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Abstract. We consider a spatial functional linear regression, where a scalar response is related to a square-integrable
spatial functional process. We use a smoothing spline estimator for the functional slope parameter and establish a finite
sample bound for variance of this estimator. Then we give the optimal bound of the prediction error under mixing spatial
dependence. Finally, we illustrate our results by simulations and by an application to ozone pollution forecasting at
nonvisited sites.

MSC: 62J05, 62M30

Keywords: functional linear regression, spatial functional process, mixing spatial dependence

1 Introduction

Functional data analysis (FDA) is a field that brings together statistical methods allowing us to process data
that are digitized points of curves representing, for example, the evolution of random phenomena over time. It
has had, over the last two decades, an extensive development which allowed the introduction of methods well
suited for the analysis of large and complex data with a space and/or time-dynamic component that abound
in a number of disciplines, such as environmental sciences, neuroimaging, and genomic, epidemiology, hy-
drology. In these domains, we are often interested in studying relationships between a real-valued response
variable and an explanatory variable of functional nature. Since the seminal paper of [17] on a functional lin-
ear model with a scalar response, several types of functional linear models have been developed for different
purposes. Estimation of the slope function is a crucial issue, which has been addressed in different ways in the
literature: [12] described and compared estimation procedures based on partial least squares, ridge regression,
and principal component regression, [5] introduced an estimator based on principal components analysis, [6]
proposed an estimator based on B-spline expansion of the functional coefficient, whereas [9] prolonged this
work by using a smoothing splines approach, [19] used a Fourier basis expansion under the assumption that
the slope function and the explanatory variable are periodic, and [8] proposed a thresholded projection esti-
mator with tuning parameter selected by minimizing a stochastic penalized contrast function. Another tackled
problem is that of prediction of the response given an unsampled value of the explanatory variable, but it is
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related to the previous estimation problem since prediction is usually achieved by replacing the slope func-
tion by its estimator in the model. The optimal mean-square convergence rates of predictor were determined
in [4] and [9] for estimators of the slope function based, respectively, on principal component analysis and
on a smoothing spline approach. All these works consider the case where the sample consists of independent
observations of the involved variables. However, in a number of disciplines, such as environmental sciences,
agronomy, or mining, the data have an inherent spatial component in addition to their functional nature. An
example in meteorological sciences is provided by long time series of meteorological variables recorded at
each point of a monitoring network [14]. In this case the observations are no more independent but are rather
spatially dependent. Spatial statistics is a field that has emerged over the last ten years to analyze this kind
of data by assuming specific dependence structures in the data, and as it was pointed out in [14], it includes
methods that use FDA methods to model spatial big data, including functional data. Nevertheless, less atten-
tion has been paid to functional linear regression with spatially dependent data. There are some researches
on functional spatial linear prediction using kriging methods (see, e.g., [1, 2, 13, 14, 15, 16], and [21]). Spatial
autoregressive functional models were considered in [22, 23]. Prediction based on spatial linear regression
model with derivatives is tackled in [3], and the used methodology for determining this prediction is based on
the moment method combined with the one of regularization by two sequences decreasing to zero. However,
the theoretical rate of convergence of its prediction error is not optimal. It then highlights the interest of con-
sidering another method that would allow us to obtain the optimal prediction rate. In this paper, we consider
the following spatial functional linear regression model:

Yi = β0 +

1∫

0

β(t)Xi(t) dt+ εi, i ∈ In = {1, . . . , n}d, d � 1, (1.1)

where Yi is an R-valued random variable, β0 is an unknown constant, Xi is a random function belonging
to the space F = L2([0, 1]) of square-integrable functions endowed with seminorm, β is an unknown func-
tion representing the slope function, and εi is a centered random spatial noise, independent of Xi and with
known variance σ2

ε . This model is just an extension of the usual functional linear regression model to the case
of spatially dependent data, observed on a grid In of points in Z

d and with a specified dependence struc-
ture. We are first interested in estimation of β0 and β by using a smoothing spline approach as in [9], when
Cov(εi, εj) = σ2

ε exp(−a‖i− j‖2), where a is some known positive constant, and ‖·‖2 stands for the Euclidean
norm on Zd (see [11]). We then obtain the convergence rate for the resulting estimator β̂ of β in a specified L2

sense. Next, we are interested in prediction at a non-visited site, computed from the aforementioned estima-
tors and we obtain an optimal convergence rate for the resulting predictor. The rest of the paper is organized as
follows. Section 2 presents the spline estimator that will be used. Assumptions and main results, namely the
convergence rates for the proposed estimator and predictor, are stated in Section 3. A simulation study is given
in Section 4, whereas an application to ozone pollution forecasting at a nonvisited site is given in Section 5.
The proofs of the main results are postponed to Section 6.

2 Smoothing spline estimation of a slope function

In this section, we give an estimator of β in (1.1) by using an approach similar to that of [9]. Since this proce-
dure of estimation does not take into account the nature of the dependence of the data, we obtain an estimator
that has the same form than that of [9]. We assume that the random functions Xi are observed at p equidis-
tant points t1, . . . , tp ∈ I := [0, 1] with tj = j/p for all j = 1, . . . , p. By using the lexicographic order we
rewrite the sample as {(Xii , Yii)}1�i�nd . PutY = (Yi1−Y , . . . , Yind

−Y )T, where uT denotes the transposed
of u, and Y = (1/nd)

∑nd

�=1 Yi� , and consider the nd × p matrix X with general term Xii(tj) − X(tj) for
i = 1, . . . , nd, j = 1, . . . , p. Let Pm be a p × p projection matrix projecting into the linear space Fm defined
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by

Fm :=

{
z = (z1, . . . , zp)

T ∈ R
p \ zj =

m∑
�=1

θβ,�t
�−1
j , j = 1, . . . , p, θβ,� ∈ R

}
,

where the θβ,� satisfy

p∑
j=1

[
β(tj)−

m∑
�=1

θβ,�t
�−1
j

]2
= min

θ1,...,θm

p∑
j=1

[
β(tj)−

m∑
�=1

θ�t
�−1
j

]2
.

Let D(t) = (D1(t), . . . ,Dp(t))
T be a functional basis of the p-dimensional linear space NSm(t1, . . . , tp) of

natural splines of order 2m with knots at t1, . . . , tp, and let D̃ be the p× pmatrix with general termDi(tj) for
i, j = 1, . . . , p. We consider two p× p matricesBm andAm defined by

Bm = D̃
(
D̃TD̃

)−1

[ 1∫

0

D(m)(t)D(m)(t)T dt

](
D̃TD̃

)−1
D̃T,

where D(m)(t) = (D
(m)
1 (t), . . . ,D

(m)
p (t))T with D

(m)
j (t) standing for the mth derivative of the spline func-

tion Dj(t) for j = 1, . . . , p, and

Am = Pm + pBm.

Then the estimator β̂ of β is obtained by computing the least-squares linear estimator of the coefficients of β̂
introduced in (2.2) with respect to the spline basis and is given by

β̂(t) = D(t)T
(
D̃TD̃

)−1
D̃Tβ̂ (2.1)

with

β̂ =
1

nd

(
1

ndp
XTX+ ρAm

)−1

XTY, (2.2)

where ρ > 0 is a smoothing parameter. For estimating the intercept β0, we take β̂0 = Y − 〈β̂,X〉, where
X = {X(t), t ∈ [0, 1]} with X(t) = (1/nd)

∑nd

�=1Xi�(t), 〈·, ·〉 denotes the usual inner product of L2([0, 1]),
and ‖·‖ is its associated norm.

3 Assumptions and main results

In this section, we first introduce the assumptions needed to obtain the main results of the paper and then
theorems that give the rate of convergence of the estimator β̂ and also that of the prediction at a nonvisited site.

3.1 Assumptions

ASSUMPTION 1. β is m times differentiable, and β(m) belongs to L2([0, 1]).

ASSUMPTION 2. There exists κ ∈]0, 1[ such that for every δ1 > 0, there exists a constant C1 > 0 such that for
all (t, s) ∈ [0, 1]2,

P
(∣∣X(t)−X(s)

∣∣ � C1|t− s|κ) � 1− δ1.

Lith. Math. J., 63(1):13–30, 2023.
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ASSUMPTION 3. For C2 ∈ R
∗
+ and all r ∈ N

∗, there exist an r-dimensional linear subspace Lr of L2([0, 1])
and q ∈]0, 1[ such that

E
(
inf
f∈Lr

sup
t

∣∣X(t)− f(t)
∣∣2) � C2r

−2q.

ASSUMPTION 4. For all 	 = 1, 2, . . . and all ii, ij∈ In,

E
(〈
Xii − E(X), ζ�

〉〈
Xij − E(X), ζ�

〉)
= λ�Ψ�

(‖ii − ij‖2
)

and Ψ�(0) = 1,

where
∑+∞

�=1 λ
1/4
� < ∞,

∑
��1 λ�Ψ�(t) = g(t), and g and Ψ� are known R+-valued decreasing functions such

that
∑∞

t=1 t
d−1g(t) < ∞. In addition, for any (j, 	) ∈ N

∗such that j �= 	, we have

Var

(
1

nd

nd∑
i=1

〈
Xii − E(X), ζj

〉〈
Xii − E(X), ζ�

〉)
� C3

nd
E
(〈
X − E(X), ζj

〉2 )
E
(〈
X − E(X), ζ�

〉2 )
,

where 0 < C3 < ∞, and {ζj}j∈N∗ is a complete orthonormal system of eigenfunctions of the operator Γ from
L2([0, 1]) to itself defined by

Γu := E
(〈
u, X − E(X)

〉(
X − E(X)

))
= E

( 1∫

0

(
X(t) − E(X)(t)

)
u(t) dt

(
X − E(X)

))
,

each ζj being associated with the jth largest eigenvalue λj , and E(X) = {E(X)(t), t ∈ [0, 1]}.
Assumptions 1–4 are technical conditions similar to those considered in [9]. If X is an almost surely

R1-times continuously differentiable random function that for all R3 > 0, satisfies

E
(

sup
|t−s|�R3

∣∣X(R1)(t)−X(R1)(s)
∣∣2) � C ′R2q

3 (3.1)

for some R1 = 0, 1, 2, . . . , 0 < q < 1, 0 < C ′ < ∞. Then by the Jackson inequality we have the inequality

inf
f∈Lr

p∑
j=1

(
X(tj)− f(tj)

)2 � C ′′r−2R1 sup
|t−s|�1/r

∣∣X(R1)(t)−X(R1)(s)
∣∣2

with probability 1 for some 0 < C ′′ < +∞. Here Lr is the space of all polynomials of order r on [0, 1].
So if Assumption 2 is replaced by relation (3.1) with R1 = 0, then Assumption 3 holds. Besides, even if X
is not smooth, Assumption 3 may yet be satisfied for a large value of q, for instance, by Brownian motions.
Assumption 4 is satisfied when Λij = 〈Xii −E(X), ζj〉 andΛi� = 〈Xii −E(X), ζ�〉 are independent for j �= 	,
and {Λij , ii ∈ In}, j � 1 are stationary Gaussian random fields such that E(ΛijΛkj) = λjΨj(‖ii − ik‖2) (see
the assumptions of Proposition 8 in [18]). Two examples of correlation functions that satisfy the first condition
of Assumption 4 are:

• The powered exponential model

Ψj(t) = exp

[
−
(

t

bj

)b0 ]
with sup

j�1
bj < ∞,

where 0 < b0 � 2, and bj , j � 1 are some positive constants;
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• The Matern class

Ψj(t) = tνKν

(
t

bj

)
,

where ν is a positive constant, and the modified Bessel function Kν decays monotonically and approxi-
matively exponentially fast.

So, if j > 	 (i.e., λ2
j < λjλ�) and i �= k, then from Example 8 of [18] we have

Cov(ΛijΛi�, ΛkjΛk�) = λ2
jΨj + λ2

�Ψ� + λjλ�
Ψj + Ψ�

2
− (λ3/2

j Ψj + λ
3/2
� Ψ�

)√
λj + λ�

< λ2
�

[
Ψ� −

(
Ψ� +

(
λj

λ�

)3/2
Ψj

)(
1 +

λj

λ�

)1/2 ]
+ λjλ�

3Ψj + Ψ�

2

<
3Ψj + Ψ�

2
E
[〈
X − E(X), ζj

〉2 ]
E
[〈
X − E(X), ζ�

〉2 ]
,

where Ψj := Ψj(‖ii − ik‖2).
ASSUMPTION 5. ‖Xi‖ < M2 almost surely, where M2 is some strictly positive constant. Moreover, the pro-
cess {Zi = (Xi, Yi), i ∈ Z

d} is strongly polynomially mixing, that is, α1,∞(n) = O(n−θ) → 0 as n → +∞
for some θ > 0, where

α1,∞(n) = sup
{
α
(
σ(Zi), FH

)
, i ∈ Z

d, H ⊂ Z
d, δ
(
H, {i}) � n

}
, (3.2)

α being the α-mixing coefficient given, for two sub-σ-algebras U and V of A, by α(U ,V) =
sup{|P(A ∩ B) − P(A)P(B)|, A ∈ U , B ∈ V}, FH = σ(Zi, i ∈ H), and the distance δ is defined for any
subsetsH1 andH2 of Zd by δ(H1,H2) = min{‖i−j‖2, i ∈ H1, j ∈ H2}with ‖i−j‖2 = [

∑d
k=1(ik−jk)

2]1/2

for i, j in Z
d.

The α-mixing condition in Assumption 5 is a classical assumption. As pointed out in [18, p. 1540], the
α-mixing condition is suitable if we need more delicate results. Here it is needed to establish the optimal rate
of the prediction error at a nonvisited site: it is the main difference between this work and [9], where for d = 1,
it is assumed that Xn+1 is independent of X1, . . . ,Xn. The boundedness in Assumption 5 has already been
made in some works (see, e.g., [20]). Here we need it for obtaining the following relation:

E
[〈
Xi0 − E(X), ζ�

〉4 ] � 4M2
2E
[〈
Xi0 − E(X), ζ�

〉2 ]
= 4M2

2λ�.

Details on the importance of this boundedness are given in the proof of Theorem 2. However, this boundedness
can be relaxed by a moment assumption, that is,

E
[‖X‖6] < M2,

so by the Cauchy–Schwarz inequality we have

∥∥〈Xi0 − E(X), ζ�
〉2 ∥∥2

2
= E
[〈
Xi0 − E(X), ζ�

〉4 ]
�
{
E
[〈
Xi0 − E(X), ζ�

〉2 ]}1/2{
E
[〈
Xi0 − E(X), ζ�

〉6 ]}1/2
� λ

1/2
�

{
E
[∥∥Xi0 − E(X)

∥∥6 ]}1/2 = O
(
λ
1/2
�

)
.

We will then obtain the same result by assuming that
∑+∞

�=1 λ
1/8
� < +∞.

Lith. Math. J., 63(1):13–30, 2023.
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3.2 Main results

We consider the seminorm ‖·‖Γ defined by

‖u‖2Γ := 〈Γu, u〉, u ∈ L2
(
[0, 1]
)
,

and the discretized empirical seminorm defined for any u ∈ R
p as

‖u‖2Γn,p
:=

1

p
uT

(
1

ndp
XTX

)
u.

The following theorem gives a bound of the variance of the estimator. In this theorem, Eε refers to the condi-
tional expectation givenXi1 , . . . ,Xind

.

Theorem 1. Under Assumptions 1 and 5, for all ρ > n−2md, if the eigenvalues λx,1 � λx,2 � · · · � λx,p � 0
of 1/(ndp)XTX satisfy

∑p
j=r+1 λx,j � C · r−2q with C > 0, q > 0, and r := �ρ−1/(2m+2q+1)�, then

Eε

(∥∥β̂ − Eε(β̂)
∥∥2
Γn,p

)
� c

nd

(
m+
⌊
ρ−1/(2m+2q+1)

⌋
(2 + C · C0)

)
,

where C0 > 0, c > 0, and �x� is the integer part of x.
Remark 1. Let Pr be a p × p projection matrix projecting onto the r-dimensional subspace Lr,p defined as
Lr,p = {z ∈ R

p | z = (f(t1), . . . , f(tp))
T, f ∈ Lr}, and let Ip denote the p× p identity matrix. Since

p∑
j=r+1

λx,j � inf
Pr

Tr

(
(Ip − Pr)

1

ndp
XTX

)
=

1

ndp

nd∑
�=1

inf
f∈Lr

p∑
j=1

(
Xi�(tj)−X(tj)− f(tj)

)2
,

by Assumption 3 for any δ1 > 0, there exists Cδ1 > 0 such that

P

(
p∑

j=r+1

λx,j � Cδ1r
−2q

)
� 1− δ1.

Besides, the difficulty encountered in the proof of this theorem is to bound
∑nd

j=1, j �=iCov(εii , εij ), which is not
the case in the independent data case considered in [9]. For solving that, we consider an exponential covariance
model. However, others spatial covariancemodels can be used, for instance, Matérn’s spatial covariancemodel
or Gaussian covariance model.

Using Theorem 1 and arguing as in [9], we obtain the following:

Corollary 1. Let the assumptions of Theorem 1 together with Assumptions 2–4 be satisfied. Moreover, suppose
that ndp−2κ = O(1), ρ → 0, and 1/(ndρ) → 0 as n, p → ∞. Then we have

‖β̂ − β‖2Γ = Op

(
ρ+
(
ndρ1/(2m+2q+1)

)−1
+ n−d(2q+1)/2

)
.

Next, we give a bound for prediction error at a nonvisited site i0 such that δ({i0},In) � �n4d/θ�. It is
sufficient to choose θ large for doing the prediction at any nonvisited site. We consider the prediction Ŷi0

and the “theoretical” prediction Y ∗
i0
at a nonvisited site i0 ∈ Z

d such that (Xi0 , Yi0) has the same distribution
as (X,Y ). In fact,

Ŷi0 = β̂0 + 〈β̂,Xi0〉 and Y ∗
i0 = β0 + 〈β,Xi0〉.

We give a bound of the prediction error between Ŷi0 and Y
∗
i0
in the following theorem.
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Theorem 2. Suppose that assumptions of Corollary 1 hold with α1,∞(u) = O(u−θ), θ > d. If 2q � 1,
ρ ∼ n−d(2m+2q+1)/(2m+2q+2) , and p is chosen sufficiently large compared to nd, then

E
[
(Ŷi0 − Y ∗

i0)
2
]
= O
(
n−d(2m+2q+1)/(2m+2q+2)

)
.

Remark 2.

(i) If d = 1, we obtain the same rate as that obtained in [9]. In this sense, this work is an extension from
i.i.d. data to the dependent functional times series. The O

(
n−d(2m+2q+1)/(2m+2q+2)

)
is the optimal

rate of convergence of the prediction error when the predictor is a spatially dependent random function
and the response is a spatial scalar variable, whereas [3] obtained a rate that may be quite close to
O(
√

log n/nd). This work can be easily extended to the spatial grid
{
i = (i1, . . . , id) ∈ Z

d
∣∣ 1 � ik � nk, k = 1, . . . , d

}
.

(ii) If Y ∗
i0
is replaced by Yi0 , then we obtain

E
[
(Ŷi0 − Yi0)

2
]
= E
[
(Ŷi0 − Y ∗

i0)
2
]
+ σ2

ε − 2E
[
εi0(Ŷi0 − Y ∗

i0)
]
� 2
{
E
[
(Ŷi0 − Y ∗

i0)
2
]
+ σ2

ε

}
.

4 A simulation study

In this section, we present the results of simulations made to evaluate the performances of the proposed method
for prediction in model (1.1). We compute the prediction errors from simulated spatial data in Z

2. Using the
lexicographic order, we generate a sample {(Xi� , Yi�)}1���(n+6)2 as follows: we consider the 19th first ele-
ments B1, . . . , B19 of the Fourier basis. For k = 1, . . . , 19, we generate a vector (ξi1,k, . . . , ξi(n+6)2 ,k)

T using
the R function rtmvnorm, which uses the singular value decomposition to simulate truncated Gaussian vectors
with mean 0 and the (n + 6)2 × (n + 6)2 covariance matrix Σ1 with general term Σ1

ij = Cov(ξii,k, ξij ,k) =
λk exp(−a‖ii − ij‖2), where a = 1, 200, λk = 1 for k = 1, . . . , 19, and λk = 0 for k � 20. The trun-
cation limit is taken as the square [0, 1](n+6)2 . Then the components of this vector are α-mixing dependent
(see [7]). Notice that when a = 200, there is approximately no spatial autocorrelation between the compo-
nents. The process {ξii,k, ii ∈ Z

2} is said to be strongly correlated when a = 1. For 	 = 1, . . . , (n + 6)2,
we take Xi�(t) =

∑19
k=1 ξi�,kBk(t), where {Bk} is defined by Bk(t) =

√
2 sin((t − 1/2)kπ/2) when k is

even and Bk(t) =
√
2 cos((t − 1/2)(k − 1)π/2) when k is odd. Considering 366 equispaced points into

[0, 1], we compute each Yi� by approximating the integral in the spatial functional linear regression model
(SFLR) defined in (1.1) by the rectangular method. That gives Yi� = (1/365)

∑365
j=1 β(tj)Xi�(tj) + εi� , where

tj = j/365, j = 1, . . . , p = 365, the vector (εi1 , . . . , εin2 )
T is generated by using the R function mvrnorm,

which simulates a vector from a normal distributionN (0, σ2
εΣ

1), and β(t) = [sin(2πt3)]3 is the true function.
Our sample is split into two following subsamples:

• a sample (Xi� , Yi�)i� , i� ∈ {1, . . . , n}2, 	 = 1, . . . , n2, is used to compute the estimator β̂ of β;
• a sample (X(i,j), Y(i,j))(i,j), (i, j) ∈ {n+ 1, . . . , n+ 6} × {1, . . . , n}, is used to compute the prediction
error between Ŷ(n+k,j) and Y(n+k,j) at the nonvisited sites (n+ k, j), k = 1, . . . , 6 and j = 1, . . . , n.

The estimator β̂ of β in model (1.1) is computed from formulas (2.1) and (2.2) withm = 2 (cubic smoothing
splines), and ρ is obtained from the generalized cross validation given by

GCV(ρ) =

∑n2

�=1(Ŷi� − Yi�)
2

n2(1− n−2Tr(Hρ))
,

where

Hρ =
1

n2
X

(
1

n2p
XTX+ ρAm

)
XT.

Lith. Math. J., 63(1):13–30, 2023.
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Table 1. The mean and standard deviation of MSEP based on 100 replications.

a = 1 a = 200

σε n2 Model m sd m sd

0.1 25 SFLR 0.0349 0.0035 0.0267 0.0027
SFLRD 0.0303 0.0030 0.0216 0.0022

100 SFLR 0.0281 0.0028 0.0280 0.0028
SFLRD 0.0122 0.0012 0.0110 0.0011

225 SFLR 0.0240 0.0024 0.0280 0.0028
SFLRD 0.0113 0.0011 0.0109 0.0011

We assess performance of our method through calculation of the mean squared error of predictions (MSEP):

MSEP =
1

6n

n∑
j=1

6∑
k=1

(Ŷ(n+k,j) − Y(n+k,j))
2,

where Ŷ(n+k,j) is the prediction of Y(n+k,j) at the nonvisited sites (n + k, j), k = 1, . . . , 6 and j = 1, . . . , n.
We take n = 5, 10, 15, σε = 0.1, and a = 1, 200 over 100 replications, and we compare the prediction errors
obtained by the proposed approach in this paper with that obtained from the spatial functional linear regression
model with derivatives (SFLRD) studied in [3]. Especially, we write the SFLRD as

Yi� =

1∫

0

γ1(t)Xi�(t) dt+

1∫

0

γ2(t)X
′
i�(t) dt+ εi�,

where γ1 and γ2 are two functions to estimate, X ′
i�
stands for the first derivative of Xi� and is computed from

the function “fdata.deriv” of the R fda package. The estimate (γ̂1, γ̂2) of the pair (γ1,γ2) is obtained from
the moment method combined with the regularization sequences approach allowing us to inverse empirical
covariance operators (see [3]). These regularization sequencesw and φ are obtained from the cross-validation
based on the evaluation of the mean standard error of prediction (CVMSEP):

CVMSEP(w,φ) =
1

n2

n2∑
�=1

(
Yi� − Ỹ

(−�)
i�

(w,φ)
)2
,

where Ỹ
(−�)
i�

(w,φ) denotes the prediction of Yi� for a given (w,φ), calculated without the 	th observation
(Xi� , Yi�). For each of both these methods, the values of the regularization sequences or penalty parameter are
given for any fixed σε, n2, and a. The meanm and the standard deviation sd of MSEP are calculated over 100
replications with different values of σε, n2, and a. The obtained results are presented in Table 1.

Table 1 reveals that as the sample size increases, the prediction errors from both models decrease. This
means that our prediction method can well fit to the spatial functional linear regression model. Moreover,
in both these models with fixed n (i.e., n2 = 100, 225) and σε = 0.1, the prediction errors of strongly
autocorrelated processes (i.e., a = 1) are similar to those approximately nonautocorrelated (i.e., a = 200).
Finally, for all sample sizes (n2 = 25, 100, 225), the prediction errors are similar for both models.

5 Application to ozone pollution forecasting at the nonvisited sites

In this section, we apply our methodology to predict the level of ozone pollution at the nonvisited sites
of California state. For that, we consider the data available on internet site https://www.epa.gov/
outdoor-air-quality-data.

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
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Figure 1. Ozone pollution data: daily ozone concentration at the 35 stations (left and top), daily ozone concentration at the first
station (right and top), smoothed and raw of daily ozone concentration data at the first station (left and down), ozone pollution level
(right and down).

The explanatory functional variables

{
Xsi(t), t = 1, . . . , 100, si = (Latitude ,Longitude)i, i = 1, . . . , 51

}

correspond to the measurements of ozone concentration obtained for the p = 100 first days, from 1 January
2021 to 12 April 2021 on each of n2 = 51 sites. The response variables

{
Ysi , si = (Latitude ,Longitude)i, i = 1, . . . , 35

}

correspond to the measurements of ozone concentration obtained on 13 April 2021 on each of 35 first stations.
For evaluating the performances of our method, we yet compare it to that of SFRD defined in the previous
section. So from both methodologies we predict

{
Ysi , si = (Latitude ,Longitude)i, i = 36, . . . , 51

}
,

which correspond to the measurements of ozone concentration obtained on 13 April 2021 on 16 other sites
assumed nonvisited at this date. In what follows, we illustrate our data by graphics (see Fig. 1).

In these graphics, we see that these data correspond to our study. In what follows, we present the results of
our study.

Both graphics in Fig. 2 present a small difference confirmed by computation (see Table 2) of the prediction
error (PE) given by

PE =

√√√√ 51∑
i=36

(Ysi − Ŷsi)
2.

We see a very minor advantage for prediction obtained from the SFLR model studied in this paper.

Lith. Math. J., 63(1):13–30, 2023.
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Figure 2. Predicted values of ozone concentration, from SLFR (left) and SLFRD (right), versus the measured values.

Table 2. Prediction error computed from both methods.

SFLR (nbasis = 7, ρ = 0.09) SFLRD (w = 0.01, φ = 0.11)

Prediction error (PE) 0.0282 0.038

6 Conclusions

In this paper, we proposed to study asymptotic properties of a prediction at nonvisited site computed from
a smoothing spline estimator of the slope function in a spatial functional linear regressionmodel, where a scalar
response is related to a square-integrable spatial functional process. The originality of the proposed method is
that we consider spatially dependent data. We established the optimal convergence rate of the estimation and
prediction errors when the considered processes are stationary isotropic. The simulation study and application
to ozone pollution revealed that the proposed prediction fits well with the spatial functional linear regression
model. Besides, the SFLR method produces equivalent predictions with the SFLRD method for the large
sample sizes. However, the presented methodology in this paper has a minor advantage over the SFLRD
method, since its theoretical rate of convergence is better than that given in [3]. We can see the proposed
methodology as a good alternative to [9] when available data are spatially dependent and support model (1.1).

7 Proofs

7.1 Preliminary lemmas

Letting

M =

(
1

ndp
XTX+ ρAm

)−1( 1

ndp
XTX

)
, (7.1)

we have the following:
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Lemma 1. Let Assumption 1 be satisfied. If ρ > n−2md and the eigenvalues λx,1 � λx,2 � · · · � λx,p � 0 of
1/(ndp)XTX satisfy

∑p
j=r+1 λx,j � Cr−2q with C > 0, q > 0, and r := �ρ−1/(2m+2q+1)�, then

Tr
(M2
)
� Tr(M) �

(
m+
⌊
ρ−1/(2m+2q+1)

⌋
(2 + C · C0)

)
,

where Tr(·) stands for the matrix trace.

Proof. Since Am is a symmetric nonnegative matrix, its has a square root, denoted by A
1/2
m , which is also

a symmetric nonnegative matrix. Denoting by A
−1/2
m the inverse ofA1/2

m and by Ip the p × p identity matrix,
we have

M = A−1/2
m

(
1

ndp
A−1/2

m XTXA−1/2
m + ρIp

)−1( 1

ndp
A−1/2

m XTX

)
.

Then from the spectral decomposition

1

ndp
A−1/2

m XTXA−1/2
m =

p∑
�=1

μ� u�u
T
� ,

where μ� are the nonnegative eigenvalues, and {u�}1���p is an orthonormal basis of Rp consisting of eigen-
vectors, it follows that

M =

p∑
�=1

p∑
k=1

μk

μ� + ρ
A−1/2

m u�u
T
� uku

T
kA

1/2
m =

p∑
�=1

μ�

μ� + ρ
A−1/2

m u�u
T
� A

1/2
m .

Therefore, since Tr(A−1/2
m u�u

T
� A

1/2
m ) = Tr(uT� A

1/2
m A

−1/2
m u�) = Tr(uT� u�) = 1, we deduce that Tr(M) =∑p

�=1 μ�/(μ� + ρ). Finally,

Tr
(M2
)
= Tr

(
p∑

�=1

p∑
k=1

(
μ�

μ� + ρ

)(
μk

μk + ρ

)
A−1/2

m u�u
T
� uku

T
kA

1/2
m

)

=

p∑
�=1

(
μ�

μ� + ρ

)2

�
p∑

�=1

μ�

μ� + ρ
= Tr(M).

On the other hand, from a reasoning similar to the proof of Theorem 1 in [9] (see from (6.1) to the end of the
proof) we get Tr(M) � (m+ �ρ−1/(2m+2q+1)�(2 + C · C0)), ending the proof. ��

The following lemma will be useful for proving Theorem 2. Its proof is is similar to that of Lemma 1
in [10, p. 871].

Lemma 2. Assume that (3.2) holds. Let Lr(A) be the class of A-measurable random functions X satisfying
‖X‖r = (E(|X|r))1/r < +∞. Let r, s, h be positive constants such that r−1 + s−1 +h−1 = 1. Then for any
X ∈ Lr(B(S)) and Y ∈ Ls(B(S′)), we have

∣∣E(XY )− E(X)E(Y )
∣∣ � 10‖X‖r‖Y ‖s

{
α1,∞
(
δ(S, S′)

)}1/h
.

The following three lemmas will also be useful in the proofs of Theorems 1 and 2.
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Lemma 3. Let the assumptions of Theorem 1 together with Assumptions 2 and 3 be satisfied. If ndp−2κ =
O(1), ρ → 0, and 1/(ndρ) → 0, as n, p → +∞, then we have

‖β̂ − β‖2 = Op(1) and ‖β̂‖2 = Op(1).

Proof. The proof of this lemma is done in two steps:

(i) (1/p)β̂
T
β̂ = Op(1);

(ii) |‖β̂‖2 − (1/p)β̂
T
β̂| = Op(1/p).

The proof of (ii) is very similar to that of Theorem 2 in [9, p. 59], and we have
∣∣∣∣‖β̂‖2 − 1

p
β̂
T
β̂

∣∣∣∣ = Op

(
1

p

(
1 +

p−2κ

ρ
+

1

ndρ(2m+2q+2)/(2m+2q+1)

))
.

It remains to prove (i). We have

1

p
β̂
T
β̂ � A+B + C,

where

A =
3

p
βT 1

ndp
XTX

(
1

ndp
XTX+ ρAm

)−2 1

ndp
XTXβ,

B =
3

ndp
dTX

(
1

ndp
XTX+ ρAm

)−2 1

ndp
XTd,

C =
3

ndp
εTX

(
1

ndp
XTX+ ρAm

)−2 1

ndp
XTε,

where

d = (d1 − d, . . . , dn2 − d)T

with

d� =

1∫

0

β(t)Xi�(t) dt−
1

p

p∑
j=1

β(tj)Xi�(tj), d =

1∫

0

β(t)X(t) dt− 1

p

p∑
j=1

β(tj)X(tj),

and

ε = (εi1 − ε, . . . , εind
− ε)T with ε =

1

nd

nd∑
�=1

εi� .

By a reasoning similar to that in Theorem 2 in [9, p. 24] we get

A � 3

p
βTβ = O(1) and B = Op

(
p−2κ

ρ

)
.

Finally, putting

Ξ =
1

ndp
X

(
1

ndp
XTX+ ρAm

)−2

XT,
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we have

Eε(C) =
3

nd
Eε

(
εTΞε

)
=

3

nd

∑
i=1

ΞiiE
(
τ2i
)
+

3

nd

nd∑
i=1

nd∑
j=1
j �=i

ΞijE(τiτj),

where τi = εii − ε. From (7.2) we have

3

nd

∑
i=1

ΞiiE
(
τ2i
)
� 6K

nd
Tr(Ξ) � 6K

nd
Tr
[
(ρAm)−1

]
= O

(
1

ndρ

)
.

Note that Ξ = ΣΣT, where

Σ =
1√
ndp

X

(
1

ndp
XTX+ ρAm

)−1

.

Then

|Ξij | =
∣∣∣∣∣

nd∑
k=1

ΣikΣjk

∣∣∣∣∣ �
1

2

nd∑
k=1

(
Σ2

ik +Σ2
jk

)
=

1

2
(Ξii + Ξjj),

and using (7.4) we obtain

∣∣∣∣∣
3

nd

nd∑
i=1

nd∑
j=1
j �=i

ΞijE(τiτj)

∣∣∣∣∣ �
3

nd

nd∑
i=1

nd∑
j=1
j �=i

|Ξij |
∣∣E(τiτj)∣∣ � 3

nd

nd∑
i=1

Ξii

nd∑
j=1
j �=i

∣∣E(τiτj)∣∣

� 3K2

nd
Tr(Ξ) � 3K2

nd
Tr
[
(ρAm)−1

]
= O

(
1

ndρ

)
.

Therefore

1

p
β̂
T
β̂ = Op

(
1 +

p−2κ

ρ
+

1

ndρ

)
.

So from (i) and (ii) we deduce that ‖β̂‖2 = Op(1) and ‖β̂ − β‖2 = Op(1). ��

Lemma 4. We have

E

[(
1

nd

nd∑
�=1

εi�

)2]
= O

(
1

nd

)
.

Proof. We have

E

[(
1

nd

nd∑
�=1

εi�

)2]
=

1

n2d

nd∑
�=1

E
(
ε2i�
)
+

1

n2d

nd∑
i=1

nd∑
j=1
j �=i

Cov(εii , εij )

=
σ2
ε

nd
+

σ2
ε

n2d

nd∑
i=1

nd∑
j=1
j �=i

exp
(−a‖ii − ij‖2

)
= O

(
1

nd

)
. ��
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Lemma 5. Under Assumptions 4 and 5, we have

E
[∥∥X − E(X)

∥∥2] = O

(
1

nd

)
.

Proof. From Assumptions 4 and 5 we have

E
[∥∥X − E(X)

∥∥2] = E

[
1

n2d

nd∑
i=1

∥∥Xii − E(X)
∥∥2 + 1

n2d

nd∑
i,j=1
i �=j

〈
Xii − E(X), Xij − E(X)

〉]

= O

(
1

nd

)
+

1

n2d

nd∑
i,j=1
i �=j

∑
k�1

E
[〈
Xii − E(X), ζk

〉〈
Xij − E(X), ζk

〉]

= O

(
1

nd

)
+

1

n2d

nd∑
i,j=1
i �=j

∑
k�1

λkΨk

(‖ii − ij‖
)
,

and thus

E
[∥∥X − E(X)

∥∥2 ] � K1

nd
+

K2

nd

+∞∑
t=1

td−1
∑
k�1

λkΨk(t) = O

(
1

nd

)
,

whereK1 andK2 are some positive constants. ��

7.2 Proof of Theorem 1

Putting

Θ = X

(
1

ndp
XTX+ ρAm

)−1( 1

ndp
XTX

)(
1

ndp
XTX+ ρAm

)−1

XT,

we have

Eε

(∥∥β̂ − Eε(β̂)
∥∥2
Γn,p

)
=

1

p
Eε

(
1

n2d
εTX

(
1

ndp
XTX+ ρAm

)−1

×
(

1

ndp
XTX

)(
1

ndp
XTX+ ρAm

)−1

XTε

)

=
1

n2dp

(
nd∑
i=1

ΘiiE
(
τ2i
)
+

nd∑
i=1

nd∑
j=1
j �=i

ΘijE(τiτj)

)
,

where τi = εii − ε with ε = n−d
∑nd

j=1 εij . We deduce from the stationarity and Lemma 4 that

E
(
τ2i
)
� 2
[
σ2
ε + E

(
ε2
)]

� K

(
1 +

1

nd

)
, (7.2)
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where K is a positive constant. Clearly,
∑nd

i=1Θii = Tr(Θ) = ndpTr(M2), where M is defined in (7.1).
Then from Lemma 1 it follows that

nd∑
i=1

Θii � ndp
(
m+ ρ−1/(2m+2q+1)(2 + C · C0)

)
. (7.3)

Then from (7.2) and (7.3) we deduce that

1

n2dp

nd∑
i=1

ΘiiE
(
τ2i
)
� K

nd

(
1 +

1

nd

)(
m+ ρ−1/(2m+2q+1)(2 + C · C0)

)
,

On the other hand,

E(τiτj) = E(εiiεij )−
2

nd
σ2
ε −

1

nd

nd∑
k=1
k �=i

E(εiiεik)−
1

nd

nd∑
k=1
k �=j

E(εijεik) + E
(
ε2
)
.

Then from Lemma 4 we obtain |E(τiτj)| � |E(εiiεij )|+K1/n
d and

nd∑
j=1
j �=i

∣∣E(τiτj)∣∣ �
nd∑
j=1
j �=i

∣∣E(εiiεij)∣∣+K1 � K2, (7.4)

whereK1 andK2 are positive constants. Note that Θ = F2, where

F =
(
ndp
)−1/2

X

(
1

ndp
XTX+ ρAm

)−1

XT;

then

|Θij | =
∣∣∣∣∣

nd∑
k=1

FikFkj

∣∣∣∣∣ �
1

2

nd∑
k=1

(
F2
ik + F2

kj

)
=

1

2
(Θii +Θjj),

and putting

S =
1

n2dp

nd∑
i=1

nd∑
j=1
j �=i

ΘijE(τiτj),

we deduce from this inequality and from (7.3) and (7.4) that

|S| � 1

n2dp

nd∑
i=1

nd∑
j=1
j �=i

|Θij |
∣∣E(τiτj)∣∣ � 1

n2dp

nd∑
i=1

Θii

nd∑
j=1
j �=i

∣∣E(τiτj)∣∣

� K2

n2dp

nd∑
i=1

Θii �
K2

nd

(
m+ ρ−1/(2m+2q+1)(2 + C · C0)

)
.
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7.3 Proof of Theorem 2

Since β0 = E(Y )− 〈β,E(X)〉 and β̂0 = Y − 〈β̂,X〉, we have

Ŷi0 − Y ∗
i0 = Y − E(Y )− 〈β̂, X − E(X)

〉
+
〈
β̂ − β, Xi0 − E(X)

〉
,

and thus

E
[
(Ŷi0 − Y ∗

i0)
2
]
� 4E

[(
Y − E(Y )

)2 ]
+ 4E

[〈
β̂, X − E(X)

〉2 ]

+ 2E
[〈
β̂ − β, Xi0 − E(X)

〉2 ]
.

However, from Lemmas 3 and 5 we have

E
[〈
β̂, X − E(X)

〉2 ]
= O
(
n−d
)
,

and from Lemmas 4 and 5 we have

E
[(
Y − E(Y )

)2 ] � 2E
(
ε2
)
+ 2E

[〈
β, X − E(X)

〉2 ]
= O
(
n−d
)
.

Besides, we have

B := E
[〈
β̂ − β, Xi0 − E(X)

〉2 ]

=
∑
j�1

E
[〈β̂ − β, ζj〉2

〈
Xi0 − E(X), ζj

〉2 ]

+
∑
j �=�

E
[〈β̂ − β, ζj〉〈β̂ − β, ζ�〉

〈
Xi0 − E(X), ζj

〉〈
Xi0 − E(X), ζ�

〉]

= B1 +B2.

On the one hand,

B1 =
∑
j�1

Cov
(〈β̂ − β, ζj〉2 ,

〈
Xi0 − E(X), ζj

〉2 )

+
∑
j�1

E
(〈β̂ − β, ζj〉2

)
E
(〈
Xi0 − E(X), ζj

〉2 )

= B3 +B4.

SinceXi0 has the same distribution as that of X, from Assumption 4 we have

B4 =
∑
j�1

E
(〈β̂ − β, ζj〉2

)
E
(〈
Xi0 − E(X), ζj

〉2 )

= E

[〈
β̂ − β,

∑
j�1

λjζj ⊗ ζj(β̂ − β)

〉]
= E
[〈
β̂ − β, Γ (β̂ − β)

〉]

= E
[‖β̂ − β‖2Γ

]
,
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where ⊗ stands for the tensor product defined by (f ⊗ g)(h) = 〈f, h〉g. From Lemmas 2 and 3 with
δ({i0},In) � �n4d/θ� we have

B3 =
∑
j�1

Cov
(〈β̂ − β, ζj〉2 ,

〈
Xi0 − E(X), ζj

〉2 )

� K
∑
j�1

∥∥〈β̂ − β, ζj〉2
∥∥
4

∥∥〈Xi0 − E(X), ζj
〉2 ∥∥

2

{
α1,∞
(
δ
({i0},In))}1/4

� K1

nd

∑
j�1

λ
1/2
j = O

(
1

nd

)
,

whereK andK1 are positive constants. On the other hand, from Lemmas 2 and 3 with δ({i0},In) � �n4d/θ�
and Assumption 4 we have

B2 =
∑
j �=�

Cov
(〈β̂ − β, ζj〉〈β̂ − β, ζ�〉,

〈
Xi0 − E(X), ζj

〉〈
Xi0 − E(X), ζ�

〉)

� K2

∑
j �=�

∥∥〈β̂ − β, ζj〉〈β̂ − β, ζ�〉
∥∥
4

∥∥〈Xi0 − E(X), ζj
〉〈
Xi0 − E(X), ζ�

〉∥∥
2

× {α1,∞
(
δ
({i0},In))}1/4

� K3

nd

∑
j �=�

{
E
[〈
Xi0 − E(X), ζj

〉2 ]}1/4{
E
[〈
Xi0 − E(X), ζ�

〉2 ]}1/4
= O

(
1

nd

)
,

whereK2 andK3 are positive constants. It follows that

E
[
(Ŷi0 − Y ∗

i0)
2
]
� 2E

[‖β̂ − β‖2Γ
]
+O

(
1

nd

)
.

Applying Corollary 1 with 2q � 1, ρ ∼ n−d(2m+2q+1)/(2m+2q+2) , we obtain the result of Theorem 2.
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