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Abstract. We show that the distribution class L(γ) \ OS is not closed under infinitely divisible distribution roots for
γ > 0, that is, we provide some infinitely divisible distributions belonging to the class, whereas the corresponding Lévy
distributions do not. In fact, one part of these Lévy distributions belonging to the classOL\L(γ) have different properties,
and the other parts even do not belong to the class OL. Therefore, combining with the existing related results, we give
a completely negative conclusion for the subject and Embrechts–Goldie conjecture. Then we discuss some interesting
issues related to the results of this paper.
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1 Introduction and main results

In this paper, all limit relations refer to x → ∞, all distributions are supported on [0,∞), and the tailed
distribution of a distribution V is denoted by V = 1 − V , which respectively constitute the distribution
function V (x) = V (−∞, x] and tail distribution function V (x) = V [x,∞) for all x ∈ (−∞,∞), unless
otherwise stated.

LetH be an infinitely divisible distribution with the Laplace transform

∞∫

0

exp{−λy}H(dy) = exp

{
−aλ−

∞∫

0

(
1− eλy

)
ν(dy)

}
, Reλ � 0,
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where a is a nonnegative constant, and ν is a Borel measure on (0,∞), called a Lévy measure, that satisfies
μ = ν(1,∞) < ∞ and

∫∞
0 min{1, y2}ν(dy) < ∞ and generates the Lévy distribution F such that

F (x) =
ν(1, x]

μ
1(1,∞)(x), x ∈ (−∞,∞).

Then the distribution H admits the representation H = H1 ∗ H2, where ∗ denotes the convolution binary
operation,H1(x) = O(e−βx) for all β > 0, and

H2(x) = e−μ
∞∑
k=0

F ∗k(x)μk

k!
, x ∈ (−∞,∞). (1.1)

The distribution H2 is called the compound Poisson distribution generated by the Lévy distribution F and
Poisson distribution with parameter μ. See, for example, Feller [11, pp. 450, 571], Embrechts et al. [10], or
Sato [16, Chap. 4].

Suppose that X is a certain distribution class. If for an infinitely divisible distribution H and its Lévy
distribution F ,H ∈ X implies F ∈ X , then the class is said to be closed under infinitely divisible distribution
roots; otherwise, we say that the class is not closed under the roots.

We now introduce some distribution classes related to our theme. First, we introduce some notations.
Let g1 and g2 be eventually positive functions. We denote gi,j = lim sup gi(x)/gj(x) for 1 � i �= j � 2.

Next, denote gi(x) = O(gj(x)) if gi,j < ∞, gi(x) � gj(x) if gi,j < ∞ and gj,i < ∞, gi(x) � gj(x) if
gi,j � 1, g1(x) ∼ g2(x) if g1,2 = g2,1 = 1, and gi(x) = o(gj(x)) if gi,j = 0.

We say that a distribution V belongs to the distribution class L(γ) for some γ � 0 if V (x) is positive and

V (x− t) ∼ eγtV (x) for each t > 0.

Further, if a distribution V belongs to the class L(γ) for some γ � 0, m(V ) =
∫∞
0 eγyV (dy) < ∞, and

V ∗2(x) ∼ 2m(V )V (x),

then we say that the distribution V belongs to the distribution class S(γ). In particular, the classes L = L(0)
and S = S(0) are called the long-tailed and subexponential distribution classes, respectively.

The classes L(γ) and S(γ) were respectively introduced by Chistyakov [3] for γ = 0 and by Chover et
al. [4, 5] for γ > 0. Note that in the definition of the class L(γ), if γ > 0 and the distribution V is lattice,
then x and t are restricted to multiples of the lattice span; see Bertoin and Doney [1, Rem. 1]. If γ = 0, then
because V is supported on [0,∞) in this paper, the requirement V ∈ L is not needed in the definition of the
class S; see Chistyakov [3, Lemma 2].

Moreover, the class ∪γ�0L(γ) is properly contained in the following distribution class introduced by
Shimura and Watanabe [18]. We say that a distribution V belongs to the classOL if V (x) is positive and

C∗(V, t) = lim sup
V (x− t)

V (x)
< ∞ for each t > 0.

Correspondingly, the class ∪γ�0S(γ) is properly contained in the following distribution class introduced by
Klüppelberg [13]. We say that a distribution V belongs to the classOS if

C∗(V ) = lim sup
V ∗2(x)
V (x)

< ∞.

Since V supported on [0,∞), V (x) > 0 for all x ∈ (−∞,∞).



Closure under infinitely divisible distribution roots 103

The class S(γ) is closed under infinitely divisible distribution roots; see Embrechts et al. [10] for γ = 0
and Sgibnev [17], Pakes [14, 15], and Watanabe [19] for γ > 0. In addition, Watanabe and Yamamuro [21]
showed that the class OS is closed under infinitely divisible distribution roots on the condition that the Lévy
distribution F is infinitely divisible. Recently, Cui et al. [7] proved that the class L(γ) ∩ OS for some γ � 0
is closed under infinitely divisible distribution roots with some appropriately restrictive conditions.

However, generally, the classOS is not closed under the infinitely divisible distribution roots; see Shimura
and Watanabe [18, Prop. 1.1(iv)]. Moreover, Xu et al. [22, Thm. 2.2] for γ = 0 and Xu et al. [24, Thm. 1.1]
for γ > 0 showed that the class L(γ) ∩ OS is also not closed under the corresponding roots. Recently, Wang,
Cui, and Xu derived a similar result for the class L \ OS in a book being written.

Therefore the closure problem corresponding to the class L(γ) \ OS for some γ > 0 attracts our attention.
To this end, we need to find some suitable Lévy distribution F to give a negative answer to this problem. These
distributions have some different properties or satisfy some different conditions, for example,

lim inf
F (x− t)

F (x)
� eγt for each t > 0, (1.2)

or

F (x) = o
(
F ∗2(x)

)
. (1.3)

Then according to these properties or conditions, we can give rich and diverse distributions shown in the
following three types:

(i) F ∈ OL \ (L(γ)∪OS), and both conditions (1.2) and (1.3) are satisfied;
(ii) F ∈ OL \ (L(γ)∪OS), and condition (1.3) is satisfied, but condition (1.2) is not;
(iii) F /∈ OL, and both conditions (1.2) and (1.3) are satisfied.

Theorem 1. In types (i), (ii), and (iii), there respectively exists a Lévy distribution F with m(F ) = ∞ such
thatH , H2, and F ∗k for all k � 2 belong to the class L(γ) \ OS for some γ > 0.

Combining with the corresponding results mentioned above and Theorem 1 of this paper, we know that for
each γ � 0, the classes L(γ) ∩ OS and L(γ) \ OS are not closed under infinitely divisible distribution roots,
where the corresponding Lévy distribution F belongs to the classOL \ (L(γ)∪OS) or OLc.

Remark 1. Here we make some explanations for conditions (1.2) and (1.3).
(i) Conditions (1.2) and (1.3) play an important role in the proof of the theorem; see Lemmas 1, 2, and 4.

Condition (1.2) also is used on other occasions; for example, see Lemma 7 and Theorem 7 of Foss and
Korshunov [12], Lemma 1, Theorem 2, Corollary 1, Theorem 6, and Remark 5(ii) of Xu et al. [24], and
Theorem 1.1 of Cui et al. [7].

(ii) Theorem 1.1 of Xu et al. [24] shows that for each γ > 0, there is a Lévy distribution F ∈ OL \
(L(γ)∪OS) such thatm(F ) < ∞ and condition (1.2) is satisfied, whereas condition (1.3) does not hold, and
H, H2, and F ∗k for all k � 2 belong to the class (L(γ) ∩ OS) \ S(γ). Combining with the properties of
distributions in type (ii), we know that conditions (1.2) and (1.3) cannot imply each other.

(iii) Clearly, condition (1.2) is satisfied when γ = 0 or F ∈ L(γ) for some γ > 0. Of course, many
distributions outside L(γ) also meet the condition; see, for example, distributions in the proof for types (i)
and (iii) below. However, some distributions that satisfy neither condition (1.2) nor condition (1.3) have been
found in Example 1 of Foss and Korshunov [12], Proposition 3.2 and Remark 4.1 of Chen et al. [2], and
Theorem 1.1 of Watanabe [20].

We organize the paper as follows. We prove Theorem 1 in Section 2. In Section 3, we deeply discuss some
interesting questions for some distributions and conditions in the paper.

Lith. Math. J., 64(1):101–114, 2024.
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2 Proof of Theorem 1

2.1 Proof for type (i)

We first construct some light-tailed Lévy distributions that come from the following heavy-tailed distributions.
For any s � 1 and α ∈ [1/2, 1), we take r = 1 + 1/α and a large enough such that ar−1 > 2s+2. Define

the sequence of numbers

A =
{
a0 = a, an = ar

n

, n � 1
}
.

Then we take b > s and define the heavy-tailed distribution with density

f0(x) = Cbs−1
∞∑
n=0

x1/s−1a−α−1/s
n

((
xa−1

n

)1/s − 1
)b−1

1[an,2san)(x), x ∈ (−∞,∞).

Integrating the density gives the distribution F0 such that

F0(x) = 1(−∞,a0)(x)

+

∞∑
n=0

(( ∞∑
i=n

Ca−α
i − Ca−α

n

((
x

an

)1/s

− 1

)b
)
1[an,2san)(x)

+

( ∞∑
i=n+1

Ca−α
i

)
1[2san,an+1)(x)

)
, x ∈ (−∞,∞), (2.1)

where C is a constant such that F (a0) = 1. Clearly, when x ∈ [an, 2
san), by b > s � 1 and

f0(x) = Cbs−1a−α−1/s
n

(
x(1/s−1)/(b−1)+1/sa−1/s

n − x(1/s−1)/(b−1)
)b−1

we know that f0 is an increasing function. In addition, f0 is locally long-tailed in the sense that if x, x − t ∈
[an, 2

san), then f0(x− t) ∼ f0(x) as n → ∞.
From now on, we denote by F1(0) the set of all distributions of the form (2.1). Further, for some γ > 0

and F0 ∈ F1(0), we define the distribution F related to γ and F0 by

F (x) = 1(−∞,0)(x) + e−γxF0(x)1[0,∞)(x), x ∈ (−∞,∞). (2.2)

Let

F1(γ) =
{
F in (2.2): F0 ∈ F1(0)

}
.

Then we take F ∈ F1(γ) to prove Theorem 1 for type (i) in three steps.
For the pair of distributionsF0 andF1 mentioned above, it is easy to show thatF0 ∈ OL\Lwith expectation

μ(F0) = ∞. Thus m(F ) = ∞ and F ∈ OL \ (L(γ) ∪ OS). Further, H2, H, and F ∗k for all k � 1 do not
belong to the class OS . Condition (1.2) holds by F0 ∈ F0 and (2.2), whereas condition (1.3) results from
μ(F0) = ∞ and the following lemma, which is Lemma 4(iii) of Xu et al. [24].

Lemma 1. Let F0 and F be a pair of distributions defined by (2.2). If μ(F0) = ∞, then (1.3) holds for the
distribution F .

Secondly, we prove that F ∗k ∈ L(γ) for all k � 2. To this end, we need another lemma, which is due to
Corollary 1(ii) of Xu et al. [24].
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Lemma 2. For some n � 2, F ∗k ∈ L(γ) for some γ � 0 and all k � n + 1 if F ∗n ∈ L(γ) and either of the
following two cases is true:

(i) condition (1.2) holds, and |F (x− t)− eγtF (x)| = o(F ∗n(x)) for each t > 0;
(ii) condition (1.3) holds.

According to condition (1.3) and Lemma 2(ii), we only need to show that F ∗2 belongs to the class L(γ).
To this end, we also need the following result, which comes from Theorem 7 of Xu et al. [24]. As Remark 6
of Xu et al. [24] points out, neither F0 and F are required to belong to the class L(γ) in the following lemma.

Lemma 3. Let F0 be an absolutely continuous distribution with density f0. Assume that for all t > 0, there
are constants x0 > 0 and C = C(F0, t, x0) such that

F0(x− t)− F0(x) � C
(
f0(x− t) + f0(x)

)
for all x � x0 (2.3)

and ∫

[x/2, x]

F 0(x− y)F0(dy) = o

( ∫

[x/2, x]

F 0(x− y)F 0(y) dy

)
. (2.4)

If γ > 0 and F is of the form (2.2), then F ∗2 ∈ L(γ).
Remark 2. Here we make some explanations for conditions (2.3) and (2.4).

(i) Conditions (2.3) and (2.4) cannot imply each other. See Proposition 1 for details. This fact is not
revealed by Xu et al. [24].

(ii) In Theorem 7 of Xu et al. [24] the condition corresponding to (2.3) is

F0(x− t)− F0(x) = O
(
f0(x− t) + f0(x)

)
. (2.5)

However, this difference between conditions (2.3) and (2.5) has no effect on the conclusion of the lemma. In
fact, condition (2.3) is more rigorous, because f0(x− t) + f0(x) = 0 in some cases; see the following proof.

We now continue to prove Theorem 1 for type (i).
Note that f0(x) is an increasing function on x ∈ [an, 2

san), so if t > 0 and x ∈ [an, 2
san) is large enough,

then

F 0(x− t)− F 0(x) =

∫

(x−t, x]

f0(y) dy =

∫

(max{x−t, an},x]

f0(y) dy

� tf0(x) = O
(
f0(x− t) + f0(x)

)
,

where the second equality is due to an − 2san−1 → ∞ as n → ∞. This ensures that if t > 0 is fixed and x is
sufficiently large, then x− t > 2san−1.

If x ∈ [2san, 2
san + t), then because f0(x) is a locally long-tailed and increasing function on [an, 2

san)
and an � 2san − t � x− t < 2san, we have

F 0(x− t)− F 0(x) =

∫

(x−t,min{x, 2san}]

f0(y) dy � tf0
(
2san

)

∼ tf0(x− t) = O
(
f0(x− t) + f0(x)

)
.

Lith. Math. J., 64(1):101–114, 2024.
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If x ∈ [2san + t, an+1), then clearly

F 0(x− t)− F 0(x) = 0 = f0(x− t) + f0(x).

The above three facts imply that (2.3) is true. Thus, to prove that F ∗2 ∈ L(γ), by Lemma 3 it suffices to prove
that

W0(x) =

∫

[x/2, x]

F 0(x− y)F0(dy) = o

( ∫

[x/2, x]

F 0(x− y)F 0(y) dy

)
= o

(
T0(x)

)
, (2.6)

where

T0(x) =

∫

[x/2, x]

F0(x− y)F0(y) dy.

To this end, for all integer n � 1, sinceW0(x) = 0 for x ∈ [2s+1an, an+1), we only need to deal with W0(x)
for x in the following two cases:

(i) x ∈ [an, 2
s+1an − a

5/6
n ) and

(ii) x ∈ [2s+1an − a
5/6
n , 2s+1an).

In case (i), by (2.1), since 2x � a
5/6
n and

F0

(
x+ a

5/6
n /2

2

)
� F0

(
2san − a

5/6
n

4

)
,

we have

W0(x) =

∫

[x/2, x]

F0(x− y)f0(y) dy � f0
(
2san

) ∫

[x/2, x]

F0(x− y) dy

� 2Cbs−1a−α−1
n

∫

[0, x/2]

F0(y) dy � 2Cbs−1a−α−1
n

∫

[0,2san]

F0(y) dy = O
(
a−2α
n

)
,

and since f0(y) is an increasing function when y ∈ [an, 2
san),

T0(x) =

∫

[x/2, x]

F0(x− y)F0(y) dy �
∫

[x/2, (x+2−1a5/6
n )/2]

F0(x− y)F0(y) dy

� a5/6n F0

(
x

2

)
F0((x+ 2−1a

5/6
n )/2)

4
� a5/6n

F0
2
(2san − 4−1a

5/6
n )

4

= a5/6n

(
∫
[2san−4−1a5/6

n ,∞] f0(y) dy)
2

4
� a5/6n

(
∫
[2san−4−1a5/6

n , 2san]
f0(y) dy)

2

4

� a5/6n

(4−1a
5/6
n f0(2

san − 4−1a
5/6
n ))2

4
� a−2α+1/2

n ,

which implies

W0(x)

T0(x)
=

∫
[x/2, x] F0(x− y)f0(y) dy

T0(x)
= O

(
a−1/2
n

) → 0, n → ∞. (2.7)
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In case (ii), by (2.1), since F0(2
san) =

∑∞
i=n+1 Ca−α

i , x/2 � 2san, and an+1 = arn for all n � 1, we have

T0(x) =

∫

[x/2, x]

F0(x− y)F0(y) dy � F0

(
x

2

) ∫

[0, x/2]

F0(y) dy

� F0

(
2san

) ∫

[0, x/2]

F0(y) dy � Ca−α
n+1

∫

[0, x/2]

F0(y) dy

= Ca−α−1
n

∫

[0, x/2]

F0(y) dy.

Thus, also by (2.1), since

x− 2san � 2san − a5/6n and 2san − a5/6n � x

2
� 2san,

we have

W0(x)

T0(x)
�

∫
[x/2, 2san]

F0(x− y)f0(y) dy

Ca−α−1
n

∫
[0, x/2] F0(y) dy

� bs−1

∫
[2san−a

5/6
n , 2san]

F0(y) dy∫
[an/2, an]

F0(y) dy

� bs−1F0(2
san − a

5/6
n )a

5/6
n

F0(an)an/2
= O

(
a−1/3
n

) → 0 as n → ∞. (2.8)

Therefore by (2.7) and (2.8), (2.6) holds.
Finally, we prove that H2 and H belong to the class ∈ L(γ). For H2, by (1.1) it is easy to see that for any

0 < ε < 1, there is a positive integerM = M(F, ε) such that

∞∑
k=M

e−μμk+1F ∗k(x)
(k + 1)!

� εH2(x), x ∈ [0,∞). (2.9)

Therefore, according to the following lemma given by Theorem 4 of Xu et al. [24], by (2.9), since F ∗k ∈ L(γ)
for all k � 2, using (1.2) (or (1.3)), we haveH2 ∈ L(γ).
Lemma 4. Let F be a distribution such that F ∗n ∈ L(γ) for some n � 1 and some γ � 0, and let τ be
a random variable satisfying P(τ = k) = pk for all nonnegative integer k and

∑∞
k=0 pk = 1. Assume that

P(τ � n) > 0 and the following condition is satisfied: for any 0 < ε < 1, there is a positive integer
M = M(F, ε) such that

∞∑
k=M

pk+1F ∗k(x) � εF ∗τ (x), x ∈ [0,∞),

where F ∗τ (x) =
∑∞

k=0 pkF
∗k(x), x ∈ (−∞,∞). Further, suppose that condition (1.3) or the condition

lim inf
F ∗k(x− t)

F ∗k(x)
� eγt for each t > 0 and all 1 � k � n− 1

is satisfied. Then F ∗τ ∈ L(γ).
ForH , the conclusion directly comes fromH = H1∗H2,H2 ∈ L(γ),H1(x) = O(e−βx) for some selected

β > γ, and Lemma 2.1 of Pakes [14].

Lith. Math. J., 64(1):101–114, 2024.
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2.2 Proof for type (ii)

For some γ > 0, let F be a distribution depending on γ such that

F (x) = 1(−∞,0)(x) +

∞∑
k=0

e−γx + e−γek+1

2
1[ek,ek+1)(x), x ∈ (−∞,∞).

According to the explanations and the reference after Theorem B of Watanabe [20], we know that F ∈ OL \
L(γ), m(F ) = ∞, F ∗2 ∈ L(γ), and F ∗2(x) ∼ G∗2(x)/4, where G is a standard exponential distribution
with index γ > 0. From the above facts we have F /∈ OS and (1.3) is satisfied. However, (1.2) does not hold,
that is, for all t > 0,

lim inf
k→∞

F (ek+1 − 2t)

F (ek+1 − t)
=

e2γt + 1

eγt + 1
< eγt.

Further, along the proof line of type (i), by (1.3) we can prove that H , H2, and F ∗k ∈ L(γ) \ OS for all
k � 3.

2.3 Proof for type (iii)

Define F3(0) as the class of distributions whose tail functions have the form

F0(x) = 1(−∞, a0)(x)

+ C

∞∑
n=0

(( ∞∑
i=n

a−α
i − a−α

n

(
a−1
n xs − 1

))
1[a1/s

n , (2an)1/s)
(x)

+

∞∑
i=n+1

a−α
i 1[(2an)1/s, a

1/s
n+1)

(x)

)
(2.10)

with density

f0(x) = Cs

∞∑
n=0

xs−1a−α−1
n 1[a1/s

n , (2an)1/s)
(x), x ∈ (−∞,∞), (2.11)

where s ∈ (1, 2), α ∈ ((s − 1)/s, 1/2), and a, r, and the sequence A = {a0, an, n � 1} are defined as
for F1(0). Further, for some γ > 0, let the distribution set

F3(γ) =
{
F in (2.2): F0 ∈ F3(0)

}
.

According to the proof of Proposition 2.1 in Xu et al. [22], we have F0 /∈ OL with expectation μ(F0) = ∞
and F ∗2

0 ∈ L \ OS , which implies F /∈ OL and m(F ) = ∞. Therefore F ∗k for all k � 3, H2, andH do not
belong to the class OS.

For the remaining conclusions, similarly to the proof for type (i), we only need to show (2.6). To this end,
for each integer n � 1, sinceW0(x) = 0 for x ∈ [2(2an)

1/s, a
1/s
n+1), we only need to deal with W0(x) for x in

the following three cases:

(i) x ∈ [a
1/s
n , 2(2an)

1/s − a
3/4s
n ),

(ii) x ∈ [2(2an)
1/s − a

3/4s
n , 2(2an)

1/s − as
−1−4−1

n ), and
(iii) x ∈ [2(2an)

1/s − as
−1−4−1

n , 2(2an)
1/s).
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First, for case (i), by (2.10) and

F0

(
x

2

)
� F0

(
(2an)

1/s − 2−1a3/4sn

)

we have

W0(x)

T0(x)
�

2Csa−α−s−1

n

∫
[x/2, x] F0(x− y) dy

F0

(
(2an)1/s − 2−1a

3/4s
n

) ∫
[x/2, (x+2−1a3/4s

n )/2] F0(y) dy

�
8Csa

−α−7·(4s)−1

n

∫
[0, (2an)1/s−2−1a

3/4s
n ] F0(y) dy

F0
2
((2an)1/s − 4−1a

3/4s
n )

= O
(
a−1/4s
n

) → 0, n → ∞. (2.12)

Then for case (ii), it follows from (2.10) and

(2an)
1/s − 2−1a3/4sn � x

2
� y � (2an)

1/s

that

W0(x)

T0(x)
�

∫
[x/2, (2an)1/s]

F0(x− y)F0(dy)∫
[x/2, (2an)1/s]

F0(y)F0(x− y) dy

� Csa
−α−(4s)−1

n F0(x− (2an)
1/s)

F0((2an)1/s − 2−1as
−1−4−1

n )
∫
[(2an)1/s−2−1as−1−4−1

n , (2an)1/s−4−1as−1−4−1
n ]

F0(y) dy

� Csa
−α−5·(4s)−1+4−1

n F0((2an)
1/s − a

3/4s
n )

F0
2
((2an)1/s − 4−1as

−1−4−1

n )

= O
(
a−3·4−1(2s−1−1)
n

) → 0, n → ∞. (2.13)

Finally, we consider case (iii). From (2.10) and (2.11) we have

W0(x) =

∫

[x/2, x]

F0(x− y)F0(dy) �
∫

[x/2,(2an)1/s]

F0(x− y)F0(dy)

= f0
(
(2an)

1/s
) ∫

[x/2, (2an)1/s]

F0(x− y) dy
z=x−y
= f0

(
(2an)

1/s
) ∫

[x−(2an)1/s, x/2]

F0(z) dz

� f0
(
(2an)

1/s
) ∫

[(2an)1/s−as−1−4−1
n , (2an)1/s]

F0(z) dz

� f0
(
(2an)

1/s
)
as

−1−4−1

n F0

(
(2an)

1/s − as
−1−4−1

n

)

= O
(
a−2α−1/2
n

)
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and

T0(x) =

∫

[x/2, x]

F0(x− y)F0(y) dy � Ca−α−1
n

∫

[0, x/2]

F0(y) dy � Ca−α−1
n

∫

[a1/s
n /2, a1/s

n ]

F0(y) dy

=
Ca

−α−1+1/s
n F0(a

1/s
n )

2
∼ C2a

−2α−1+1/s
n

2
,

which implies

W0(x)

T0(x)
=

∫
[x/2, x] F0(x− y)F0(dy)∫
[x/2, x] F0(x− y)F0(y) dy

= O
(
a2

−1−s−1

n

) → 0, n → ∞. (2.14)

Combining (2.12)–(2.14), we get (2.6).
Therefore we complete the proof of Theorem 1.

3 Some remarks

In this section, we make some explanations for conditions (2.3) and (2.4) in Lemma 3, the Embrechts–Goldie
conjecture, the weakly tail equivalence of some distributions in types (i)–(iii), and the influence of convolution
on distribution shape.

3.1 On conditions (2.3) and (2.4)

Proposition 1. Conditions (2.3) and (2.4) in Lemma 3 do not imply each other.

Proof. On one hand, let X be a random variable with distribution F0 in Example 3.3 of Xu et al. [23] such
that

F0(x) = 1(−∞, 0)(x) +
(
x−1
1

(
x−α
1 − 1

)
x+ 1

)
1[0, x1)(x)

+

∞∑
n=1

((
x−α
n +

(
x−α−2
n − x−α−1

n

)
(x− xn)

)
1[xn, 2xn)(x) + x−α−1

n 1[2xn, xn+1)(x)
)
,

x ∈ (−∞,∞), where α ∈ (5,∞), x1 > 4α, and xn+1 = x1+α−1

n , n � 1. According to Example 3.3 of Xu et
al. [23], we already know that F0 /∈ L and EX2 < ∞. Further, we denote the density of X by f0. Then for
all t > 0 and n � 1, when x ∈ [xn, 2xn + t),

F0(x− t)− F0(x) � tx−α−1
n = O

(
f0(x− t) + f0(x)

)
,

and when x ∈ [2xn + t, xn+1),

F0(x− t)− F0(x) = f0(x− t) + f0(x) = 0.

Hence condition (2.3) holds for the distribution F0. Also, let

W0(x) =

∫

[x/2, x]

F0(x− y)F0(dy) and T0(x) =

∫

[x/2, x]

F0(x− y)F0(y) dy.
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From

W0(2xn) =
(
x−α−1
n − x−α−2

n

) ∫

[xn, 2xn]

F0(2xn − y) dy =
(
x−α−1
n − x−α−2

n

) ∫

[0, xn]

F0(z) dz

and

T0(2xn) =

∫

[xn, 2xn]

F0(2xn − y)F0(y) dy

=

∫

[xn, 2xn]

F0(2xn − y)
((
x−α
n +

(
x−α−2
n − x−α−1

n

)
(y − xn)

))
dy

=

∫

[0, xn]

F0(z)
(
x−α−1
n +

(
x−α−1
n − x−α−2

n

)
z
)
dz

� x−α−1
n

∫

[0, xn]

F0(z)(1 + z) dz

we have

W0(2xn)

T0(2xn)
�

∫
[0,xn]

F0(y) dy∫
[0,xn]

F0(y)(1 + y) dy
→ EX

EX +EX2/2
> 0 as n → ∞,

which implies that F0 does not satisfy condition (2.4).
On the other hand, let F1 be the distribution such that

F1(x) = 1(−∞,1)(x) +

∞∑
n=1

(
1[2n−1,2n)(x)

2x− 2n+ 1
+

1[2n,2n+1)(x)

2n+ 1

)

with density

f1(x) = 2

∞∑
n=1

1[2n−1,2n)(x)

(2x− 2n+ 1)2
, x ∈ (−∞,∞).

Since

F1

(
2n− 3

2

)
− F1

(
2n+

1

2

)
=

1

4n2 − 1
and f1

(
2n− 3

2

)
= f1

(
2n+

1

2

)
= 0

for all n � 1, F1 does not satisfy condition (2.3). Further, it is also easy to verify that f1(x) = o(F1(x)), and
hence F1 ∈ L and satisfies condition (2.4). However, we need a distribution that does not belong to L. To this
end, let y0 � 0 and a > 1 be two constants such that aF1(y0) � 1. We define the distribution F0 in terms
of F1 by

F0(x) = F1(x)1(−∞,x1)(x) +

∞∑
i=1

(
F1(xi)1[xi,yi)(x) + F1(x)1[yi,xi+1)(x)

)
, x ∈ (−∞,∞),

where {xi, i � 1} and {yi, i � 1} are two sequences of positive constants satisfying

xi < yi < xi+1, F1(xi) = aF 1(yi), yi − xi → ∞, and xi+1 − yi → ∞ as i → ∞.
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It is easy to see that

F1(x) � F0(x) � aF1(x) and lim
n→∞

F0(yn − 1)

F0(yn)
= a > 1.

Thus the distribution F0 does not belong to class L and still satisfies condition (2.4), whereas F0 does not
satisfy condition (2.3) as F1. ��

3.2 On the Embrechts–Goldie conjecture

It is well known that the class S is closed under convolution roots; see Embrechts et al. [10, Thm. 2]. Further,
Embrechts and Goldie [8, 9] put forward a famous conjecture:

If F ∗k ∈ L(γ) for some (even for all) k � 2 and γ � 0, then F ∈ L(γ).

However, the class S(γ) for some γ > 0 is not closed under the convolution roots in general; see Watanabe
[20].

The explanations and the reference after Theorem B of Watanabe [20] show that there is a distribution F
such that F ∗2 ∈ L(γ) \ OS for some γ � 0, whereas F ∈ OL \ (∪γ�0L(γ) ∪ OS), or see the proof for
type (ii) of Theorem 1 of this paper. By the distributions in type (i), Theorem 1 of this paper also implies the
above conclusion, whereas the corresponding distributions have different properties.

Previously, we have seen that there is a distribution F ∈ OL\ (∪γ�0L(γ)∪OS) such that F ∗2 ∈ (L(γ)∩
OS) \ S(γ); see Xu et al. [22, Thm. 2.2] for γ = 0 and Xu et al. [24, Thm. 1] for γ > 0. Further, Proposi-
tion 2.1 of Xu et al. [22] for γ = 0 and Theorem 1 of this paper for γ > 0 present some distributions that do
not even belong to the class OL, but their convolutions belong to the class L(γ) \ OS.

Therefore the Embrechts–Goldie conjecture with k = 2 has been refuted for the class L(γ) and its sub-
classes, that is, they are not closed under convolution roots for each γ � 0. More precisely, we have the
following conclusion.

Proposition 2. None of the classes S(γ) for some γ > 0, (L(γ)∩OS) \S(γ) for some γ � 0, and L(γ) \OS
for some γ � 0 are closed under convolution roots, where the corresponding distributions belong to the class
OL \ (L(γ) ∪ OS) or OLc.

In addition, we briefly review some positive conclusions of the Embrechts–Goldie conjecture for the classes
in Proposition 2.

The class S(γ) for some γ > 0 is closed under the convolutional root if the distribution F ∈ L(γ) (see
Embrechts and Goldie [9, Thm.2.10]), or F is an infinitely divisible distribution (seeWatanabe [19, Thm. 1.1]).
More related conclusions can be found in Pakes [14, 15] and Watanabe [20].

Recently, Theorem 6 of Cui et al. [7] showed that the class L(γ)∩OS for some γ > 0 is also closed under
the convolutional root under some technical conditions.

Finally, we refer to Watanabe [20] and Cui et al. [6] for some related work involving local distribution
classes.

3.3 On weak tail equivalence

Let F1 and F2 be two distributions. If F1(x) � F2(x), then we say that F1 and F2 are weakly tail equivalent.
Clearly, the distribution in the proof for type (ii) of Theorem 1 is weakly tail equivalent to the standard

exponential distribution with parameter γ. However, for the distributions in the subclass Fi(γ), i = 1, 3, there
is a different conclusion.

Proposition 3. For i = 1, 3, if the distributionF ∈ Fi(γ) with some γ > 0, thenF is not weakly tail equivalent
to any distribution in L(γ).
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Proof. For F ∈ F1(γ) with the corresponding distribution F0 ∈ F1(0), according to the proof of Theo-
rem 1(i), we have F0, F ∈ OL and

lim sup
t→∞

C(F0, t) = lim sup
t→∞

lim sup
F0(x− t)

F0(x)
= ∞.

Thus, according to Lemma 2.3 of Xu et al. [23], the distribution F0 is also not weakly tail equivalent to any
distribution in L. Therefore the distribution F is not weakly tail equivalent to any distribution in L(γ).

For F ∈ F3(γ), according to Theorem 1(iii), F /∈ OL, and thus F is not weakly tail equivalent to any
distribution in L(γ). ��

3.4 On the normalization of distribution shape

From Theorem 1 and Proposition 1 we find a surprising phenomenon that for some γ > 0, the properties of F0

and F in the proofs for types (i), (ii), and (iii) are very unusual, but their convolutions F ∗k
0 and F ∗k for all

integers k � 2, the compound Poisson distribution H2, and the infinitely divisible distribution H may still
have decent ones. One of the reasons is that F0 has a strange shape, that is, the distribution has no mass in
some intervals, and the length of such an interval tends to infinity. However, the following proposition shows
that convolution can normalize the shape of these strange distributions, so that F ∗k

0 , F ∗k, k � 2, H2, and H
have better properties.

Proposition 4. Let F be a distribution with density f . If there is a sequence

{bn, an: b1 = 0, bn < an < bn+1, n � 1, an ↑ ∞ as n → ∞}

such that f(x) > 0 for x ∈ [bn, an], n � 1, and f(x) = 0 otherwise, then for each pair of positive integers n
andm, there is a constant c = min{2−1a1, bn+1 − an} such that

f⊗m(x) > 0 for x ∈ [bn, an +mc].

Proof. For each integer n � 1 and any two constants an < x1 < x2 < an + c, since

0 � x1 − y < x2 − y � 2c, y ∈ [an − c, an],

then f(x1 − y)f(x2 − y) > 0. Further, according to Fatou’s lemma, the density of F ∗2

f2(x2) = lim
x1↑x2

F ∗2(x1)− F ∗2(x2)
x2 − x1

�
∫

[an−c,an]

lim inf
x1↑x2

F (x1 − y)− F (x2 − y)

x2 − x1
f(y) dy

=

∫

[an−c, an]

f(x2 − y)f(y) dy > 0,

that is, f2(x) > 0 for x ∈ [an, an + c]. Considering f(x) > 0 for x ∈ [0, b1] ∪ [bn, an], we get f2(x) > 0 for
x ∈ [bn, an + c]. Finally, the proposition holds by induction. ��
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