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Abstract. We give a detailed exposition of the proof of Richter’s local limit theorem in a refined form and establish
the stability of the remainder term in this theorem under small perturbations of the underlying distribution (including
smoothing). We also discuss related quantitative bounds for characteristic functions and Laplace transforms.
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1 Introduction and formulation of the results

Let (Xn)n�1 be independent copies of a random variable X with mean EX = 0 and variance Var(X) = 1.
Throughout, we assume without mentioning that the normalized sum

Zn =
X1 + · · · +Xn√

n

has a bounded density pn0
for some n = n0, that is, pn0

(x) � M for all x ∈ R with some constantM . Then
all Zn with n � 2n0 have continuous bounded densities pn(x). An asymptotic behavior of these densities
describing their closeness to the normal density

ϕ(x) =
1√
2π

e−x2/2, x ∈ R,

is governed by several local limit theorems. First of all, there is a uniform local limit theorem due to Gnedenko:

sup
x

∣
∣pn(x)− ϕ(x)

∣
∣ → 0 as n → ∞.
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Under higher-order moment assumptions, say if E|X|m < ∞ for an integer m � 3, then this statement may
be considerably sharpened in the form of a nonuniform local limit theorem

sup
x

(

1 + |x|m)∣
∣pn(x)− ϕm(x)

∣
∣ = o

(

n−(m−2)/2
)

, (1.1)

where ϕm denotes the Edgeworth correction of ϕ of order m (see [10, 15, 16]). In various applications, this
relation is typically effective in the range |x| � √

c log n, since then the ratio pn(x)/ϕ(x) remains close to 1
(for a suitable c). For example, (1.1) is crucial in the study of rates in the entropic central limit theorem, rates
for Rényi divergences of finite orders, and for the relative Fisher information [5, 6].

As for larger regions, the asymptotic behavior of pn(x) is governed by the following remarkable theorem
due to Richter [17], assuming the finiteness of an exponential moment of the random variableX.

Theorem 1. Suppose that for some b > 0,

Eeb|X| < ∞. (1.2)

Then for x = o(
√
n), the densities of Zn admit the representation

pn(x)

ϕ(x)
= exp

{
x3√
n
λ

(
x√
n

)}(

1 +O

(
1 + |x|√

n

))

, (1.3)

where λ(τ) represents an analytic function in some neighborhood of zero.

It was shown by Amosova [1] that condition (1.2) is necessary for the existence of a representation like (1.3)
in the region |x| = o(

√
n) with some analytic function λ.

The function λ in (1.3) is representable as a power series, called the Cramér series,

λ(τ) =

∞∑

k=0

λkτ
k, (1.4)

which is absolutely convergent in some disc |τ | < τ0 of the complex plane. It has appeared in the work by
Cramér [8] in a similar representation for the ratio of the tails of distribution functions of Zn and the standard
normal law (see also [9, 13, 14]).

Let us also mention that (1.3) is stated in Richter’s work in a slightly different form with O(|x|/√n) in the
last brackets and for |x| > 1. A similar result is proved in the book by Ibragimov and Linnik [12] under the
assumption that X has a bounded continuous density.

As a consequence of (1.3), we immediately obtain, for example, that

pn(x)

ϕ(x)
→ 1 as n → ∞ (1.5)

uniformly in the region |x| = o(n1/6). In the region c0n
1/6 � |x| � c1n

1/2, the behavior may be quite
different, and to describe it, the appearance of the term O((1 + |x|)/√n) in (1.3) is undesirable. The purpose
of this paper is to give a detailed exposition of the proof of Theorem 1, clarifying the meaning of the leading
coefficient in (1.4) and replacing this term with an n-depending quantity. We basically employ the tools of [12]
and derive the following refinement.

Theorem 2. Let the conditions of Theorem 1 be fulfilled, and let n � 2n0. There is a constant τ0 > 0 with the
following property. With τ = x/

√
n, for |τ | � τ0, we have

pn(x)

ϕ(x)
= enτ

3λ(τ)−μ(τ)
(

1 +O
(

n−1(log n)3
))

, (1.6)

where μ(τ) is an analytic function in |τ | � τ0 such that μ(0) = 0.
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As we will see in Section 5,

λ(τ) =
1

m!
γmτm−3 +O

(|τ |m−2
)

,

μ(τ) =
1

2(m− 2)!
γmτm−2 +O

(|τ |m−1
)

,

where γm (m � 3) is the first nonzero cumulant of the random variable X (assuming that it is not normal).
Equivalently,m is the smallest positive integer such thatEXm �= EZm, where Z is a standard normal random
variable, in which case

γm = EXm −EZm.

With this refinement, it should be clear that relation (1.5) holds uniformly over all x in the potentially larger
region

|x| � εnn
1/2−1/m (εn → 0).

For example, if the distribution ofX is symmetric about the origin, then γ3 = 0, so that necessarilym � 4.
Another consequence of (1.6), which cannot be obtained on the basis of (1.3), is needed in the study of

the central limit theorem (CLT) with respect to the Rényi divergence of infinite order (including the rate of
convergence). Let us recall that the Rényi divergence of a finite order κ > 0 from the distribution of Zn to the
standard normal law is defined by

Dκ(pn ‖ϕ) = 1

κ− 1
log

∞∫

−∞

(
pn(x)

ϕ(x)

)κ

ϕ(x) dx.

As a function of κ, it is nondecreasing, representing a strong distance-like quantity. In the range 0 < κ < 1,
it is metrically equivalent to the total variation, that is, L1-distance between pn and ϕ. The case κ = 1
corresponds to the relative entropy (Kullback–Leibler’s distance)

D(pn ‖ϕ) = lim
κ→1

Dκ(pn ‖ϕ) =
∞∫

−∞
pn(x) log

pn(x)

ϕ(x)
dx,

and another important case κ = 2 leads to the function of the χ2-Pearson distance. So far, information-
theoretic CLTs of the form Dκ(pn ‖ϕ) → 0 as n → ∞ have been completely characterized in terms of
the distribution of X (i.e., in the i.i.d. situation). However, such a statement remains fully open for the limit
distance

D∞(pn ‖ϕ) = lim
κ→∞Dκ(pn ‖ϕ) = sup

x
log

pn(x)

ϕ(x)
.

Equivalently, the problem is to find conditions under which the related quantity (the Tsallis distance of infinite
order)

T∞(pn ‖ϕ) = sup
x

pn(x)− ϕ(x)

ϕ(x)

tends to zero for growing n (note that we may not put the absolute values sign, since all pn may be compactly
supported).

As a first natural step towards this variant of the CLT, we consider the problem of the convergence for the
restricted Tsallis distance with the above suprema taken over growing intervals |x| = O(

√
n). With this in

mind, Theorem 2 allows us to prove the following:
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Corollary 1. Under the conditions of Theorem 1, suppose that m is even, m � 4, and γm < 0. There exist
constants τ0 > 0 and c > 0 with the following property. If |τ | � τ0, τ = x/

√
n, then

pn(x)− ϕ(x)

ϕ(x)
� c(log n)3

n
. (1.7)

Here, the condition about cumulants is fulfilled, for example, when the random variable X is strongly
sub-Gaussian in the sense that

EetX � et
2/2 for all t ∈ R (1.8)

(recall that that EX2 = 1, whereas the condition EX = 0 is necessary). This interesting class of proba-
bility distributions is rather rich, and we refer the reader to [7] for discussions and various examples. Our
main motivation stemmed from the fact that the strong sub-Gaussianity is necessary for the convergence
D∞(pn ‖ϕ) → 0. As we have recently learned, (1.8) had previously appeared under the name “sharp sub-
Gaussianity” in the work by Guionnet and Husson [11] for a completely different reason as a condition to have
LDPs for the largest eigenvalue of Wigner matrices with the same rate function as in the case of Gaussian
entries.

One important issue, which is not addressed in the formulation of Theorem 2, is how we can control the
involved constant in the O-remainder term in (1.6). To better quantify this asymptotic representation, we
actually prove the following statement using the same analytic functions λ(τ) and μ(τ).

Theorem 3. Assume that Eeα|X| � 2 (α > 0). There exist absolute positive constants C and c such that
whenever n � n1 and τ = x/

√
n, |τ | � τ0, we have

pn(x)

ϕ(x)
= enτ

3λ(τ)−μ(τ)

(

1 +Bα−6 (log n)
3

n

)

,

where |B| � C and

n1 = CM4n2
0α

−12, τ0 =
cα3

M2n0
.

This statement should be useful in applications to smoothed distributions to guarantee that the constant in
the remainder term may be chosen to be common for all distributions under consideration.

To make the proofs/arguments more transparent and self-contained, we include a short review of various
related results – partly technical, but often interesting in themselves – about maxima of densities, analytic
characteristic functions, and log-Laplace transforms. The rest of the paper is organized as follows. In Sec-
tion 2, we recall basic properties of the maximum of convolved densities and then develop their applications
to bounding restricted integrals of powers of characteristic functions (Section 3). In Section 4, we discuss
behavior of analytic characteristic functions near the origin. Section 5 is devoted to the so-called saddle points
and associated Taylor expansions for the log-Laplace transforms. Here we also analyze the functions λ(τ)
and μ(τ). Section 6 deals with contour integration needed to establish preliminary representations for pn(x).
Final steps in the proof of Theorem 3 are made in Section 7. The proof of Corollary 1 is postponed to Section 8.

2 Maximum of convolved densities

Convolved densities are known to have improved smoothing properties. First, let us emphasize the following
general fact (which explains the condition n � 2n0 mentioned before Theorem 1).

Proposition 1. If independent random variables ξ1, . . . , ξm (m � 2) have bounded densities, then the sum
Sm = ξ1 + · · · + ξm has a bounded uniformly continuous density vanishing at infinity.
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Proof. Denote by qk the densities of ξk and assume that qk(x) � Mk for all x ∈ R with some constants Mk

(k � m). By the Plancherel theorem, for the characteristic functions gk(t) = Eeitξk , we have

∞∫

−∞

∣
∣gk(t)

∣
∣m dt �

∞∫

−∞

∣
∣gk(t)

∣
∣2 dt = 2π

∞∫

−∞
qk(x)

2 dx � 2π

∞∫

−∞
Mkqk(x) dx

= 2πMk,

where we used the property |gk(t)| � 1, t ∈ R. Hence, by Hölder’s inequality, the characteristic function
g(t) = g1(t) . . . gm(t) of Sm is integrable and has the L1-norm

∞∫

−∞

∣
∣g(t)

∣
∣ dt �

( ∞∫

−∞

∣
∣g1(t)

∣
∣m dt

)1/m

· · ·
( ∞∫

−∞

∣
∣gm(t)

∣
∣m dt

)1/m

� 2π(M1 · · ·Mm)1/m < ∞. (2.1)

We may conclude that the random variable Sm has a bounded, uniformly continuous density expressed by the
inversion Fourier formula

q(x) =
1

2π

∞∫

−∞
e−itxg(t) dt, x ∈ R. (2.2)

Since g is integrable, it also follows that q(x) → 0 as |x| → ∞ (by the Riemann–Lebesgue lemma). 	

Consider the functional

M(ξ) = ess sup
x

q(x),

where ξ is a random variable with density q (we may putM(ξ) = ∞ in all other cases). Since, by (2.2),

q(x) � 1

2π

∞∫

−∞

∣
∣g(t)

∣
∣ dt

for all x ∈ R, inequality (2.1) also implies that

M(Sm) �
(

M(ξ1) · · ·M(ξm)
)1/m

. (2.3)

This shows in particular thatM(ξ)may not increase by adding to ξ an independent random variable. However,
relation (2.3) does not correctly reflect the behavior of M(Sm) with respect to the growing parameter m,
especially in the i.i.d. situation. A more precise statement is described in the following relation, where the
geometric mean of maxima is replaced with the harmonic mean.

Proposition 2. Given independent random variables ξk, 1 � k � m, we have

1

M(Sm)2
� 1

2

m∑

k=1

1

M(ξk)2
. (2.4)

This bound may be viewed as a counterpart of the entropy power inequality in information theory. It can be
obtained by combining Rogozin’s maximum-of-density theorem with Ball’s bound on the volume of slices of
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the cube. Namely, it was shown in [18] that if the values Mk = M(ξk) are fixed, then M(Sm) is maximized
for ξk uniformly distributed in the intervals of length 1/Mk . Of course, in this case, M(Sm) has a rather
complicated structure as a function in variablesM1, . . . ,Mm.

On the other hand, if Tm = a1η1 + · · · + amηm, where ηk are independent and uniformly distributed in
(0, 1), and the coefficients satisfy a21 + · · ·+ a2m = 1, then

1 � M(Tm) �
√
2; (2.5)

see [2]. In geometric language, this is the same as saying that 1 � |Q ∩H| � √
2, where Q = (0, 1)m is the

unit cube, H is an arbitrary hyperplane in R
m passing through the center of the cube, and |·| stands for the

(m− 1)-dimensional volume. To obtain (2.4), put

ak =
1

aMk
, a2 =

m∑

k=1

1

M2
k

,

so that, by the upper bound in (2.5),

M

(
m∑

k=1

1

Mk
ηk

)

= M

(

a

m∑

k=1

ak ηk

)

=
1

a
M(Tm) � 1

a

√
2. (2.6)

Since, by [18], M(Sm) does not exceed the first term in (2.6), we getM(Sm) �
√
2/a, that is, (2.4).

With this argument, this relation is mentioned in [3], where its multidimensional analog is derived by
applying the Hausdorff–Young inequality with best constants (due to Beckner and Lieb).

Remark 1. Modulo a universal constant, the left inequality in (2.5) may be extended to a more general setting.
Namely, if a random variable ξ has a density q with a finite standard deviation σ, then

M(ξ) � 1

12σ
. (2.7)

Here equality is attained for the uniform distribution on arbitrary bounded intervals of the real line. This
relation is well known; as an early reference, we can mention Statulevičius [19, p. 651], where (2.7) is stated
without proof. Since it is used below, let us include a short argument. For normalization, we may assume that
M(ξ) = 1 and Eξ = 0. In this case the tail functionH(x) = P{|ξ| � x} has a Lipschitz seminorm at most 2,
implying thatH(x) � 1− 2x for all x � 0. This gives

σ2 =

∞∫

−∞
x2q(x) dx = 2

∞∫

0

xH(x) dx � 2

1/2∫

0

x(1− 2x) dx =
1

12
.

3 Lp-norms of characteristic functions and Orlicz norms

One useful consequence of (2.4) is the next bound on L2m-norms of characteristic functions.

Proposition 3. If g(t) is the characteristic function of a random variable ξ, then for any integerm � 1,

1

2π

∞∫

−∞

∣
∣g(t)

∣
∣2m dt � 1√

m
M(ξ). (3.1)
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Proof. We apply Proposition 2 to 2m summands ξ1,−ξ′1, . . . , ξm,−ξ′m assuming that ξk, ξ′k are independent
copies of ξ. Introduce the symmetrized random variable S̃m = Sm − S′

m, where S′
m is an independent copy

of Sm. By (2.4), we then get

M(S̃m) � 1√
m

M(ξ).

In addition, S̃m has the characteristic function |g(t)|2m. IfM(ξ) is finite, then we may apply Proposition 1 and
conclude that S̃m has a bounded continuous density qm(x) vanishing at infinity. Moreover, qm(x) is maximized
at x = 0, and its value at this point is described by the inversion formula (2.2), which gives

M(S̃m) = qm(0) =
1

2π

∞∫

−∞

∣
∣g(t)

∣
∣2m dt. 	


Using (2.3), we can obtain a similar relation but without the factor 1/
√
m in (3.1).

WhenM(ξ) is finite andm is large, this bound may be considerably sharpened asymptotically with respect
to m when restricting the integration to the regions |t| � ε > 0. Before making this precise, first, let us note
that since the random variable ξ has a density, we have

δg(ε) = max
|t|�ε

∣
∣g(t)

∣
∣ < 1 (3.2)

for all ε > 0. This holds by the continuity of g, and since |g(t)| < 1 for all t �= 0 (which is true for any
nonlattice distribution), g(t) tends to zero as t → ∞, by the Riemann–Lebesgue lemma. By the way, this
property remains to hold in the more general situation where the m-fold convolution of the distribution of ξ
with itself has a density (whereas the distribution of ξ may be not absolutely continuous). Indeed, in that case,
(3.2) may be applied to gm, and it remains to notice that this relation does not depend onm.

Property (3.2) may be quantified using, for example, the following observation due to Statulevičius [19].

Proposition 4. If a random variable ξ has a bounded density with M = M(ξ) and finite variance σ2 =
Var(ξ), σ > 0, then its characteristic function g satisfies, for all ε > 0,

δg(ε) � exp

{

− ε2

96M2(2σε + π)2

}

. (3.3)

This relation may be extended to nonbounded densities q, in which case the parameterM should be replaced
with quantiles of the random variable q(ξ). The moment condition may also be removed, and instead it is
sufficient to deal with quantiles of |ξ − ξ′|, where ξ′ is an independent copy of ξ; see [4] for details.

Returning to (3.1) and applying (3.3) with ε � 1, we then have

∫

|t|�ε

∣
∣g(t)

∣
∣4m dt � δg(ε)

2m

∞∫

−∞

∣
∣g(t)

∣
∣2m dt � 2πM√

m
exp

{

− mε2

CM2

}

with some absolute constant C . Thus the resulting bound decays asymptotically fast inm.
Let us derive a similar bound in the scheme of independent copies (Xn)n�1 of the random variableX with

Var(X) = 1, assuming that the normalized sum Zn has a bounded density for n = n0 with M = M(Zn0
).

Consider the characteristic function f(t) = EeitX . We apply Propositions 3–4 with ξ = X1 + · · · + Xn0
, in
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which case g(t) = fn0(t) andM(ξ) = 1/
√
n0M . Then, for any 1 � m � n/2n0, by (3.1),

∫

|t|�ε

∣
∣f(t)

∣
∣n dt =

∫

|t|�ε

∣
∣f(t)

∣
∣n−2mn0

∣
∣g(t)

∣
∣2m dt � δn−2mn0

f (ε)

∞∫

−∞

∣
∣g(t)

∣
∣2m dt

� 2πM√
mn0

δn−2mn0

f (ε).

If n � 4n0, then let us choosem = [n/(4n0)]. Then n− 2mn0 � n/2, whereasm � n/(8n0), and we arrive
at

∫

|t|�ε

∣
∣f(t)

∣
∣n dt � 4πM√

2n
δ
n/2
f (ε).

By (3.3) with ε � 1, we also have

δn0

f (ε) � exp

{

− ε2

96M2(2
√
n0 + π)2

}

,

which may be simplified to

δf (ε) � exp

{

− ε2

96(2 + π)2n0M2

}

.

Combining the two bounds, we may summarize.

Corollary 2. Let Var(X) = 1, and suppose that Zn has a density for n = n0 bounded by M . Then for all
0 < ε � 1 and n � 4n0, the characteristic function f of X satisfies

∫

|t|�ε

∣
∣f(t)

∣
∣n dt � 4πM√

2n
exp

{

− nε2

Cn0M2

}

, C = 5200.

4 Behavior of characteristic functions near zero

While the boundedness of the density is important to control integrability properties of powers of the char-
acteristic function of a random variable X, condition (1.2) on the finiteness of an exponential moment of X
guarantees that the characteristic function

f(z) = EeizX , z = t+ iy, t, y ∈ R,

is well defined and analytic in the strip |y| = |Re(z)| < b of the complex plane. Equivalently, we will assume
throughout that for some α > 0,

Eeα|X| � 2. (4.1)

This parameter is more convenient to quantify the behavior of f(z) near zero.
For example, using xe−x � e−1 (x � 0) and assuming that |y| � α/2, we then have

∣
∣f ′(z)

∣
∣ =

∣
∣EXeizX

∣
∣ � E|X|e|yX| � E|X|eα|X|/2 = E|X|e−α|X|/2eα|X| � 4

αe
.

Hence |f(z)− 1| � 4/(αe)|z| (since f(0) = 1). Thus we obtain the following:

Lith. Math. J., 63(2):138–160, 2023.
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Lemma 1. For all complex numbers z in the disc |z| � α/2,

∣
∣f ′(z)

∣
∣ � 4

αe
,

∣
∣f(z)− 1

∣
∣ � 2

e
.

This allows us to consider the log-Laplace transform

K(z) = logEezX = log f(−iz)

as an analytic function in the disc |z| � α/2. Since it has the derivative K ′(z) = −if ′(−iz)/f(−iz), from
Lemma 1 we get that in this disc,

∣
∣K ′(z)

∣
∣ � 6

α
,

∣
∣K(z)

∣
∣ � 3. (4.2)

We may also bound the derivatives of all orders.

Lemma 2. For all complex numbers z in the disc |z| � α/4,

∣
∣K(k)(z)

∣
∣ � 3k!

(
4

α

)k

, k = 1, 2, . . . . (4.3)

Moreover, if EX = 0, EX2 = 1, then

∣
∣K ′′′(z)

∣
∣ � 8

α3
, |z| � α

16
. (4.4)

As a consequence,
∣
∣K ′′(z)− 1

∣
∣ � 1

2
, |z| � α3

16
. (4.5)

Thus these derivatives have at most a factorial growth in absolute value with respect to the growing param-
eter k. For the particular orders k = 2 and k = 3, and under our moment assumptions, the bound (4.3) may be
refined in a smaller disc according to (4.4)–(4.5).

Proof. To obtain (4.3), we may apply Cauchy’s formula

K(k)(z) =
k!

2πi

∫

|w−z|=r

K(w)

wk+1
dw

with r = α/4 together with the second bound in (4.2).
Turning to the refined bounds, note that in terms of the Laplace transform L(z) = EezX , we have K ′ =

L′/L and

K ′′′ =
L′′′

L
− 3

L′′L′

L2
+ 2

L′3

L3
. (4.6)

For x � 0 and p = 1, 2, 3, we use the elementary inequality xpe−x � (p/e)p. Suppose that |z| � (1− c)α

with 1/2 � c < 1. Since L(p)(z) = EXpezX , we then have

∣
∣L(p)(z)

∣
∣ � E|X|pe(1−c)α|X|.
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Hence, by (4.1),
∣
∣L(p)(z)

∣
∣ � E|X|pe−cα|X|eα|X| � 2

(
p

cαe

)p

.

In particular,
∣
∣L′(z)

∣
∣ � 2

cαe
,

∣
∣L′′(z)

∣
∣ � 8

(cαe)2
,

∣
∣L′′′(z)

∣
∣ � 54

(cαe)3
, (4.7)

so
∣
∣L(z)− 1

∣
∣ � 2

cαe
|z| � 2(1− c)

ce
,

∣
∣L(z)

∣
∣ � 1− 2(1− c)

ce
.

Putting q−1 = 1− 2(1 − c)/(ce), from (4.6) it follows that
∣
∣K ′′′(z)

∣
∣ � (cαe)−3

(

54q + 48q2 + 16q3
)

.

Choosing c = 15/16, we have q = (1 − 2/(15e))−1 < 1.06, and the last expression becomes smaller
than 8α−3. Hence

∣
∣K ′′′(z)

∣
∣ � 8

α3
,

∣
∣K ′′(z)− 1

∣
∣ � 8

α3
|z|

for |z| � α/16, where we usedK ′′(0) = 1. The last inequality readily implies (4.5). 	

We will now show that |f(z)| is bounded away from 1 in a certain region near zero.

Lemma 3. Let EX = 0 and EX2 = 1. For all complex numbers z = t+ iy with |t| � α3/8 and |y| � |t|/2,
we have |f(z)| � e−t2/5.

Proof. Using f ′(0) = 0 and f ′′(0) = −1, we may start with the integral Taylor formula

f(z) = 1− 1

2
z2 +

1

2
z3

1∫

0

f ′′′(sz)(1 − s)2ds.

This equality is needed in the disc |z| � r of radius r =
√

5/4α3/8. By the triangle inequality, we then have

∣
∣f(z)

∣
∣ �

∣
∣
∣
∣
1− 1

2
z2
∣
∣
∣
∣
+

A

6
|z|3, A = max

|z|�r

∣
∣f ′′′(z)

∣
∣. (4.8)

First, let us check that
∣
∣
∣
∣
1− 1

2
z2
∣
∣
∣
∣
� 1− 1

3
t2, (4.9)

which actually holds in the larger region |y| � |t|/2, |t| � 1/4. In this case, t2 − y2 � 3t2/4 and |ty| � t2/2,
implying

∣
∣
∣
∣
1− 1

2
z2
∣
∣
∣
∣

2

= 1− (

t2 − y2
)

+
1

4

(

t2 − y2)2 + (ty)2

� 1− 3

4
t2 +

1

2
t4 �

(

1− 1

3
t2
)2

,

where we used |t| � 1/4 on the last step. Thus (4.9) follows.
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Turning to the maximum in (4.8), we may apply the last bound in (4.7) valid for |z| � (1 − c)α. Hence
we have the constraint (1 − c)α � r, which is fulfilled for the choice c = 1 − √

5/4/8 (due to α < 1; see
Lemma 4). In this case, we get

∣
∣f ′′′(z)

∣
∣ � 54

(cαe)3
<

4.3

α3
.

For z = t+ iy, |y| � |t|/2, we have |z|3 � (5/4)3/2|t|3, and (4.8)–(4.9) therefore give

∣
∣f(z)

∣
∣ � 1− 1

3
t2 +

4.3

6α3

(
5

4

)3/2

|t|3 � 1− 1

3
t2 +

4.3

48

(
5

4

)3/2

t2 � 1− 1

5
t2. 	


Finally, let us make a few remarks about the relationship between conditions (1.2) and (4.1). When the
random variable X has a finite exponential moment and α is optimal, then (4.1) becomes an equality. In this
case the quantity 1/α represents the Orlicz norm of X generated by the Young function ψ(x) = e|x| − 1,
x ∈ R:

‖X‖ψ = inf

{

λ > 0: Eψ

(
X

λ

)

� 1

}

.

If EX2 = 1, then the parameter α may not be large, since the L2-norm is dominated by the Lψ-norm.
More precisely, using x2e−x � 4e−2 (x � 0), we have

α2 = E(αX)2 � 4e−2Eeα|X| = 8e−2,

implying α � 2e−1
√
2 < 1.05. In fact, this bound may be sharpened.

Lemma 4. If EX2 = 1 and (4.1) holds, then α < 1.

Proof. We may assume that X � 0, and then we need to show that EeX > 2. It is easy to check that
x+ x3/6 � ax2 for all x � 0 with the optimal constant a = 2/

√
6. Since EXk � (EX2)k/2 = 1 for k � 2,

we get

EeX = 1 +
1

2
EX2 +E

(

X +
1

6
X3

)

+

∞∑

k=4

1

k!
EXk � 3

2
+ a+

∞∑

k=4

1

k!

= e− 7

6
+

2√
6
> 2.36. 	


Note that if we start with a more general conditionB = Eeb|X| < ∞ as in Theorem 1, then (4.1) is fulfilled
for a certain constant α > 0. Indeed, if B � 2, then we may take α = b. Otherwise,

Eeεb|X| �
(

Eeb|X|)ε � Bε = 2

for ε = 1/ log2(B). Hence α = εb = b/ log2(B) works as well. The two cases may be united by taking

α =
b

log2(max(B, 2))
.
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5 Saddle point and Taylor expansions

Assume thatEX = 0,EX2 = 1, andEeα|X| � 2 (α > 0). Since the log-Laplace transformK(z) = logEezX

was defined as an analytic function in the disc |z| � α/2 of the complex plane, it may be expanded as
an absolutely convergent power series

K(z) =
1

2
z2 +

∞∑

k=3

γk
k!

zk.

Here the coefficients γk = Kk)(0) are called the cumulants ofX. Every γk represents a certain polynomial in
moments of X up to order k. In particular, γ3 = EX3 and γ4 = EX4 − 3.

Similarly,

K ′(z) = z +

∞∑

k=2

γk+1

k!
zk.

The next object is important for contour integration.

DEFINITION 1. Given τ ∈ C, a saddle point is a solution z0 = z0(τ) of the equation

K ′(z) = τ. (5.1)

Thus a saddle point is the solution of

τ = z +

∞∑

k=2

γk+1

k!
zk. (5.2)

Proposition 5. In the disc |τ | � α3/32, Eq. (5.1) has a unique solution z0(τ). Moreover, it represents an in-
jective analytic function satisfying z′0(0) = 1 and

∣
∣z0(τ)

∣
∣ � 2τ � α3

16
, |τ | � α3

32
. (5.3)

Proof. Let us use (5.2) as the definition of the analytic function τ = K ′(z). If τ is sufficiently small, say
|τ | � τ0, then this equality may be inverted as a power series in τ ,

z = z0(τ) = τ − γ3
2
τ2 +

3γ23 − γ4
6

τ3 + · · · .

Let us indicate an explicit expression for τ0 in the form of a positive function of α.
By Lemma 2 (see (4.4)),

∣
∣τ ′(z)− 1

∣
∣ � 8

α3
|z|, |z| � α

16
. (5.4)

We may use this relation for |z| � α3/16, since α < 1 by Lemma 4. Given two points z1 and z2 in the disc
|z| � α3/16, define the path zt = (1− t)z1 + tz2 connecting these points. We have

τ(z2)− τ(z1) = (z2 − z1)

(

1 +

1∫

0

(

τ ′(zt)− 1
)

dt

)

, (5.5)
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implying

∣
∣τ(z2)− τ(z1)

∣
∣ � |z2 − z1|

(

1−
1∫

0

∣
∣τ ′(zt)− 1

∣
∣ dt

)

.

Since |zt| � α3/16, it follows from (5.4) that

∣
∣τ(z2)− τ(z1)

∣
∣ � 1

2
|z2 − z1|.

As a consequence, the map z → τ(z) is injective in the disc |z| � α3/16. In addition, since τ(0) = 0, we
have

∣
∣τ(z)

∣
∣ � 1

2
|z|. (5.6)

Therefore the image of the circle |z| = α3/16 under this map represents a closed curve on the complex plane
outside the circle |τ | = α3/32. Since the image of the disc |z| � α3/16 under τ is a connected set, while
τ(0) = 0, this set must contain the disc |τ | � α3/32. Thus the inverse map z0(τ) = τ−1 is well defined and
represents a holomorphic injective function in |τ | � α3/32 satisfying (5.3) by (5.6) and z′0(0) = 1 by (5.4).
Hence we may take τ0 = α3/32.

In addition, z0(τ) takes real values for real τ . Indeed, since all cumulants are real numbers, τ(z) is real for
real z, and so is the inverse function z0. Also, by (5.5),

τ = z0(τ)

(

1 +

1∫

0

(

τ ′
(

tz0(τ)
)− 1

)

dt

)

,

which shows that z0(τ) > 0 as long as 0 < τ � α3/32 (since the expression under the integral sign is
a real-valued function whose absolute value does not exceed 1/2). 	


It is natural to determine the leading term in the Taylor expansion for z0(τ) when expanding this function
as a power series in τ . Assuming that X is not normal, let γm (m � 3) be the first nonzero cumulant of X.
Then, as |z| → 0,

K(z) =
1

2
z2 +

γm
m!

zm +O
(|z|m+1

)
,

so that

K ′(z) = z +
γm

(m− 1)!
zm−1 +O

(|z|m)

(5.7)

and

K ′′(z) = 1 +
γm

(m− 2)!
zm−2 +O

(|z|m−1
)

. (5.8)

Since z0(τ) = τ +O(|τ |2) as τ → 0 (see Proposition 5), from (5.7) we get

τ = K ′(z0(τ)
)

= z0(τ) +
γm

(m− 1)!
z0(τ)

m−1 +O
(∣
∣z0(τ)

∣
∣m

)

= z0(τ) +
γm

(m− 1)!
τm−1 +O

(|τ |m)

.
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Therefore

z0(τ) = τ − γm
(m− 1)!

τm−1 +O
(|τ |m)

. (5.9)

Next, let us write down the Taylor expansion around the point z0 = z0(τ):

K(z)− τz = K(z0)− τz0 +

∞∑

k=2

ρk
k!

(z − z0)
k, ρk = K(k)(z0). (5.10)

Here we used the property that the function K(z) − τz has the derivativeK ′(z0) − τ = 0 at the saddle point
z = z0. Thus the linear term in (5.10) corresponding to k = 1 is vanishing. As for the free term corresponding
to k = 0, we have

K(z0) =

∞∑

k=2

γk
k!

zk0 and τz0 = z0K
′(z0) =

∞∑

k=2

γk
(k − 1)!

zk0 .

Hence

K(z0)− τz0 = −
∞∑

k=2

k − 1

k!
γkz

k
0 = −1

2
z20 −

1

3
γ3z

3
0 + · · · . (5.11)

Using (5.9) and (5.11), we actually have

K(z0)− τz0 = −1

2
z20 −

m− 1

m!
γmzm0 + · · · = −1

2

(

τ − γm
(m− 1)!

τm−1 +O
(|τ |m)

)2

− m− 1

m!
γm

(

τ − γm
(m− 1)!

τm−1 +O
(|τ |m)

)m

+ · · · ,

which is simplified to

K(z0)− τz0 = −1

2
τ2 +

1

m!
γmτm +O

(|τ |m+1
)− 1

2
τ2 + τ3λ(τ). (5.12)

Thus, applying Proposition 5 and recalling that K(z) is analytic in |z| � α/2 (Lemma 1), we obtain the
following:

Proposition 6. The function

λ(τ) =
1

τ3

(

K
(
z0(τ)

)− τz0(τ) +
1

2
τ2
)

is well defined and analytic in the disc |τ | � α3/32. Moreover, as τ → 0,

λ(τ) =
1

m!
γmτm−3 +O

(|τ |m−2
)

. (5.13)

DEFINITION 2. Being an analytic function, λ(τ) is represented as a power series in the disc |τ | � α3/32. It is
called Cramér’s series.

It follows that λ(τ) is bounded for small τ , but we will need to quantify this property in terms of the
parameter α. Recall that EX = 0, EX2 = 1, and Eeα|X| � 2 (α > 0).
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Proposition 7. We have
∣
∣λ(τ)

∣
∣ � 700α−3, |τ | � α3

64
. (5.14)

Proof. Proposition 5 allows us to apply Cauchy’s formula, which yields

z′′0 (τ) =
4

2πi

∫

|ξ−τ |=r

z0(ξ)

(ξ − τ)3
dξ

with r = α3/64. Moreover, by (5.3), the latter implies

∣
∣z′′0 (τ)

∣
∣ � 4

r2
max

|ξ−τ |=r

∣
∣z0(ξ)

∣
∣ � 4

r2
· α

3

16
= 212α−3. (5.15)

Next, we note that, by Definition 1 of the saddle point (see (5.1)), the function

ψ(τ) = K
(

z0(τ)
)− τz0(τ) +

1

2
τ2

has the first three derivatives

ψ′(τ) = K ′(z0(τ)
)
z′0(τ)− z0(τ)− τz′0(τ) + τ = τ − z0(τ),

ψ′′(τ) = 1− z′0(τ), ψ′′′(τ) = −z′′0 (τ).

Since ψ(0) = ψ′(0) = ψ′′(0) = 0, we may apply the Taylor integral formula together with (5.15) to conclude
that

∣
∣ψ(τ)

∣
∣ � |τ |3

6
max
|ξ|�|τ |

∣
∣ψ′′′(ξ)

∣
∣ � |τ |3

6
max
|ξ|�|τ |

∣
∣z′′0 (ξ)

∣
∣ � 1

6
· 212 α−3.

As ψ(τ) = τ3λ(τ), relation (5.14) follows. 	

Let us now introduce another analytic function which appears in representation (1.6) of Theorem 2.

Proposition 8. The function

μ(τ) =
1

2
logK ′′(z0(τ)

)

is well defined and analytic in the disc |τ | � α3/32. Moreover, as τ → 0,

μ(τ) =
1

2(m− 2)!
γmτm−2 +O

(|τ |m−1
)

. (5.16)

Proof. By (5.3), |z0(τ)| � α3/16. Hence, by Lemma 2, K ′′(z0(τ)) takes values in the disc with center at 1
of radius 1/2. Thus the principal value of logK ′′(z0(τ)) is well defined and represents an analytic function in
|τ | � α3/32. Moreover, by (5.8)–(5.9),

K ′′(z0(τ)
)

= 1 +
γm

(m− 2)!
z0(τ)

m−2 +O
(∣
∣z0(τ)

∣
∣m−1)

= 1 +
γm

(m− 2)!
τm−2 +O

(|τ |m−1
)

.

Taking the logarithm of this expression, we arrive at (5.16). 	
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Let us also mention that the function K(z) is convex and has a positive second derivative on the real line,
more precisely, on the interval where it is finite. Hence μ(τ) is real-valued for real τ .

6 Contour integration

Let (Xn)n�1 be independent copies of a random variable X with EX = 0, Var(X) = 1, and characteristic
function f(t) = EeitX . We now consider the normalized sum

Zn =
X1 + · · · +Xn√

n

assuming that M = M(Zn0
) is finite. As already discussed in Section 2, in this case, all Zn with n � 2n0

have continuous bounded densities expressed by the inversion formula

pn(x) =
1

2π

∞∫

−∞
e−itxfn(t) dt, x ∈ R,

where

fn(t) = fn

(
t√
n

)

denotes the characteristic functions of Zn. Equivalently,

pn(x) =

√
n

2π

∞∫

−∞
e−itx

√
nfn(t) dt. (6.1)

Using contour integration, we can cast this formula in a different form involving the log-Laplace transform
K(z) = logEezX and the saddle point z0 = z0(τ) for the real value τ = x/

√
n. This is a preliminary step

towards Theorems 2 and 3.
As before, let Eeα|X| � 2 with parameter α > 0.

Lemma 5. Let n � 4n0. If 0 < ε � α3/16 and |τ | � ε/2, then

pn(x) =

√
n

2π

ε∫

−ε

exp
{

n
(

K(z0 + it)− τ(z0 + it)
)}

dt+ θRn (6.2)

with |θ| � 1 and

Rn = 5M exp

{

− nε2

Cn0M2

}

, C = 5200. (6.3)

Proof. Applying Corollary 2, we get from (6.1) that for any ε ∈ (0, 1],

∣
∣
∣
∣
∣
pn(x)−

√
n

2π

ε∫

−ε

e−itx
√
nfn(t) dt

∣
∣
∣
∣
∣
� 4M exp

{

− nε2

Cn0M2

}

(6.4)

with C = 5200.
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Due to the assumption on ε, we may apply Lemma 3, which gives

∣
∣f(±ε+ iy)

∣
∣ � e−ε2/5 whenever |y| � ε

2
. (6.5)

Assuming for definiteness that x � 0, we take the rectangle contour

L = L1 + L2 + L3 + L4

with segment parts

L1 = [−ε, ε], L2 = [ε, ε− ih],

L3 = [ε− ih, −ε− ih], L4 = [−ε− ih, −ε],

where h > 0 is chosen to satisfy h � ε/2. With this choice, the complex numbers z = t+ iy with |t| � ε and
|y| � h lie in the domain of the definition ofK(z). Then, by Cauchy’s theorem,

∫

L1

e−izx
√
nfn(z) dz +

∫

L2

e−izx
√
nfn(z) dz,

∫

L3

e−izx
√
nfn(z) dz +

∫

L4

e−izx
√
nfn(z) dz = 0.

Note that in the lower half-plane z = t − iy, 0 � y � h, we have |e−izx
√
n| = e−yx

√
n � 1. Moreover,

|f(z)| is bounded away from 1 on L2 and L4 according to (6.5), which gives

∣
∣
∣
∣

∫

L2

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

L4

∣
∣
∣
∣
� εe−nε2/5 � 1

16
e−nε2/5.

To simplify, note that

4M exp

{

− nε2

Cn0M2

}

+
1

16
e−nε2/5 � Rn,

where we usedM � 1/12 (see Remark 1). Combining this bound with (6.4), we arrive at

pn(x) =

√
n

2π

∫

L3

e−izx
√
nfn(z) dz + θRn =

√
n

2π

ε∫

−ε

e−i(t−ih)x
√
nfn(t− ih) dt+ θRn.

Using the log-Laplace transform, let us rewrite the above as a contour integral

pn(x) =

√
n

2πi

h+iε∫

h−iε

exp
{

n(K(z)− τz)
}

dz + θRn

with τ = x/
√
n and apply it with h = z0 = z0(τ). Due to the requirement 0 � τ � ε/2, we have

0 � τ � α3/32 and 0 � z0 � α3/16 according to (5.3), so that Proposition 5 is applicable. After the
change of variable, we thus obtain (6.2)–(6.3). 	
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As a next step, let us show that, at the expense of a small error, the integration in (6.2) may be restricted to
the interval |t| � tn with

tn = n−1/2
√

8 log n, n � 4n0.

This can be achieved under stronger conditions such as

|τ | � ε

80M2n0
, 0 � ε � α3

80
. (6.6)

Indeed, using (5.10) and (5.12) in the representation (6.2), we may rewrite (6.2) as

pn(x) =

√
n

2π

ε∫

−ε

exp

{

n

∞∑

k=2

ρk
(it)k

k!

}

dt en(−τ2/2+τ3λ(τ)) + θRn,

where τ = x
√
n and ρk = K(k)(z0). Equivalently,

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

ε∫

−ε

exp

{

n

∞∑

k=2

ρk
(it)k

k!

}

dt+ θRne
x2/2. (6.7)

Here the new remainder term

Rne
x2/2 = 5M exp

{

− ε2n

CM2n0
+ τ2n

}

, C = 5200,

is still exponentially small with respect to n due to the first condition in (6.6), which strengthens the assumption
|τ | � ε/2 in Lemma 5 (recall that M � 1/12). In this case the expression in the exponent will be of order
−cnε2/(n0M

2) up to an absolute constant c > 0. Hence (6.7) yields

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

ε∫

−ε

exp

{

n

∞∑

k=2

ρk
(it)k

k!

}

dt+ θRn, (6.8)

where

Rn = 5M exp

{

− cε2n

M2n0

}

. (6.9)

Now, by Lemma 2,

1

2
� ρ2 �

3

2
, |ρk| � 3k!

(
4

α

)k

(k � 3). (6.10)

It follows that

Re

( ∞∑

k=2

ρk
(it)k

k!

)

= −ρ2
t2

2
+

∞∑

k=2

(−1)kρ2k
t2k

(2k)!
� −1

4
t2 + 3

∞∑

k=2

(
4t

α

)2k

= −1

4
t2 + 3

(

16t2
)

∞∑

k=2

(4t)2k−2

α2k
� −1

8
t2,
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where we used α < 1 and |t| � ε � α3/80 so as to bound the last sum according to the second assumption
in (6.6). Hence, when restricted to |t| � tn, the absolute value of the integral in (6.8) does not exceed

2

∞∫

tn

e−nt2/8 dt =
4√
n

∞∫

tn
√
n/2

e−s2/2 ds <
2
√
2π√
n

e−nt2n/8 =
2
√
2π

n3/2
.

As a result, assuming the conditions (6.6),

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

∫

|t|�t′n

exp

{

n

∞∑

k=2

ρk
(it)k

k!

}

dt+ 2θ1n
−1enτ

3λ(τ) + θ2Rn, (6.11)

where t′n = min(tn, ε), |θj| � 1, and where Rn is now defined in (6.9).

7 Proof of Theorem 3

As a final step, we need to explore an asymptotic behavior of the integral in (6.11), where we recall that
ρk = K(k)(z0), z0 = z0(τ) being the saddle point for τ = x/

√
n. In view of the conditions in (6.6), we

choose

ε =
α3

80
, τ0 =

ε

80M2n0
=

c0α
3

M2n0

with c0 = 1/6400. Note that with this choice the definition (6.9) becomes

Rn = 5M exp

{

−c1α
6n

M2n0

}

, (7.1)

where c1 > 0 is an absolute constant. Suppose that |τ | � cτ0 with a constant 0 < c � 1 to be chosen later on.
The integrand in (6.11) may be written as

un(t) = exp

{

−nρ2
t2

2
+ nρ3

(it)3

6
+ nv(t)

}

with

v(t) =

∞∑

k=4

ρk
(it)k

k!
.

First, assume that n � n1 = max(4n0, ε
−4), which insures that t′n = tn (since ε < 1/80). As |t| � tn,

from (6.10) it follows that

nv(t) = O
(

nt4
)

= Bα−4 (log n)
2

n
. (7.2)

Here and below, B denotes a quantity, perhaps different in different places, bounded by an absolute constant.
With this convention, since n � (80/α3)4, we also have nv(t) = B, and by (6.10) with k = 3,

nρ3t
3 = Bα−3 (log n)

3/2

√
n

= B. (7.3)
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So we may use the Taylor expansion ex = 1 + x+O(x2) in a bounded interval |x| � B with

x = nρ3
(it)3

6
+ nv(t).

From (7.2)–(7.3), using again n � Bα−12 together with α < 1, we have

(nv(t))2 = Bα−8 1

n

(log n)4

n
=

B

n

and

(

nρ3t
3
) · (nv(t)) = Bα−7 1

n

(log n)7/2√
n

=
Bα−2

n
.

Since
(

nρ3t
3
)2

= Bα−6 (log n)
3

n
,

which dominates (7.2) and the previous two expressions, we obtain that

un(t) = e−nρ2t2/2+x = e−nρ2t2/2
(

1 + x+Bx2
)

= e−nρ2t2/2

(

1 + nρ3
(it)3

6
+Bα−6 (log n)

3

n

)

.

Hence
∫

|t|�tn

un(t) dt =

(

1 +Bα−6 (log n)
3

n

) ∫

|t|�tn

e−nρ2t2/2 dt,

and (6.11) is simplified to

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

(

1 +Bα−6 (log n)
3

n

) ∫

|t|�tn

e−nρ2t2/2 dt

+ 2θ1n
−1enτ

3λ(τ) + θ2Rn. (7.4)

Next, we may extend the integration in (7.4) to the whole real line at the expense of an error not exceeding

∫

|t|>tn

e−nρ2t2/2 dt =
2√
ρ2n

∞∫

tn
√
ρ2n

e−s2/2 ds <

√
2π√
ρ2n

e−nρ2t2n/2

� 2
√
π√
n
e−nt2n/4 =

2
√
π√
n
n−2,

where we used ρ2 � 1/2. The latter bound is dominated by Bα−6(log n)3/n, and since the integral over the
whole real line is equal to

√
2π/

√
ρ2n, we obtain from (7.4) a simpler representation

pn(x)

ϕ(x)
=

1√
ρ2

enτ
3λ(τ)

(

1 +Bα−6 (log n)
3

n

)

+Bn−1enτ
3λ(τ) +BRn.

Lith. Math. J., 63(2):138–160, 2023.



158 S.G. Bobkov, G.P. Chistyakov, and F. Götze

Here the first remainder term may be absorbed in the brackets, so that this formula is further simplified to

pn(x)

ϕ(x)
=

1√
ρ2

enτ
3λ(τ)

(

1 +Bα−6 (log n)
3

n
+Be−nτ3λ(τ)Rn

)

. (7.5)

Moreover, we may eliminate the factor e−nτ3λ(τ) in front of Rn by choosing a smaller value of c1 in (7.1) for
a proper absolute constant c appearing in the assumption |τ | � cτ0. To this end, it is sufficient to require that

∣
∣ψ(τ)

∣
∣ � c1α

6

2M2n0
, ψ(τ) = τ3λ(τ).

Recall that, by Proposition 7, |ψ(τ)| � 700α−3|τ |3 in the interval |τ | � α3/64 (which is larger than |τ | � τ0).
Hence the above bound holds as long as

|τ | � c
1/3
1

(1400M2n0)1/3
α3. (7.6)

Since M � 1/12, we have (M2n0)
1/3 � 124/3M2n0. Hence (7.6) may be strengthened to |τ | � cτ0 with

a suitable constant c > 0. Under this condition, from (7.5) we thus get

pn(x)

ϕ(x)
=

1√
ρ2

enτ
3λ(τ)

(

1 +Bα−6 (log n)
3

n
+BRn

)

, (7.7)

where Rn is still defined as in (7.1) with a new constant c1.
It is now useful to note that the last error term in this representation is dominated by the second last one for

sufficiently large n. Indeed, using e−y � 2/y2 (y > 0), we have

Rn � 2

(
M2n0

c1α6n

)2

� α−6 1

n
,

where the last inequality holds for n � CM4n2
0 α

−12 with an absolute constant C > 0. This condition is
slightly stronger than n � n1, which was assumed before. As a result, (7.7) then yields

pn(x)

ϕ(x)
=

1√
ρ2

enτ
3λ(τ)

(

1 +Bα−6 (log n)
3

n

)

.

It remains to recall Proposition 8, according to which

ρ
−1/2
2 = K ′′(z0(τ)

)−1/2
= e−μ(τ),

and then we arrive at the statement in Theorem 3 (which is a refinement of Theorem 2).
Let us also note that the case 2n0 � n < n1 is not interesting, since then |x| � τ0n1, and (1.6) holds by

choosing a suitable constant in O in (1.6).
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8 Proof of Corollary 1

Starting from (5.13) and (5.16), we have

nτ3λ(τ)− μ(τ) =
n

m!
γmτm +O

(|τ |m+1
)− 1

2(m− 2)!
γmτm−2 +O

(|τ |m−1
)

=
γm
m!

τm−2Λ(τ),

where

Λ(τ) = nτ2 − m(m− 1)

2
+ nO

(

τ3
)

+O(τ) � 1

2

[

nτ2 − m(m− 1)

2

]

,

which is bounded away from zero if |τ | � τ1 for some constant τ1 > 0 and nτ2 = x2 � m2. In this case,
(1.6) immediately yields the desired relation (1.7).

In the remaining bounded interval |x| � m, this argument does not work, and it is better to employ the
Chebyshev–Edgeworth expansion for the correction ϕm(x) in (1.1) (which depends on n as well). In terms of
the first nonzero cumulant, (1.1) may be written more accurately as

pn(x) = ϕ(x) +
γm
m!

Hm(x)ϕ(x)n−(m−2)/2 +
1

1 + |x|m o
(

n−(m−2)/2
)

,

where Hm(x) denotes the Chebyshev–Hermite polynomial of degree m. As a consequence, for any constant
x0 > 0,

sup
|x|�x0

|pn(x)− ϕ(x)|
ϕ(x)

= O
(

n−(m−2)/2
)

,

which is stronger than (1.7), sincem is even (m � 4).
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