; . . . ; S3Þ ¼) ðk; að1Þ2 ; . . . ; að1Þn Þ ‘ ðk; y
ð1Þ
2 ; . . . ; yð1Þn Þ

¼) ðk; að2Þ2 ; . . . ; að2Þn Þ ‘ ðk; y
ð2Þ
2 ; . . . ; yð2Þn Þ ¼) . . . ¼) ðk; aðsÞ2 ; . . . ; aðsÞn Þ ‘

ðaðsÞ2 . . . aðsÞn ; aðsÞ2 ; . . . ; aðsÞn Þ ¼) . . . ¼) ðx; aðsÞ2 ; . . . ; aðsÞn Þ; s � 1; aðsÞi 2
T �i ; 2 � i � ng:

Note that in contrast with what happens in AS where:

‘an output of such a grammar is a set of triples frsyn; rsem; rmorg where each such
triple corresponds to a fully-fledged expression of the language to which the
grammar ascribes syntactic, semantic and morphological parsings’ (Sadock
1991, p. 20).

in LGS what we obtain is a single language. This language would be the result of
putting in correspondence, via the master, every structure generated by every com-
ponent of the framework.

The result of the above set of decisions is a non-centralized, non-returning macro-
PCGS with renaming, with separate alphabets, with two types of communication
(command or request), with the possibility of subword communication, and whose

Fig. 2 Linguistic grammar system
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components are CDGS built up by several grammars and containing input and
output filters in order to allow for communication by command (see Fig. 2).

The following example illustrates how the LGS functions. For the sake of sim-
plicity, we only indicate the necessary components of the system.

Example 1 Consider the following LGS:

C ¼ ðK; ðc1; I1Þ; ðc2; I2;O2Þ; ðc3; I3;O3Þ; ðc4; I4;O4Þ; h1Þ;

where:

– c1 ¼ ðN1; T1;G11
;G12

; tÞ is the master: N1 ¼ fA;B;C;Dg; T1 ¼ fa; b; c; dg; G11
¼

fA! a;B! bg; G12
¼ fC ! c;D! dg; I1 ¼ fA;B;C;Dg�.

– c2 ¼ ðN2; T2; S2;G21
;G22

; �Þ: N2 ¼ fS2g; T2 ¼ fAg; G21
¼ fS2 ! AS2g; G22

¼
fS2 ! Ag; I2 ¼ fAg�; O2 ¼ fAg�.

– c3 ¼ ðN3; T3; S3;G31
;G32

; �Þ: N3 ¼ fS3g; T3 ¼ fBg; G31
¼ fS3 ! BS3g; G32

¼
fS3 ! Bg; I3 ¼ fBg�; O3 ¼ fBg�.

– c4 ¼ ðN4; T4; S4;G41
;G42

; �Þ: N4 ¼ fS4g; T4 ¼ fC;Dg; G41
¼ fS4 ! S4g; G42

¼
fS4 ! ½h1Q2�½h1Q3�g; I4 ¼ fBg�; O4 ¼ fBg�.

– h1ðAÞ ¼ C; h1ðBÞ ¼ D; h1ðCÞ ¼ A; h1ðDÞ ¼ B.

We start the derivation with an empty string in the first component and with the
axioms of c2, c3, c4. We apply the first component of every CDGS:

ðk; S2; S3; S4Þ ¼) ðk;AS2;BS3; S4Þ:

We can apply reiteratively the first component of every CDGS ci because the
derivation mode under which they are working is �:

ðk;AS2;BS3; S4Þ ¼) ðk;AAS2;BBS3; S4Þ ¼) ðk;AAAS2;BBBS3; S4Þ
¼) 	 	 	 ¼) ðk;AnS2;BmS3; S4Þ:

We can apply, now, the second component of every CDGS ci:

ðk;AnS2;BmS3; S4Þ ¼) ðk;Anþ1;Bmþ1; ½h1Q2�½h1Q3�Þ:

Since within the string of the fourth component two query symbols have appeared,
we cannot continue with rewriting steps, but we must perform two communication
steps. Note that the query symbols present in c4 refer to strings of the second and third
component, respectively, but require a translation via the weak codes present in the
system. We thus have to perform a communication step with renaming:

ðk;Anþ1;Bmþ1; ½h1Q2�½h1Q3�Þ ¼) ðk;Anþ1;Bmþ1;Cnþ1½h1Q3�Þ
¼) ðk;Anþ1;Bmþ1;Cnþ1Dmþ1Þ:

Note that, since we have defined LGS as nonreturning, components c2 and c3 send
copies of their strings, in such a way that they need not re-start from the axiom again,
but rather keep their string.

No further rewriting step can now be performed on components c2, c3 and c4

because they have reached a terminal string. Furthermore, the strings of each

A grammar systems approach to natural language grammar 445

123



component match its respective output filter and master’s input filter. This means
that a communication step by command can be performed, in which every compo-
nent sends its string to the master:

ðk;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ‘ ðAnþ1Bmþ1Cnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ:

Note that strings sent by components to the master have been concatenated by
order of system components. Moreover, c2, c3; and c4 have sent copies of their
strings, thus keeping their strings and without needing to start again from the axiom.

No further rewriting step can be performed on c2, c3; and c4. Now, it is the turn of
the master. It has received strings from every component and must rewrite them
until it reaches a terminal string. We apply, first, component G11

. Since c1 has to work
in t mode, the first component should perform as many rewriting steps as it can:

ðAnþ1Bmþ1Cnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼)
ðaAnBmþ1Cnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼)
ðaAnbBmCnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼)
	 	 	 ¼) ðanbmCnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ:

Component G11
cannot be further applied, so we must turn to G12

:

ðanbmCnþ1Dmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼)
ðanbmcCnDmþ1;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼)
ðanbmcCndDm;Anþ1;Bmþ1;Cnþ1Dmþ1Þ ¼) 	 	 	
¼) ðanbmcndm;Anþ1;Bmþ1;Cnþ1Dmþ1Þ:

c1 has reached a terminal string, so we can consider that derivation in C as
finished. According to our definition, the language generated by the system is the
language of the master, so we are not interested in strings of c2, c3, and c4, and we
consider that language of C to be:

LðCÞ ¼ fanbmcndm j n;m � 1g:

6.1 LGS in natural language grammar: an example

According to the framework we have proposed, a natural language expression could
be considered as the final language of a PCGS whose modules represent each of the
simultaneously different informational dimensions along which natural language
expression is organized. The functioning of the system in order to generate an
acceptable language structure can be outlined as follows.

Let us consider that our LGS consists of the following components, each con-
taining different terminal and non-terminal alphabets as well as different rules:

1. Syntactical CDGS: units such as N, V, A, P, NP or VP and syntactic rules.
2. Semantic CDGS: units such as physical objects, events, properties, times, quan-

tities, intentions, etc. and semantic rules.
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3. Phonological CDGS: units such as phonological distinctive features, notions of
syllable, word, phonological and intonational phase, stress, tone, intonation con-
tour, etc. and principles of phonological combination.

4. Master (the Lexicon): words and rules for coordinating the structures generated
by the three modules.

LGS starts functioning as soon as every module starts its derivation process:

– Within the syntactic module, several grammars, each responsible for a different
syntactic level (e.g. phrase structure, dependencies, agreement, case marking),
cooperate distributively, and sequentially, in order to produce a well-formed
syntactic structure.

– Within the semantic module, several grammars (e.g. one responsible for function-
argument relations, another for variable-binder relations, etc.) cooperate
sequentially in order to produce a semantically well-formed structure.

– Within the phonological module, where a module can be responsible for syllable
structure, another for stress assignment, etc. the generation of a well-formed
phonological structure takes place sequentially.

– In the meantime, while those three modules are working independently, nothing
happens in the master since this module does not contain any information: it must
wait for strings produced by the other three modules.

Note that derivation processes in LGS take place in parallel and independently.
That is, every module in the system will generate its structure according to its own
rules and primitives, without waiting for the outputs of any other module.

According to the above scheme we have three parallel modules working inde-
pendently with the master waiting. However it is not realistic to think that there is no
interaction at all among those three modules. In fact, from time to time, they need
information from one another in order to solve possible difficulties and ambiguities
in their derivations:

– Let us suppose that the phonological module needs information about word-order
for it to continue with its derivation. What happens at that point? The phono-
logical module introduces a query symbol referring to the syntactic module and
asking for such subword of the syntactic string that accounts for word-order. Once
the phonological module has introduced such a query, rewriting processes stop,
and communication is performed: the syntactic module sends to the phonological
module the string that the latter has asked for. Once the communication has been
performed, modules re-start their function from where they left off.

– Rewriting processes continue and now it is the syntactic module that requires
some information from the semantic module. But this time, syntax introduces
neither a query symbol Qi nor a qi, but a ½hj;Qi�, that is, a query symbol with
renaming. Suppose that at this stage of the derivation, the semantic module
contains the string [Agent Theme Locative] and suppose also that the LGS con-
tains the following weak codes: (1) hjðAgentÞ ¼ NP , (2) hjðThemeÞ ¼ NP , (3)
hjðLocativeÞ ¼ PP . Provided that the syntactic module has asked for the current
semantic string, but that it has required a translation before communication takes
place, we would consider that the string that the syntactic module will get from
that communication step is something like [NP NP PP], that is, it will receive the
semantic string translated by means of the weak codes defined in the system.

A grammar systems approach to natural language grammar 447

123



Since we have shown that LGS works in a nonreturning way, we will consider that
modules send copies of their strings in such a way that they do not need to re-start
from their axiom every time a communication step takes place.

Derivation processes in each of those three modules continue by alternating
rewriting and communication until they reach three terminal strings. Each of those
strings will be considered as terminal from the respective module’s point of view.
That is, the first module will reach a syntactic string; the second one, a semantic
string; and the third one, a phonological string. Since derivations in each module
cannot go on, because all of them have already reached a terminal string that cannot
be further rewritten, they will perform a communication step by command. Each
module will send its own terminal string to the master. So, the master will get a
syntactic, a semantic and a phonological string, respectively.

Once the master has received strings produced by every module of the system, it
starts its work. According to its rules, it tries to combine and put in correspondence,
the three structures generated by the syntactic, semantic and phonological modules,
respectively. The master’s task consists of lexicalizing the structures it has received;
that is, its task is to rewrite the syntactic, semantic, and phonological structures by
introducing words. If it is possible to lexicalize those structures, if they are com-
patible and they can be lexicalized by means of the same words, then we could say
that the master has successfully reached a terminal string and that, therefore, a well-
formed natural language expression has been generated by the LGS.

Let us see now how can we generate an example of the so-called cross-serial
dependencies of Dutch by using a very simple LGS.

Consider the following LGS with three components:

C ¼ ðK; ðc1; I1Þ; ðc2; I2;O2Þ; ðc3; I3;O3Þ; h1Þ;

where:

– c1 ¼ ðN1; T1;G11
;G12

;G13
; tÞ is the master of the LGS:

� N1 ¼ fA;Bg;
� T1 ¼ fJan; Piet;Marie; laat; help; zieg;
� G11

¼ fA! Jan;A! Piet;A! Marie;A0 ! Jan0;A0 ! Piet0;A0 ! Marie0g;
� G12

¼ fB! laat;B! help;B! zie;B0 ! laat0;B0 ! help0;B0 ! zie0g;
� G13

¼ fJan0 ! k; Piet0 ! k;Marie0 ! k; laat0 ! k; help0 ! k; zie0 ! kg;
� I1 ¼ fA;Bg�.

– c2 ¼ ðN2; T2; S2;G21
;G22

; �Þ is the syntactic component:
� N2 ¼ fS2;Xg;
� T2 ¼ fA;Bg;
� G21

¼ fS2 ! AXg;
� G22

¼ fX ! S2B;X ! Bg;
� I2 ¼ fA;Bg�;
� O2 ¼ fA;Bg�.

– c3 ¼ ðN3; T3; S3;G31
;G32

; �Þ is the semantic component:

� N3 ¼ fS3;Xg;
� T3 ¼ fA0;B0g;
� G31

¼ fS3 ! A0Xg;
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� G32
¼ fX ! B0S3;X ! B0g;

� I3 ¼ fA0;B0g�;
� O3 ¼ fA0;B0g�.

– h1ðA0Þ ¼ A; h1ðB0Þ ¼ B; h1ðAÞ ¼ A0; h1ðBÞ ¼ B0.

Derivation proceeds as follows. We use alternatively the first and the second
component of c2 and c3 in the following way:

ðk; S2; S3Þ ¼) ðk;AX ;A0X Þ ¼) ðk;AS3B;A0B0S2Þ ¼)
ðk;AAXB;A0B0A0X Þ ¼) ðk;AAS3BB;A0B0A0B0S2Þ ¼)
ðk;AAAXBB;A0B0A0B0A0X Þ ¼) ðk;AAABBB;A0B0A0B0A0B0Þ:

Now since both syntax and semantics have reached a terminal string from their
points of view, a communication by command takes place, and the syntactic and
semantic strings are sent to the master:

ðk;AAABBB;A0B0A0B0A0B0Þ ‘ ðAAABBBA0B0A0B0A0B0;AAABBB;A0B0A0B0A0B0Þ.

Now the master starts its work by lexicalizing the semantic and syntactic structures it
has got. First, the first component of c1 is used in the terminal mode:

ðAAABBBA’B’A’B’A’B’;AAABBB;A’B’A’B’A’B’Þ ¼)�

ðJan Piet Marie BBB Jan’B’Piet’B’Marie’B’;AAABBB;A’B’A’B’A’B’Þ:

Then, component G12
of c1 must be used in the terminal mode:

(Jan Piet Marie BBB Jan’ B’ Piet’ B’ Marie’ B’, AAABBB,

A’B’A’B’A’B’) ¼)� (Jan Piet Marie laat help zie Jan’ laat’ Piet’

help’ Marie’ zie’, AAABBB, A’B’A’B’A’B):

Now the derivation ends by applying component G13
of the master:

(Jan Piet Marie laat help zie Jan’ laat’ Piet’help’ Marie’ zie’,

AAABBB, A’B’A’B’A’B’Þ ¼)� (Jan Piet Marie laat help zie kkkkkk;

AABBB, A’B’A’B’A’B’)

:

Since we just consider the string of the master as the output of the system, we can see
that in this case what we have obtained is the following sentence:

‘Jan Piet Marie laat helpen zien’

However, this output has been obtained thanks to the collaboration of three
modules. In fact, note that the string of c2 (i.e. AAABBB) can be considered a rep-
resentation of the syntax of the sentence, while the string of component c3 (i.e.
A0B0A0B0A0B0) offers a pretty fair representation of the meaning (semantics) of the
Dutch subordinate sentence.

Summing up, with this example we have shown how a simple system, as the
LGS used, with only two autonomous components coordinated by the master
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can characterize the properties of the above Dutch subordinate sentence. The
cross serial dependencies are problematic when attributed to a single level of
structure, but not when they reside at the interface between two. For problems
related to cross-serial dependencies see Bresnan et al (1987).

Note that in the example we have presented:

– modules work independently and in a parallel and autonomous fashion;
– they have different rules, different alphabets, and produce different structures;
– they can interact via communication steps, interchanging in this way information

that can facilitate their work;
– once every module has reached a terminal string, it sends this string to the master,

with a communication step by command;
– the master puts in correspondence syntactic and semantic strings and generates

the language of the system.

As can be seen, we do not get an n-tuple of structures as the language of the
system, but a single language, namely the natural language expression which, of
course, combines in it the several informational dimensions along which natural
language expressions are supposed to be organized. Every such dimension is present
in the final result, because we have obtained such a final language thanks to the
cooperation of two different modules and the coordinating labor of the master.

6.2 Some notes on the linguistic motivation of LGS

The relationship between formal and natural languages is not something new. In
fact, formal language theory was born in the middle of the 20th century as a tool
for modelling and investigating syntax of natural languages. After 1964, it devel-
oped as a separate branch with specific problems, techniques and results. Now,
taking into account this fact, and considering the emergence of grammar systems
as a new research area in the field of formal languages, a somehow natural
question is: Can natural languages be modelled by means of grammar systems?
Can this new framework of formal languages become a new tool for modelling
natural languages? In order to answer this question we have introduced LGS as a
model that aims to:

1. Reconstruct grammar of natural languages by means of a formal-language model.
2. Formulate a model capable of generating and/or recognizing natural-language

structures.
3. Define a formalization of language that because of its computational suitability

can be implemented.
4. Offer a method of linguistic manipulation that can be useful for natural language

processing.

Natural languages can be imagined as a number of modules that interact in a
nonsimple way. Understanding and generation needs cooperative phonological,
morphological, lexical, syntactic, pragmatic, semantic. . . modules. If we adopt a
modular strategy to write our grammar model we will obtain advantages such as the
following:

1. what is undoubtedly a complex task is divided into convenient and manageable
subtasks;
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2. we deal with one structure, or set of structures, at one time;
3. each module can be written and tested in isolation;
4. minor changes and/or additions can be introduced in one module if necessary,

without having to modify the whole grammar.

In general, formal and computational approaches to natural language demand
nonhierarchical, parallel, distributed models in order to explain the complexity of
linguistic structures as the result of the interaction of a number of independent but
cooperative modules. Linguistic grammar systems offer a modular theory where the
various dimensions of linguistic representation are arranged in a parallel distributed
framework and where the language of the system is the result of the interaction of
those independent cooperative modules that form the LGS. Therefore, linguistic
grammar systems provide a suitable framework according to the requirements of
most of the current formal/computational approaches to natural language. More-
over, LGS offer a highly formalized model that offers several advantages with re-
spect to classical formal languages and that can be easily implemented, two
important features for the computational treatment of natural language.

According to Nijholt (1988, p. 239), a formal language can be considered as a
model of a natural language. Similarly, a formal grammar can be considered as a
model of a natural grammar and, therefore, it is a theory of this particular natural
language. In the choice of the model we are restricted to models which give an
account of linguistic intuitions and, at least, do not contradict human mental prop-
erties. We think that linguistic grammar systems do not contradict those properties,
and might provide a realistic and useful theory of natural language where linguistic
structures are generated in a modular, parallel and distributed fashion.

7 Final remarks

Grammar systems theory has been widely investigated and is now a well-developed
formal theory that has several advantages over classical models. However, since it is
a branch of formal languages, researchers in the field of grammar systems have
concentrated mainly on theoretical aspects. Although some attempts at application
have been carried out, research on grammar systems is still mainly theoretical.
Taking into account results obtained from the formal study of the theory, this paper
has tried to show that grammar systems theory is not only a good theory from a
formal point of view, but that it may also be a useful tool from the point of view of its
possible applications. We have tried to apply grammar systems to the description
and analysis of natural language. To do this, we started by comparing grammar
systems with AS. Both theories have reached good results in their respective disci-
plines thanks to some concrete features: modularity, parallelism, cooperation, and
interaction. But, the similarities between AS and grammar systems go beyond this
sharing of the same traits. As we have shown, in grammar systems there is a cor-
respondence for each element that is part of an autolexical grammar.

The analogy we have shown between grammar systems and autolexical syntax has
led us to suggest the possible applicability of grammar systems theory to the study of
natural languages. The LGS have been introduced as a grammar systems model that
may account for the arrangement and functioning of the various grammatical
dimensions that work in order to generate natural language expressions. In this
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paper, we have focused on presenting the formal definitions of the model and jus-
tifying the grammar systems tools selected in order to define the new variant, i.e.
LGS. The number of modules needed to describe natural language and the exact
content of each of these modules are complex issues that should be determined. In
fact, they have not been specified in this paper because we are essentially interested
in generality and what we have presented here is just a rough approach to the topic.
However, taking into account the known flexibility of grammar systems, we can
consider as many modules as we deem necessary and the content of each of them can
be whatever formalism, not necessarily string rewriting. By introducing LGS we
simply want to offer a highly modular general device in which properties like
modularity, parallelism, interaction, coordination, and distribution can be captured.
We want to keep our LGS as framework-free as possible in order to show which
traits are indispensable in any model that seeks to account for natural language
grammar issues, and in order to isolate the features that make the most sense no
matter what specific machinery one chooses for writing grammars. Since our first aim
was to show the applicability of grammar systems, we have focused on interaction
among modules and on the general design of the system, rather than giving a de-
tailed account of every module.

The model we have presented is quite general. Despite this, we believe that it has
the same features as in accepted grammatical theories (e.g. AS), along with a similar
arrangement of components and quite a close way of functioning. Such grammatical
theories have already been proved to be adequate natural language models and
would seem to support the modest thesis of this paper, that is, that LGS may be seen
as a grammar-systems approach to natural language grammar thus showing the
applicability of this theory.
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