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Abstract. We prove the existence and uniqueness of solutions to the differential equations of higher order
, satisfying three-point boundary conditions that contain a nonhomogeneous term ,

, , , , , where , , the constants ,
are real numbers, and is a continuous function. By using finer bounds on the integral of kernel, the

Banach and Rus fixed point theorems on metric spaces are utilized to prove the existence and uniqueness of a solution to
the problem.
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1 Introduction

To study qualitative and quantitative properties of real-world problems, mathematical models are formulated.
The majority of these models involve the rate of change of the dependent variable in relation to the independent
variable, which results in differential equations under certain conditions. In general, the theory of differential
equations can be found in the study of deflection of curved beams, flow of a viscous fluid, theory of plate
deflection, and many more [1, 7, 8]. Because of its importance in theory and applications, there has been a lot
of interest in investigating the existence of solutions to boundary value problems over the past few decades.

In 1988, Gupta [10] proved the existence of solutions for the deformation of a flexible beam with fixed
ends, described by the equation
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In 2003, Ma [14] studied the existence of multiple positive solutions for the deformation of a flexible beam
with fixed one end and the other one free, described by the equation

In 2019, Li and Gao [13] demonstrated the solvability of deformation of a flexible beam with fixed ends in
the equilibrium state, described by

After that, the researchers studied the existence and uniqueness of solutions to the problems of third order;
see [3, 5, 17, 20, 21], and for fourth order, see [4, 9, 19, 22].

In view of these interesting studies, we consider the higher-order differential equation

(1.1)

satisfying the nonhomogeneous conditions

(1.2)

where , , the constants , are real numbers, and is a continuous
function. The results are proved using fixed point theorems based on metrics. This problem generalizes many
problems in the existing literature. Sun [23] and Almuthaybiri et al. [2] studied the third-order problems by
taking in (1.1) and (1.2). Sun et al. [24], Lakoud et al. [12], and Madhubabu et al. [15] addressed the
fourth-order problems ( ).

The problem must be well posed to study the real-world problems under specific conditions. If the problem
has a unique solution with given conditions, then several techniques can be used to verify the “well-posedness”
of problem [26].

We now suppose that the following conditions are satisfied:

(A1) the constants and satisfy , and
(A2) for all , where is a Lipschitz constant.

The paper is organized as follows. In Section 2, we obtain the solution of (1.1)–(1.2) by transforming it as
a related integral equation that contains a kernel and then establish the estimates of kernels under integration.
In Section 3, we establish the results on the existence of a unique solution to problem (1.1)–(1.2) using Banach
and Rus fixed point theorems and also provide some examples.

2 Preliminary findings

We obtain the solution of (1.1) and (1.2) by writing the related equivalent integral equation involving a kernel.
After that, we determine finer estimations of kernels under integration.

Let . Then we obtain a unique solution to the problem

(2.1)

with conditions specified in (1.2).
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Lemma 1. (See [16,25].) If condition (A1) holds, then the unique solution to equations (2.1) and (1.2) is given
by

(2.2)

where

(2.3)

and

Proof. The integral equation corresponding to (2.1) is

(2.4)

where are constants. Using conditions (1.2), we obtain the following equations:

where

Solving the above, we get
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Substituting these values into (2.4), we have

To prove the uniqueness of the solution, let be another solution of (2.1) and (1.2). Take .
Then

(2.5)

(2.6)

The solution to (2.5) is
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where are constants. Using conditions (2.6), it can be expressed as , where

...
...

...
...

...

and

Since the determinant of , , is nonzero, the system has a trivial
solution only, and hence for all . The proof is complete.

Remark 1. Differentiating Eq. (2.2) with respect to up to times yields an equivalent boundary value problem
(2.1) and (1.2).

Lemma 2. For all , the kernel is nonnegative.

Proof. The positivity of is proved using simple algebraic computations.

Lemma 3. The kernel satisfies the integral inequality

for all (2.7)

Proof. Consider

Let . Then the maximum value of is attained at
by application of results from the fundamental calculus and is given by

which gives inequality (2.7).

Lemma 4. The kernel satisfies the integral inequality
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Proof. We have

Lemma 5. The kernel satisfies the integral inequality

Proof. We have

The following Banach and Rus fixed point theorems are crucial in demonstrating our results.

Theorem 1. (See [6].) Let be a metric on a nonempty set , and suppose that the pair constitutes
a complete metric space. If satisfies the inequality

for all , where , then has a unique fixed point , that is, such that = .

Theorem 2. (See [18].) Let and be two metrics on a nonempty set , and suppose the pair con-
stitutes a complete metric space. Suppose is a continuous function with respect to the metric
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on and satisfies the following inequalities for :

where (2.8)
and

where (2.9)

Then has a unique fixed point , that is, such that = .

3 Main results depending on metrics

Let be the set of all continuous real-valued functions on . Define the metric on by

(3.1)

and let

for . Then we can see that the ordered pair is a complete metric space, and the ordered pair
is a metric space. It is clear that the useful relationship between the two metrics and is given by

for all (3.2)

Define the operator by

for all

where the kernel is given in (2.3).
Note that is a solution of (1.1)–(1.2) if and only if it satisfies

for all (3.3)

Theorem 3. Suppose conditions (A1) and (A2) are satisfied. If and satisfy the inequality

(3.4)

then problem (1.1)–(1.2) admits a unique solution.

Proof. For establishing the uniqueness of solution to the boundary value problem (1.1)–(1.2), the operator
has a unique fixed point , that is, . Such a fixed point will also lie in , as we can
directly see by differentiating the integral equation (3.3).
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For all and , using (A2), we obtain

From this it follows that

where

By applying (3.4) we can see that and thus the operator satisfies the conditions of Theorem 1.
This shows that the operator has a unique fixed point and is a solution of (1.1)–(1.2).

In accordance with Rus’ theorem, we employ two metrics to establish the uniqueness of (1.1)–(1.2).

Theorem 4. Suppose that conditions (A1) and (A2) are satisfied. If two constants and satisfy
and

(3.5)

then problem (1.1)–(1.2) admits a unique solution.

Proof. For establishing the uniqueness of solution to the boundary value problem (1.1)–(1.2), the operator
has a unique fixed point that is, such that . Such a fixed point will also lie in , as
we can directly see by differentiating the integral equation (3.3). First, we demonstrate that (2.8) of Theorem 2
holds.

Using (A2) and Hölder’s inequality [11], for all and , we obtain
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Now we define

We conclude that

for some and for all (3.6)

and so inequality (2.8) of Theorem 2 is satisfied. Now applying inequality (3.2) to (3.6), we get

for all

Thus, for any given , we can take such that , which implies that
. Hence the operator is continuous on with respect to the metric given in (3.1).

Now we show that inequality (2.9) of Theorem 2 is satisfied. For all and for , we obtain

and so we conclude

where

By applying (3.5) we can see that and, consequently, the operator satisfies all of the conditions of
Theorem 2. This shows that the operator has only one fixed point, which is a solution of (1.1)–(1.2).

Examples are provided to support our established results.
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Example 1. Consider the third-order differential equation

(3.7)

with

(3.8)

Clearly, . Then

and

Hence by Theorem 3 problem (3.7)–(3.8) has a unique solution.
To determine the numerical solution of the above problem, from Eq. (3.7) we obtain

and

Therefore the Taylor series solution is

Using the condition we get

Hence

The graph of the solution is displayed in Fig. 1.

Figure 1.
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Example 2. Consider the fourth-order differential equation

(3.9)

with

(3.10)

Clearly, . Then

For convenience, taking and , by algebraic computations we obtain

and so

Hence by Theorem 4 problem (3.9)–(3.10) has a unique solution.
To determine the numerical solution of the above problem, from Eq. (3.9) we obtain

Therefore the Taylor series solution is

Using the condition , we get

Hence

The graph of the solution is displayed in Fig. 2.

Remark 2. The Rus theorem has two metrics that are not necessarily equal. The space in the Rus theorem is
considered to be complete with respect to the first of these metrics but not necessarily complete with respect
to the second one. In addition, the operator is assumed to be contractive concerning the second metric. Hence
the Rus theorem applies to a wider class of problems even though the interval length is large when compared
to the Banach theorem.
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Figure 2.

Let us consider an example illustrating Remark 2.

Example 3. Consider the third-order differential equation

(3.11)

with

(3.12)

Clearly, . Then

and

Therefore Theorem 3 is not applicable to problem (3.11)–(3.12).
For Theorem 4, taking and , by algebraic computations we obtain

and so

Hence by Theorem 4 problem (3.11)–(3.12) has a unique solution.
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