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Abstract. We prove the existence of at least one nontrivial solution for a third-order boundary value problem with
an integral condition under different growth assumptions on the nonlinearity in the equation. The main tool in the proofs
is Schauder’s fixed point theorem. To compare the applicability of the obtained results, we consider some examples.
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1 Introduction

We study the boundary value problem consisting of the nonlinear third-order differential equation

+ ( ) = 0 (0 1) (1.1)

and the boundary conditions

(0) = 0 (0) = 0 (1) =

1

0

( ) ( ) d (1.2)

In what follows we assume that : [0 1] is continuous, ( 0) 0 for [0 1], : [0 1] is
continuous, and 1

0
2 ( ) d = 1. The assumption ( 0) 0 excludes the possibility of the trivial solution.

By a solution of (1.1)–(1.2) we understand function 3[0 1] that satisfies differential equation (1.1)
for 0 1 and boundary conditions (1.2).

The purpose of the paper is giving and comparing the results on the existence of nontrivial solutions to
(1.1)–(1.2) under different growth conditions on the nonlinearity by applying Schauder’s fixed point theorem.
To obtain these results, we first rewrite problem (1.1)–(1.2) as an equivalent integral equation by constructing
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the corresponding Green function. The problem then becomes to show that an integral operator has a fixed
point in some set of functions.

Among an immense number of papers dealing with nonlinear differential equations subject to a variety
of boundary conditions, the author would like to mention some recent achievements. Applying the upper
and lower solution method and Schauder’s fixed point theorem, the existence of solutions for a third-order
three-point boundary value problem was proved in [3]. Using the vector field rotation theory, results on the
existence of at least one nontrivial solution to a third-order system with two-point boundary conditions were
established in [6]. In [7] the authors, using barrier strip-type conditions, give sufficient conditions for the exis-
tence of positive or nonnegative, monotone, convex or concave solutions for a third-order two-point boundary
value problem. The existence of multiple positive solutions of nonlinear second-order nonlocal boundary value
problems with a nonlinear term having derivative dependence was proved in [15]. In [14] the authors obtain
asymptotic formulas for eigenvalues and eigenfunctions of the one-dimensional Sturm–Liouville equation with
one classical-type Dirichlet boundary condition and integral-type nonlocal boundary condition. The Sturm–
Liouville problem with one classical and another nonlocal two-point boundary condition was investigated
in [2].

Much research has been done on boundary value problems with nonlocal and integral conditions in the
last decades. Note the papers [1, 4, 5, 10, 11, 12, 16, 17, 19], the authors of which intensively investigated such
problems for many years.

The study of the existence of solutions to boundary value problems is often associated with the construction
of the corresponding Green functions. Thus Green’s functions play an important role in the theory of boundary
value problems. A survey of results on Green’s functions for stationary problems with nonlocal boundary
conditions is presented in [13].

Since our main tool in this paper is Schauder’s fixed point theorem, let us state this theorem for the conve-
nience of the reader.

Theorem 1. (See [18].) Let be a Banach space, and let be a bounded, closed, and convex subset
of . Let : be a completely continuous operator. Then has a fixed point in .

Schauder’s fixed point theorem is a powerful tool in the study of solvability of boundary value problems.
In recent years, by applying Schauder’s fixed point theorem many authors have been studied certain boundary
value problems; for example, see [3, 4, 8, 9].

Despite the extensive literature on third-order boundary value problems with nonlocal conditions, there are
a lot of points to be investigated and improved. Therefore the present paper is an attempt to obtain new results
in this field.

The paper contains three sections besides Introduction. In Section 2, we rewrite the main problem as
an equivalent integral equation by constructing the corresponding Green function. Also, we give some inequal-
ities for the Green function. In Section 3, we prove our main theorems on the existence of a nontrivial solution
to the problem. Finally, in Section 4, we consider some examples to illustrate and compare the applicability of
our results.

2 Construction and estimation of Green’s function

The goal of this section is to rewrite problem (1.1)–(1.2) as an equivalent integral equation. So let us consider
the linear equation

+ ( ) = 0 (0 1) (2.1)

together with boundary conditions (1.2).

Proposition 1. Let : [0 1] be a continuous function. Then the function defined by

( ) =

1

0

( ) ( ) d
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is the unique solution of boundary value problem (2.1), (1.2), where

( ) = ( ) +
2

1
1
0

2 ( ) d

1

0

( ) ( ) d (2.2)

and

( ) =
1

2

(1 )((1 ) + ( )) 0 1

2(1 )2 0 1
(2.3)

Proof. Let ( ) be a solution of problem (2.1)–(1.2). Integrating equation (2.1) thrice, we get

( ) = (0) + (0) +
1

2
2 (0)

1

2
0

( )2 ( ) d

and, in view of boundary conditions (1.2), we obtain

( ) =
1

2
2 (0)

1

2
0

( )2 ( ) d

Since (1) =
1
0 ( ) ( ) d , it follows that

(1) =
1

2
(0)

1

2

1

0

(1 )2 ( ) d =

1

0

( ) ( ) d

or

(0) =

1

0

(1 )2 ( ) d + 2

1

0

( ) ( ) d

Therefore

( ) =
1

2

1

0

2(1 )2 ( ) d +

1

0

2 ( ) ( ) d
1

2
0

( )2 ( ) d

=

1

0

2 ( ) ( ) d +
1

2
0

(1 ) (1 ) + ( ) ( ) d +
1

2

1

2(1 )2 ( ) d

=

1

0

2 ( ) ( ) d +

1

0

( ) ( ) d (2.4)
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Multiplying both sides of (2.4) by and integrating over (0 1), we get

1

0

( ) ( ) d =

1

0

2 ( )

1

0

( ) ( ) d d +

1

0

( )

1

0

( ) ( ) d d

=

1

0

2 ( ) d

1

0

( ) ( ) d +

1

0

( )

1

0

( ) ( ) d d

=

1

0

2 ( ) d

1

0

( ) ( ) d +

1

0

1

0

( ) ( ) d ( ) d

This yields that
1

0

( ) ( ) d =

1
0 (

1
0 ( ) ( ) d ) ( ) d

1
1
0

2 ( ) d

and

( ) =

1

0

( ) ( ) d +
2

1
1
0

2 ( ) d

1

0

1

0

( ) ( ) d ( ) d

Hence the boundary value problem (1.1)–(1.2) is equivalent to the integral equation

( ) =

1

0

( ) ( ) d 0 1 (2.5)

in the sense that is a solution of (1.1)–(1.2) iff it is a solution of (2.5). Here ( ) denotes Green’s function
for the problem = 0 with boundary conditions (1.2) and is explicitly given by (2.2).

Remark 1. In the proof of Proposition 1, Green’s function was constructed directly. In [10] the reader can
find another way of constructing Green’s functions for such types of problems.

Now we prove some inequalities for the functions and .

Proposition 2. For all ( ) [0 1] [0 1] = and ( ) given by (2.3), we have

0 ( )
11 + 5 5

4
(2.6)

Proof. The first part of inequality (2.6) is obvious. For 0 1, we have

max ( ) = max
1

2
(1 ) (1 ) + ( ) =

11 + 5 5

4

and for 0 1,

max ( ) = max
1

2
2(1 )2 =

1

32



Green’s function and existence of solutions for a third-order BVP involving integral condition 513

Proposition 3. The function ( ) in (2.3) satisfies

1

0

( ) d
2

81
for all [0 1]

Proof. Let [0 1] and consider

1

0

( ) d =
1

2
0

(1 ) (1 ) + ( ) d +
1

2

1

2(1 )2 d

=
1

6
(1 ) 2 max

[0 1]

1

6
(1 ) 2 =

2

81

Proposition 4. For all ( ) [0 1] [0 1], we have

( )
11 + 5 5

4
0 (2.7)

for ( ) given by (2.2), where 0 = 1 +
1
0 ( ) d ( 1

1
0

2 ( ) d ).

Proof. For ( ) [0 1] [0 1], we have

( ) = ( ) +
2

1
1
0

2 ( ) d

1

0

( ) ( ) d

( ) +
2

1
1
0

2 ( ) d

1

0

( ) ( ) d

11 + 5 5

4
1 +

1
0 ( ) d

1
1
0

2 ( ) d

Proposition 5. The function ( ) in (2.2) satisfies

1

0

( ) d
2

81
0 for all [0 1] (2.8)

Proof. For [0 1], we have

1

0

( ) d =

1

0

( ) +
2

1
1
0

2 ( ) d

1

0

( ) ( ) d d

1

0

( ) d +
2

1
1
0

2 ( ) d

1

0

1

0

( ) ( ) d d
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=

1

0

( ) d +
2

1
1
0

2 ( ) d

1

0

( )

1

0

( ) d d

2

81
1 +

1
0 ( ) d

1
1
0

2 ( ) d

3 Existence of solutions

In this section, we prove our main results on the existence of at least one nontrivial solution to problem (1.1)–
(1.2) by applying Schauder’s fixed point theorem. For our constructions, consider the Banach space [0 1]
endowed with the norm

= max
0 1

( ) [0 1]

Theorem 2. Let : [0 1] [0 + ) be a continuous function such that 0 and

1

0

( ) d = 0 +

Suppose that there exist a continuous function : [0 + ) and a constant 0 such that

( ) ( ) ( ) for all ( ) [0 1]

and

max ( )
11+5 5

4 0 0

Then problem (1.1)–(1.2) has at least one nontrivial solution such that ( ) for all [0 1].

Proof. Let = [0 1]: and define the operator : [0 1] by

( )( ) =

1

0

( ) ( ) d [0 1]

Since the boundary value problem (1.1)–(1.2) is equivalent to the integral equation (2.5), we need to prove that
the operator has a fixed point. To establish the existence of a fixed point for , we show that the conditions
of Theorem 1 hold. A standard application of the Arzelà–Ascoli theorem guarantees that is completely
continuous. We only need that ( ) .

For all [0 1] and all , we have

( )( )

1

0

( ) ( ) d

1

0

( ) ( ) ( ) d

11 + 5 5

4
0

11+5 5
4 0 0

1

0

( ) d =

where we have used inequality (2.7). Thus , and so ( ) .
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Remark 2. The constant 0 in Theorem 2 can be replaced by the constant = max0 1 ( ).

Theorem 3. Suppose that there exist constants 0, 0, and 0 such that

( ) + for all ( ) [0 1] [ ] = 1

If

2 0 81 and
2 0

81 2 0

then problem (1.1)–(1.2) has at least one nontrivial solution such that ( ) for all [0 1].

Proof. Let set and operator be as in the proof of the previous theorem. Therefore we need to show that
( ) .
For all [0 1] and , we have

( )( )

1

0

( ) ( ) d max
1

( )

1

0

( ) d

+
2

81
0 =

2

81
0 +

2

81
0

2

81
0 + 1

2

81
0 =

where, we have used inequality (2.8). Thus , and so ( ) .

4 Examples

In this section, we consider some examples to illustrate and compare the applicability of the obtained results.

Example 1. Consider the problem

+ 34 + 2 = 0 (0 1) (4.1)

(0) = 0 (0) = 0 (1) =

1

0

1 + 3 ( ) d (4.2)

The function ( ) = (34 + 2) is continuous for ( ) [0 1] , and ( 0) = 34 0 for [0 1].
The function ( ) = 1 + 3 is continuous for [0 1], 0 = 7 2, and

1

0

2 ( ) d =

1

0

2 1 + 3 d =
1

2
= 1

It is easy to see that for all ( ) [0 1] ,

( ) = 34 + 2 34 + 2
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Thus ( ) = 0 for [0 1], and 1
0 ( ) d = 1 2 = 0; ( ) = 34 + 2 0 for . Choose = 4

and findmax 4 ( ) = 34 + 42 = 50. Therefore we have

max ( ) = 50 50 7
11+5 5

4 0 0

Hence by Theorem 2 problem (4.1)–(4.2) has at least one nontrivial solution ( ) such that ( ) 4 for all
[0 1].

Example 2. Consider the problem

+ 2 + 1 ( + 2)3 = 0 (0 1) (4.3)

(0) = 0 (0) = 0 (1) =

1

0

2 ( ) d (4.4)

The function ( ) = ( 2+1)( + 2)3 is continuous for ( ) [0 1] , and ( 0) = 2 2( 2+1) 0
for [0 1]. The function ( ) = 2 is continuous for [0 1], 0 = 17 12, and

1

0

2 ( ) d =

1

0

4 d =
1

5
= 1

For all ( ) [0 1] , we have

( ) = 2 + 1 + 2
3 2 + 1 + 2 3

Therefore ( ) = 2 + 1 0 for [0 1], and 1
0 ( ) d = 4 3 = 0; ( ) = + 2 3 0 for .

For all 0, we have

max ( ) = ( + 2)3
36

17( 11 + 5 5)
=

11+5 5
4 0 0

Thus we cannot use Theorem 2 to establish the existence of solutions for problem (4.3)–(4.4), whereas Theo-
rem 3 is applicable in this case.

Let = 1. For all ( ) [0 1] [ 1 1], we have

( ) = 2 + 1 ( + 2)3 10 2 + 10 2

So = = 10 2, and

2

81
0 =

85 2

243
1

2 0

81 2 0
=

85 2

243 85 2
1

Therefore by Theorem 3 problem (4.3)–(4.4) has at least one nontrivial solution ( ) such that ( ) 1 for
all [0 1].
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