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The first moment of quadratic Dirichlet -functions
at central values
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Abstract. We obtain an asymptotic formula for the smoothly weighted first moment of quadratic Dirichlet -functions
at central values, with explicit main terms and an error term that is “square-root” of the main term.
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1 Introduction

An important and well-studied problem in analytic number theory is estimating moments of families of
-functions. Considering the family of Dirichlet -functions with a quadratic Dirichlet charac-

ter associated with the fundamental discriminant defined by the Kronecker symbol ,
a problem is understanding the asymptotic behavior of

as . In this note, we mainly focus on the first moment of the family of quadratic Dirichlet -functions
at central values. We know that the Kronecker symbol restricted to a fundamental discriminant actually is
a primitive character. For this family, Jutila [8] initially obtained an asymptotic formula summing over funda-
mental discriminants for the first moment:

with
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An error term of the same size was later given by Vinogradov and Takhtadzhyan [11] as a corollary. Precisely,
they studied the asymptotic behavior of the sum for and .
Using the method of double Dirichlet series and the theory of Eisenstein series, Goldfeld and Hoffstein [5] im-
proved this result with a better error term:

squarefree

for , where

They also dealt with the case of . We remark here that the definition of given in [5] is slightly
different from the Kronecker symbol, which leads to the difference of the above two leading coefficients. It
is implicit in [5] that we may obtain an error term of size for the smoothed first moment. In [5],
it is also pointed out that it seems unlikely to improve the error term without some substantial improvement
in the zero-free region for the Riemann zeta function, simply due to the state of knowledge on the distribu-
tion of square-free integers. Restricting to be odd and square-free, are real primitive characters with
conductor . Young [12] achieved the following result based on recursive arguments:

squarefree

for some linear polynomial depending on , where the error term agrees with the implicit result in [5].
Goldfeld and Hoffstein [5] also conjectured that the optimal error term should be , and this has
been observed in a numerical study by Alderson and Rubinstein [1].

In this note, we denote by the Kronecker symbol to distinguish it from the Jacobi symbol
. So let for any nonzero integer ( ), called the discriminant, be the

Kronecker symbol. Note that we can factor every such uniquely into with , where is
a fundamental discriminant, that is, is either square-free and ( ), or with square-free

( ). Then is a real primitive character of conductor . We know that is even (resp.,
odd) if (resp., ). For any -function, we write (resp., ) for the function given by the
Euler product defining but omitting those primes dividing (resp., not dividing) . We reserve the letter for
a prime throughout this note and write for for simplicity. Note that the Kronecker and Jacobi symbols
are connected by the quadratic reciprocity law

So we have

if

if

and

if

if
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It is well known (see [9, Thm. 9.13]) that every primitive quadratic Dirichlet character is of the form
for some fundamental discriminant . For such , the function has an analytic continuation to the
entirety of , and so does .

We indicate that the characters of -functions in the results mentioned above are in fact primitive. Gao
and Zhao [4] took the nonprimitive characters into consideration. Let denote the quadratic character
for an odd positive integer defined by the Jacobi symbol. They evaluated the first moment of the family
of averaged over all odd positive integer under the generalized Riemann hypothesis (GRH) as
follows:

(1.1)

where and , are two constants depending on . Let . For the smoothed
first moment of -functions at central values, they also deduced that

(1.2)

with a linear polynomial whose expression is omitted. Note that the error terms above are consistent with the
conjectural size given in [5] and the characters in the summation are allowed to be nonprimitive. Additionally,
they indicated that (1.1) and (1.2) also unconditionally hold with the error term .

Following Gao and Zhao [4], we will unconditionally evaluate the first moment of a family of quadratic
Dirichlet -functions averaged over all odd positive and finally give an explicit expression of .
Our main result is as follows.

Theorem 1. Let be a nonnegative Schwartz function with Mellin transform . Then for any and
, we have

(1.3)

It is natural that the constants in the main term coincide with those in (1.1). Notice that the error term in
(1.3) is uniform for , and therefore we can take the limit as to deduce the error term in the following
asymptotic formula for the smoothed first moment of quadratic Dirichlet -functions at central values.

Corollary 1. With the notation as above, for any , we have

where is a linear polynomial given by (4.4) with explicit coefficients depending only on the absolute con-
stants and .

Note that our error term is consistent with the implicit result obtained in [5] and [12]. We obtain an explicit
expression of .



The first moment of quadratic Dirichlet -functions at central values 213

2 Preliminaries

2.1 Gauss sums

We write for , where we recall that is the Kronecker symbol for integers
( ). Note that each is a primitive character modulo . Let stand for the trivial character,

that is, for all .
Given any Dirichlet character modulo and any integer , the Gauss sum is defined as

where

If is primitive, then , where . For the evaluation of , we cite the
following result from [3, Lemma 2.2].

Lemma 1.

(i) If ( ), then

if ,

if ( ),

if ( ).

(ii) If ( ), then

if ,

if ( ),

if ( ).

Recall that for any odd positive integer . We define the associated Gauss sum by

if ( ),

if ( )

The advantage of over is that is now a multiplicative function of . Furthermore,
we have the following result [10, Lemma 2.3].

Lemma 2. If , then . Let be the largest power of dividing
(put if ), and let be the Euler totient function. Then for , we have

if is even,

if is odd,

if is even,

if is odd,

if
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2.2 Functional equations for Dirichlet -functions

Let , and let be a primitive character modulo . If , then we have and .
Also, we put , so if is even (i.e., ) and if is odd (i.e.,

). Then we have the following functional equation [7, Thm. 4.15].

Lemma 3. With the above notations, extends to a meromorphic function on , which is entire if .
The completed -function

satisfies the functional equation

Recall that the Gauss sum is of modulus for primitive . In particular,

for odd and square-free . So we have for any real primitive character.
In some cases, we have to deal with the -functions with nonprimitive characters. So we quote the follow-

ing functional equation [3, Prop. 2.3] valid for all Dirichlet characters modulo , which plays a key role in
the proof of Theorem 1.

Lemma 4. With the above notations, let be a Dirichlet character modulo . Then we have

where (2.1)

Note that if is a primitive character, then Lemmas 4 and 3 coincide with each other.

2.3 Bounding -functions

For a fixed quadratic character modulo , let be the primitive character inducing . Then we have
for some fundamental discriminant (see [9, Thm. 9.13]). We now gather some estimates of .

Write uniquely so that and . The above notations imply that for any
integer ,

(2.2)

Observe that

We then deduce that

(2.3)
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where denotes the number of distinct prime factors of . When is a fundamental discriminant, we recall
that the convexity bound for (see [4, Eq. (2.9)]) satisfies

if

if

if

(2.4)

From (2.2), (2.3), and (2.4) we deduce that for any complex number ,

(2.5)

We also need the following large sieve result for quadratic Dirichlet -functions, which is a consequence
of [6, Thm. 2].

Lemma 5. Let denote the set of real primitive characters with conductor not exceeding . Then for
any complex number with and any , we have

(2.6)

Proof. From [6, Thm. 2] we get

The lemma now follows from the above and Hölder’s inequality.

2.4 Some results on multivariable complex functions

We gather here some results frommultivariable complex analysis. We begin with the notation of a tube domain.

DEFINITION 1. An open set is a tube if there is an open set such that

For a set , we define and then quote the following theorem from [2].

Lemma 6 [Bochner’s tube theorem]. Let be a connected open set, and let be a holomorphic
function on . Then has a holomorphic continuation to the convex hull of .

We denote by the convex hull of an open set . The next result states the modulus of holomorphic
continuations of multivariable complex functions [3, Prop. C.5].

Lemma 7. Assume that is a tube domain. Let be holomorphic functions, and let ,
be their holomorphic continuations to . If for all and is nonzero in , then also

for all .
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3 Proof of Theorem 1

For sufficiently large and , we define the Dirichlet series

(3.1)

We next investigate the analytic properties of following the arguments in [4].

3.1 First region of absolute convergence of

According to the first equality in (3.1), writing and arguing similarly to (2.3), we derive

(3.2)

where henceforth denotes the sum over square-free integers. Note that for square-free odd integer , is
a primitive character modulo . So we have

It follows from (3.2) and the above estimate that

(3.3)

Now (2.6) and partial summation implies that, except for a possible simple pole at , both sums of the
right-hand side expression in (3.3) are convergent for and . If , then it
follows from the functional equation, (2.6), and partial summation that is convergent for ,

, and . It follows that converges absolutely in the region

which can be simplified to

since is contained in the other two conditions.
On the other hand, writing with odd and square-free , we can recast the last expression

of (3.1) as

(3.4)
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Using the same method as before, we see that is also absolutely convergent in the region

except for a simple pole at arising from the summands with , which means that is a perfect
square.

Notice that the convex hull of and is

Hence Lemma 6 implies that converges absolutely in the region .

3.2 Residue of at

We see that has a pole at arising from the terms with from (3.4). To compute the
corresponding residue, we define the sum

For any , let be the multiplicative function such that for any prime and .
Then we have

Writing the last sum above as an Euler product, we get

(3.5)

where

(3.6)

It follows from (3.5) and (3.6) that except for a simple pole at , the functions and are
holomorphic in the region

(3.7)

and

(3.8)
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3.3 Second region of absolute convergence of

We infer from (3.4) that

(3.9)

Let us focus on . Observe that is a Dirichlet character modulo for any odd such that
but it may not be primitive. Now we can apply the functional equation (2.1) to in

the case and arrive at

(3.10)

where is given by the double Dirichlet series

Note that is initially convergent for sufficiently large and . To extend this region, we rewrite
as

(3.11)

Let , be two Dirichlet characters with conductors dividing . We define

(3.12)

Then following the arguments contained in [3, §6.4] and applying Lemma 1, we obtain that

(3.13)
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Now we write every integer uniquely as with square-free to derive that

(3.14)

where

(3.15)

The following result gives the required analytic properties of .

Lemma 8. With the notation as above and for , the functions , , have
meromorphic continuations to the region

(3.16)

Moreover, the only pole of in this region occurs when and at , and
this pole is simple. For and , away from the possible poles, we have

(3.17)

Proof. We first focus on . By Lemma 2 the summands in (3.15) are jointly multiplicative
functions of and . Moreover, we may assume that is odd since with conductor dividing .
These observations enable us to write as an Euler product such that

(3.18)

where

if

if
(3.19)

It is easy to see that for ,

if

if
(3.20)

Now, for any fixed ,

(3.21)
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In fact, the above sums only have finitely many nonzero terms. Recalling that is square-free, we deduce
from Lemma 2 that has the trivial bound

and for . The above estimates allow us to obtain that when and
,

(3.22)

More precisely, it follows from Lemma 2 that for , the Gauss sum

if

if

if

(3.23)

and for , ,

if

if or

if

(3.24)

Combining the above estimates together yields that for and ,

(3.25)

since . Then we derive from (3.19)–(3.25) that for , , and ,

(3.26)

Now we deduce the first statement of the lemma from (3.18), (3.19), and the above. We can see that the only
pole that is simple in the region given by (3.16) is at and this occurs when and .
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According to (3.24), we further obtain that when ,

(3.27)

It follows from (3.19), (3.22), and (3.27) that for , , , and ,

and the finite product

(3.28)

We conclude from (3.18), (3.19), (3.26), and (3.28) that for and ,

where the last bound follows from (2.5) and the absolute convergence of . This leads to the
estimate in (3.17).

Using the same method, we give a sketch of the proof for . For and
, we have

since (3.23) and (3.24) give that

if

if

This completes the proof of the lemma.

Now applying Lemma 8 with (3.13) and (3.14), we see that is defined in the region

This, together with (3.7) and (3.9), now implies that can be extended to
the region
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in which the condition coming from is redundant. So

We then easily observe that the convex hull of and equals

Now Lemma 6 gives that converges absolutely in the region .

3.4 Residue of at

With the notation as above, we deduce from (3.11), (3.13), (3.14), and Lemma 8 that has a pole at
and

(3.29)

It follows from Lemma 2 that for , , and or ,

(3.30)

Furthermore, we derive from (3.19), (3.21), (3.25), and (3.30) that for ,

(3.31)

where

(3.32)

For , is given by (3.20). It follows from (3.18)–(3.20), (3.31), and (3.32) that

(3.33)
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where

(3.34)

We deduce from (3.29), (3.33), and (3.34) that

Now (3.9), the functional equation (3.10), and the above lead to

Setting gives

(3.35)

Note that the functional equation in Lemma 3 for implies that

This allows us to rewrite e expression (3.35) as

(3.36)

3.5 Bounding in vertical strips

We will estimate in vertical strips following the arguments in [4]. For the previously defined re-
gions , we set

where is a fixed number with and . We further set

Observe that is analytic in the regions under our consideration. We apply (2.6) and partial
summation to bound the expression for given in (3.3) if and apply the functional equation
to convert the case back to the case . This gives that in the region ,
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Similarly, we bound the expression for given in (3.4) to see that in the region ,

Using the above estimates, we apply Lemma 7 to deduce that in the convex hull of and ,

(3.37)

Moreover, using estimates (2.5) for and (corresponding to the case with being the trivial
character) to bound given in (3.5), we see that in the region ,

(3.38)

Also, we deduce from (3.11)–(3.15) and Lemma 8 that

(3.39)

in the region

Now applying (3.9) and the functional equation (3.10) together with estimates (3.38) and (3.39), we obtain
that in the region ,

(3.40)

Finally, we conclude from (3.37), (3.40), and Lemma 7 that in the convex hull of and ,

Dividing by , we obtain the following bound valid in and away from the poles of :

(3.41)

3.6 Completing the proof

Using the Mellin inversion on , we see that for the function defined in (3.1),

(3.42)

where is the Mellin transform of given by
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Integration by parts renders that for any integer ,

(3.43)

We shift the line of integration in (3.42) to . The integral on the new line can be absorbed
into the -term in (1.3) upon using (3.41) and (3.43). We also encounter two simple poles at and

with the corresponding residues given by (3.8) and (3.36), respectively. Direct computations now
lead to the main terms given in (1.3). This completes the proof of Theorem 1.

4 Proof of Corollary 1

Following the proof of Theorem 1, we derive from (3.9) and (3.10) that for ,

(4.1)

with

It follows from (3.11)–(3.15) and Lemma 8 that for , the pole of the integrand occurs when
and . We derive from (3.13) that at this time,

(4.2)

Inserting into (4.1) and using the Mellin formula, we obtain that

(4.3)

Similarly, shifting the line of integration to , we will encounter a unique pole of
order and deduce the same error term as in Theorem 1. It suffices to estimate the main term. According to
the expansions of Laurent series

we see that the residue at gives the main term of (4.3). The residue is given by

Lith. Math. J., 64(2):210–226, 2024.
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We derive from the above, together with (4.1), (4.2), and the Laurent series, that

(4.4)

as and . This gives an explicit expression of and finishes the proof of Corollary 1.

Acknowledgments. The author is very grateful to Professor Peng Gao for his careful reading and helpful
comments. The author also would like to thank the anonymous referee for his/her valuable comments and
suggestions.

References

1. M.W. Alderson and M.O. Rubinstein, Conjectures and experiments concerning the moments of , Exp.
Math., 21(3):307–328, 2012, https://doi.org/10.1080/10586458.2012.687238.

2. S. Bochner, A theorem on analytic continuation of functions in several variables, Ann. of Math. (2), 39(1):14–19,
1938, https://doi.org/10.2307/1968709.
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