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Abstract. We consider the quasilinear Schrödinger equation involving a general nonlinearity at critical growth. By using
Jeanjean’s monotonicity trick and the Pohozaev identity we get the existence results that generalize an earlier work [H. Liu
and L. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, Commun. Pure Appl.
Anal., 19(6):3429–3444, 2020] about the subcritical case to the critical case.
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1 Introduction and main results

We consider the following quasilinear Schrödinger equation:

(1.1)

where is a given potential, and and are real functions. This modified version of the nonlinear
Schrödinger equation has been derived to model several physical phenomena, such as superfluid films in
plasma physics, condensed matter theory, etc. (see [15, 17, 23] for an explanation). We restrict ourselves to

and the stationary wave solutions, that is, the solutions of the form ,
, so that from equation (1.1) we get an equation of elliptic type of the formal structure

(1.2)

where , , is a potential well, and the nonlinearity is a general term with critical growth.
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There are many results for problem (1.2) depending on different assumptions on the potential and non-
linearity ; for example, see [28] for the coercive potential, [31] for the radially symmetric potential, [6,25,26]
for the periodic or asymptotically periodic potential, and [7] for the steep potential well. The nonlinearity
satisfies some growth conditions, such as the Ambrosetti–Rabinowitz condition, a nonquadraticity condi-
tion, or a monotonicity condition. Up to our knowledge, there are few results on problem (1.2) under the
Berestycki–Lions conditions (see [1, 2]), which are almost optimal for the existence of solutions. Here we
mention [4, 14, 29, 30]. Colin and Jeanjean [4] proved the existence of a radially symmetric solution for
problem (1.2) with and the nonlinearity satisfying the Berestycki–Lions conditions. This
result [4, Thm. 1.2] can be regarded as the Berestycki–Lions theorem of the subcritical case for the quasilinear
Schrödinger equation. Then we generalize the result to critical growth in [29]. Up to now, perhaps this is the
only work on quasilinear Schrödinger equations with critical Berestycki–Lions growth that specifically ad-
dresses the case . The method is to analyze the behavior of solutions for subcritical problems and to
take the limit as the exponent approaches the critical exponent, which was also used in [3, 19]. The remaining
results on the Berestycki–Lions conditions [8, 10, 14, 30] pertain to the subcritical cases; specifically, [8] fo-
cuses on another type of quasilinear equation, whereas [10] deals with the Choquard equation. Moreover, He
et al. [9] considered the strongly indefinite problem for the Hamiltonian elliptic systems with superquadratic
or asymptotically quadratic condition and obtained ground state solutions by using the Nehari–Pankov-type
constraint.

The main purpose of this paper is to extend the result in [14] to the case of critical exponents. We borrow
an idea from [32] to obtain the ground state solution for problem (1.2). There are several difficulties in our
paper. The main difficulty is caused by the second-order derivatives . To address this difficulty, various
methods have been developed, such as a change of variables [4, 17, 19, 22, 25, 28], a constrained minimization
argument [15,18,23,24], and the perturbation method [16,20,21]. Here we use the change of variables in [4].
Besides, the nonlinear term in our paper satisfies very weak conditions, so it is hard to obtain the boundedness
of (PS) sequence. We employ Jeanjean’s monotonicity trick [11] to address it. At last, because of possible lack
of compactness due to the criticality of the growth and unboundedness of the domain, to obtain the existence
of the solutions, we will turn to the concentration compactness lemma due to Lions [12, 13].

We introduce some assumptions on the potential and nonlinearity .

(V) , and there is such that
.

(h1) , for all , and .
(h2) .
(h3) There exists and if or if such

that for all .

It is well known that the critical exponent growth makes the problem very tough and more assumptions are
of course needed. Now we state our main results. The first result of the present paper concerns the case of
constant potential , which plays an important role for studying the second result.

Theorem 1. Suppose that (h1)–(h3) are satisfied and . Then problem (1.2) possesses a positive
ground state solution.

The second result in this paper with nonconstant is as follows.

Theorem 2. Suppose that conditions (V) and (h1)–(h3) hold. Then problem (1.2) possesses a positive ground
state solution.

Remark 1.

(i) These two theorems can be regarded as a form of the subcritical Berestycki–Lions theorem in [14]
in the critical case. Due to the lack of compact embedding of , for critical
nonlinearity , the existence of ground states of problem (1.2) becomes rather complicated. We borrow
an idea from [32] to overcome this difficulty.

Lith. Math. J., 64(2):138–162, 2024.
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(ii) Our results also can be seen as an extension of semilinear poroblem in [32] to the quasilinear one.

NOTATION. In this paper, we use the following notations:

• is the usual Hilbert space endowed with the norm

• is the usual Banach space endowed with the norm

• is endowed with the norm

• .
• is a quantity tending to as .
• , .
• denotes the Lebesgue measure of a set .
• denote various positive (possibly, different) constants.

2 Preliminary results

Denoting , we observe that the natural variational functional

corresponding to equation (1.2), may be not well defined in the space when . We have to find
a suitable functional space. Following [4], we define the function as follows:

Then we obtain the functional

where is well defined on , under the hypotheses (V) and (h1)–(h3).
Moreover, we observe that if is a critical point of the functional , then the function is a solution
of problem (1.2) (see [4]).

We now summarize the properties of , which have been proved in [4, 5] and [25].
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Lemma 1. The function satisfies the following properties:

(i) is uniquely defined, , and invertible;
(ii) for all ;
(iii) for all ;
(iv) as ;
(v) as ;
(vi) for all ;
(vii) for all ;
(viii) there exist constants such that for all ;
(ix) there exists a positive constant such that for and for .

From items (iii) and (vii) of Lemma 1 we directly can get the following lemma.

Lemma 2. For , for all .

Lemma 3. (See [33].) Let be a continuous function such that for some constant ,

Let be a bounded sequence such that in . Then

where .

Lemma 4. (See [27].) If in and , then

in

To get a bounded (PS) sequence for the functional , we make use of the monotone method introduced by
Jeanjean [11].

Lemma 5. (See [11].) Let be a Banach space, and let be an interval. Consider a family
of functionals on , for all with nonnegative and suppose that either

or as . For , we set

If for every , the set is nonempty and

then for almost every , there is a sequence such that

(i) is bounded;
(ii) ;
(iii) in the dual of .

Furthermore, the map is left-continuous.

Lith. Math. J., 64(2):138–162, 2024.
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For almost all , we search for bounded Palais–Smale sequences of the following perturbed
functional:

In our case, we consider

Obviously, is nonnegative. The next lemma ensures that is coercive and the functional has a moun-
tain pass geometry. Namely, the set is nonempty, and

Lemma 6. Suppose that (V) and (h1)–(h3) are satisfied. Then:

(i) for all ;
(ii) for all ;
(iii) as .

Proof. (i) Set sufficiently large and . Define in the following way:

Obviously, is a continuous path from 0 to . We consider the function

Let large enough such that . Then from Lemma 1(iii),(vii) and (h3) we have

Choose with sufficiently large. Then for all . Defining
, we get that .

(ii) Thanks to Lemma 1(ix), we can deduce that there is such that

(2.1)
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From (h1) and (h2) It follows that for any , there exists such that

(2.2)

and

(2.3)

By (2.1), (2.3), Lemma 1(iii),(vii), and the Sobolev inequality we have

where is small enough, and is the best constant for the Sobolev embedding .
Since , has a strict local minimum at and hence .

(iii) From Lemma 1(ix) we get that

which implies that as .

Given , we consider the function defined by

We observe that is a family of functions on which the infimum that defines the best constant for
the Sobolev embedding is attained. Let be a cut-off function
satisfying in and in . Define

Lith. Math. J., 64(2):138–162, 2024.
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By a similar computation to that in [3, 25], as , we have that

if (2.4)

(2.5)

and

(2.6)

There are positive constants , and such that

(2.7)

Lemma 7. Suppose that (V) and (h1)–(h3) are satisfied. Then the minimax level satisfies

Proof. It suffices to show that there exists such that

From the proof of Lemma 6 we have and for small enough. Then
there exists such that . We claim that there are constants and such that

. First, we prove that is bounded from below by a positive constant. Otherwise, if
as , then . Therefore , which is a contradiction. On the other
hand, if as , then similarly to the proof of Lemma 6, we can get ,
which is a contradiction. Hence there is such that for small enough.

Now, by (h3) and Lemma 1(iii),(viii) we observe that
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Denote

It is quite standard to get that attains its maximum

(2.8)

at

It follows from (2.4) and (2.8) that

Using the inequality

we have

Let

that is,

(2.9)

In view of (2.5), (2.6), and (2.9), we get that

Lith. Math. J., 64(2):138–162, 2024.
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Consider the function defined by

Since in , in view of (2.7), there is a constant such that for .
Notice that is decreasing and is increasing, so that there is a positive constant such that for ,

Then we can choose such that

(2.10)

for , . It follows from (2.10) and Lemma 1(ix) that

for , . Hence

Then

Since when , and
when , and thus , we get our result.

Remark 2. In this paper, we assume that for almost every , if is a bounded (PS)
sequence, then in . In fact, we have , and thus , from which we
can derive that , , and .

Lemma 8. Suppose that (V) and (h1)–(h3) are satisfied. Then there is a positive constant , independent
of , such that if is a nontrivial critical point of the functional , then .

Proof. By the equality we have
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Then by using condition (V), (2.2), and Lemma 1(vi),(vii) we have

Combining this inequality and the Sobolev inequality, we have

Since with small enough, from the last inequality and Lemma 1(iii) we obtain that there
is a positive constant such that

We recall the Pohozaev identity with respect to problem (1.2). Since the proof is standard, we omit it.

Lemma 9. For a.e. , if is a nontrivial critical point of , then satisfies

3 Proof of Theorem 1

In this section, we present the first result by some lemmas.

Lemma 10. Suppose that and conditions (h1)–(h3) hold. Let be a bounded (PS)
sequence for the functional with

Then for each , there are a positive integer , a subsequence of , still denoted by
, and sequences and for such that

(i) in with ;
(ii) and for and ;

Lith. Math. J., 64(2):138–162, 2024.



148 J.-X. Han, M.-C. Chen, and Y.-F. Xue

(iii) and for all ;
(iv) ;
(v) , where we agree that, in the case , the above conclusion holds

without and .

Proof. Since is a bounded (PS) sequence, up to a subsequence, in , in
( ), and a.e. in . By using the Lebesgue dominated convergence

theorem, through the standard discussion, we can get that . Thus (i) holds.

Step 1. Setting , the Brezis–Lieb lemma leads to

(3.1)

Next, we claim that

(3.2)

and

in (3.3)

Denote

and

The functions and enjoy the following properties under assumptions (V) and (h1)–(h3),

(3.4)

(3.5)

We are going to prove (3.4). From (h1), (h2), Lemma 1(iv),(v), and the fact that
we have

as

and

as

The proof of (3.5) is similar to that of (3.4), so we omit it.
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It follows from Lemma 3, (3.4), and (3.5) that

(3.6)

Combining (3.1) and (3.6) with in , we get that , which
gives (3.2).

It follows from (3.4) and (3.5) that for any , there exists a constant such that

(3.7)

(3.8)

Thanks to Lemmas 3 and 4, for any , we have

and

Through the standard discussion, we can get that

Hence is a (PS) sequence of , which gives (3.3).
Now there are two cases that may occur.
(I) Vanishing: ;

(II) Nonvanishing: .

In case (I), it follows from the Lions lemma that in with . By (3.7), (3.8), and
the Lebesgue dominated convergence theorem we get

(3.9)

Then from (3.1), (3.6), and (3.9) we get

(3.10)

Lith. Math. J., 64(2):138–162, 2024.
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and

(3.11)

We may assume that Then by (3.11) and the fact that we obtain

By the definition of we can get that

that is

where either or .
Assume that . Then from (3.10) we obtain that

which contradicts to Lemma 7. Thus . Therefore Lemma 10 is true with .
In case (II), there exist a positive constant and a sequence such that

.
Let . Then is bounded in and there exists a function such

that in . It follows from in that is unbounded, so we can assume that .
Moreover, wee can verify that .

Step 2. Let . Similarly to step 1, we can get

(3.12)

and

in (3.13)

Define
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If vanishing occurs, then , that is, in . From (3.12) we can get

and Lemma 10 holds with . If nonvanishing occurs, then there are a function and a sequence
such that in . Thus by (3.13) we have . Moreover,

in , which tells us that and .
At last, by iteration we obtain the results of the lemma.

Lemma 11. Suppose that and (h1)–(h3) hold. Then for almost every , has a positive
critical point.

Proof. From Lemmas 5, 6, and 7 we see that possesses a bounded (PS) sequence and
. By Remark 2 we suppose that in . Then there exists a subsequence of ,

still denoted by , satisfying in . If , then the result is obvious. Otherwise, we assume that
in . Then we claim that there exists a positive constant such that

(3.14)

Otherwise, applying the Lions lemma, we obtain that in for all . Similarly
to (3.9), we have

Since is a (PS) sequence, we obtain

and

Lith. Math. J., 64(2):138–162, 2024.
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that is,

(3.15)

(3.16)

We may assume that Then by (3.16) we obtain .
If , then by the Sobolev embedding theorem we get that

(3.17)

Joining (3.15), (3.16), and (3.17), we get that , which is a contradiction. Therefore
we get (3.14), which implies that there exists a sequence such that and

(3.18)

Let Then is also a (PS) sequence for . Furthermore, in .
The maximum principle implies , which ends the proof.

Proof of Theorem 1. In view of the proof of Lemma 11, has a bounded (PS) sequence for a.e.
. Moreover, and . Lemma 10 implies that

By Lemma 9 we have and . Hence . Therefore there exist
, and satisfying , , ,

. By and Lemma 9 we have

Thus by the Sobolev embedding theorem we get the boundedness of . It follows from the Pohozaev
identity, (2.3), and Lemma 1(vii) that



Ground state solutions for quasilinear Schrödinger equations 153

which implies that

Letting , from the boundedness of and we get that is bounded.
Namely, there is such that , and then we get that is bounded.
In fact, according to (ix) of Lemma 1 and the Sobolev inequality we can get

and

So there exists a constant such that

Then we get that is bounded in . Without loss of generality, we may assume that the limit of
exists. By Lemma 5 we know that is continuous from the left, and thus we have

Observing that

where , together with the boundedness of , we have

By Lemma 8, , where is independent of . Note that is bounded. Then following
the lines as in the proof of Lemma 11, we obtain that problem (1.2) has a positive solution . Moreover, by
Lemma 10

Finally, we try to find the ground state solution. Let

Lith. Math. J., 64(2):138–162, 2024.
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Since , we have . Lemma 9 implies that . Hence
. By the definition of there exists such that and .

Lemma 8 implies that . Note that . Following the same lines as in the proof of
Lemma 11 and Remark 2, we have that there is such that , in ,
and . By Lemma 10, and . The fact implies that .
Therefore satisfies and . The proof is complete.

4 Proof of Theorem 2

In this section, we assume that is not identical to a constant. We discuss the family of functionals

and

where .

Lemma 12. For , let be a nontrivial critical point for . Then there is a path
such that , , , , and

.

Proof. Define

where is a nontrivial critical point for .
It follows from the Pohozaev identity that

and

Hence

as
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and

as

Choose such that and set for and . This is the desired
path.

Remark 3. From Theorem 1 we know that has a ground state solution for .

Lemma 13. Assume that condition (V) and (h1)–(h3) are satisfied. Then for almost every ,
has a positive critical point.

Proof. For a.e. , it follows from Lemma 7 and Remark 2 that there exists , ,
such that in , , and

We claim that . Suppose by contradiction that . Similarly to the proof of Lemma 11, there exists
a sequence such that and in . Since
in , we have

Thus

Since in , we have . From Lemma 10, . Remark 3 implies that
has a ground state solution . Thus . It follows from Lemma 12 that

where is such that , , , . Thanks to
condition (V), we have for all . Thus the definition of implies that

which is a contradiction. Then we obtain . A standard argument shows that . Thus Lemma 13
holds.

Lemma 14. Suppose that conditions (h1)–(h3) and (V) hold. Let be a bounded (PS) sequence for
the functional with

Then there is a subsequence of , still denoted by , such that

(i) in with ;
(ii) .

Lith. Math. J., 64(2):138–162, 2024.
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Proof. Since is bounded, up to a subsequence, we may assume that in . Then we can
get that . Thus (i) holds.

Set . The Brezis–Lieb lemma leads to

(4.1)

Next, we claim that

(4.2)

and

in (4.3)

Denote

and

Then

and

Similarly to the proof of (3.4), the functions , , and enjoy the following proper-
ties under assumptions (V) and (h1)–(h3):

(4.4)

(4.5)

Since and , by Lemma 3 and (4.1) we have

(4.6)
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It follows from (4.4) and Lemma 3 that

(4.7)

Combining (4.7) with in , we get that

(4.8)

which gives (4.2).
It follows from (4.4) and (4.5) that for any , there exists a constant such that

(4.9)

By an argument similar to that in the proof of Lemma 8.1 in [27], for any , we have

(4.10)

Thanks to (4.6)–(4.10) and the fact in , we get that

which implies that . Hence

(4.11)

which gives (4.3).
We will consider two cases.
Case 1. Vanishing:

The Lions lemma implies that in with . It follows from (4.10) and (4.11) that

(4.12)

and

(4.13)

Thus we can get from (4.12) and (4.13) that

that is, .

Lith. Math. J., 64(2):138–162, 2024.
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Case 2. Nonvanishing: . There exist a constant and
such that

Then in ,

and thus . If

then similarly to the proof of Lemma 10, we can get this lemma. Otherwise, let .
Then

and either

(4.14)

or there is a positive constant such that

(4.15)

If (4.14) holds, then by case 1 and Lemma 10 we have

Thus . So we may assume that (4.15) holds, and continuing the above process, we get ,
, , such that

in

and

where . Since , we get

(4.16)
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We claim that there is , independent of , such that

(4.17)

In fact, by (h1)–(h3) and , for any , there exists a constant such that

Then we have

Choosing and combining this inequality with the Sobolev inequality, we have

which shows that (4.17) holds. By (4.16) and (4.17), at some , we get

Similarly to the proof of Lemma 10, we obtain the results of Lemma 14.

Proof of Theorem 2. By Lemma 13, for a.e. , has a bounded sequence such that

in

Then from Lemma 14 we obtain and . Therefore there exist and ,
satisfying

Then we can deduce that is bounded in . It follows from and the Pohozaev
identity that

Lith. Math. J., 64(2):138–162, 2024.
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By the Hölder inequality, the Sobolev inequality, assumption (V), and Lemma 2 we get

Since , we can get that

for some . Then using the same arguments as in the proof of Lemma 8, we obtain

Combining this inequality with the coercivity of , we get that is bounded in . Set

where . Then we have

By Lemma 8, , where is independent of . Note that is bounded. Then following
the same lines as in the proof of Lemma 14, we can get that in . Moreover, by Lemma 14 we
get

At last, we try to find the ground state solution. Define

Since . By the definition of there exists such that
, and . Lemma 8 implies that . Similarly to the proof of the

boundedness of above, we have . Following the same lines as the proof of Lemma 13, we
have in , . From Lemma 14 we get and . Moreover, implies
that . Therefore satisfies and . The proof is complete.
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