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1 Introduction and main results

Let (ξk)k∈N be a sequence of independent copies of a random variable (r.v.) ξ with cumulative distribution
function (c.d.f.) F (x) = P{ξ < x}, x ∈ R. For n ∈ N, put

zn = max
1�i�n

ξi. (1.1)

The asymptotic behavior of zn has been very widely studied (see, e.g., [1, 2, 4, 8, 11, 15, 19]). A detailed
bibliography can be found, for example, in the books [10] and [7].

For example, it is known (see [1] and [11]) that for a quite large class of random variables ξ with unbounded
support and differentiable c.d.f. F , zn satisfies a law of the iterated logarithm for the lim sup and a law of the
triple logarithm for the lim inf . We refer to the recent paper [17], where these laws for continuous r.v.s were
significantly strengthened.

We are mainly interested in the asymptotic behavior of zn in the discrete case, which has been much less
studied. It is well known that the asymptotics in continuous and discrete cases can be significantly different
(see [2, 16, 18]).

Let ξ be a discrete r.v. with distribution (i, pi), i � 0; more precisely, let

P(ξ = i) = pi > 0,

∞∑

i=0

pi = 1.
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For such a r.v., we denote

R(n) = − lnP(ξ � n) = − ln

(∑

i�n

pi

)
, r(n) = R(n)−R(n− 1).

Let us define the following functions for sufficiently large t > 0:

L0(t) = t, Lm(t) = lnLm−1(t), m ∈ N.

Let ξ, ξ1, ξ2, . . . be a sequence of discrete independent identically distributed random variables (i.i.d.r.v.s), and
let zn be defined by (1.1). It was noticed quite a while ago that the asymptotic behavior of zn in the discrete
case is closely related to the sequence

an = max

(
k � 0:

∑

i�k

pi �
1

n

)
. (1.2)

The case where the r.v. ξ has the Poisson distribution (pi = (λi/i!) exp(−λ), i � 0) or in some sense is similar
to the Poisson distribution was studied in [16, 18].

In [18] the following theorem is proved.

Theorem A. Let ξ be a discrete r.v. with distribution (i, pi), i � 0, let β > 0 be an arbitrary number, and
let an be given by (1.2). If the previously defined function r(n) satisfies the condition

r(n) = β lnn+ o
(
L2(n)

)
, n → ∞, (1.3)

then

P
(∃n0: ∀n � n0, zn ∈ Jn = {an +m, m ∈ Iβ}

)
= 1, (1.4)

∀m ∈ Iβ, P(zn = an +m i.o.) = 1, (1.5)

and

an =
lnn

βL2(n)

(
1 + o(1)

)
,

where Iβ = {−1, 0, 1, . . . , [1 + 1/β]}, and “i.o.” means “infinitely often”.

For the Poisson distribution with parameter λ > 0 (in this case, r(n) = lnn+ o(1), β = 1), Eqs. (1.4) and
(1.5) hold when Iβ = I1 = {−1, 0, 1, 2} and

an =
lnn

L2(n)

(
1 +

L3(n) + lnλ+ 1 + o(1)

L2(n)

)
.

When the function r(n) increases a bit slower than (1.3), for example, if

r(n) = o(lnn) and
∑

n�1

exp
(−er(n)

)
< ∞, (1.6)

then Eqs. (1.4) and (1.5) are still valid for β = 0 [18].
Note that under the condition

r(n) = vn lnn, vn → ∞, n → ∞, (1.7)

Equalities (1.4) and (1.5) are also true when β = ∞.
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Although not stated in [16, 18], this statement is in fact a simple consequence of these works (see [16,
Thms. 1, 2] and [18, Lemma 3]).

Thus, under conditions (1.3), (1.6), and (1.7), we can describe the asymptotics of zn with sufficient accu-
racy.

At the same time, for discrete r.v.s, a number of related problems remain open. For example, the geometric
distribution, which is important for probability theory and its applications, does not satisfy any of condition
(1.3), (1.6), and (1.7), and the natural question arises: does any equation of type (1.4) or (1.5) hold for it?

In this paper, in contrast to [18], we focus on the geometric distribution and random variables with distribu-
tion tails decreasing slower than the tails of the geometric distribution. Moreover, we present a discrete variant
of some results of [17] and consider some applications.

Let us state the main results of the work.

Theorem 1. Let (ξk)k∈N be a sequence of independent copies of a discrete random variable ξ with distribution
(i, pi), i � 0, and let an be defined by (1.2). Suppose that for each fixedm,

lim
n→∞

r(n+m)

r(n)
= 1, (1.8)

∃C0 < ∞: ∀n � 1, r(n) � C0. (1.9)

(i) If ∑

n�1

r2(n) = ∞, (1.10)

then for any integerm,

P(zn = an +m i.o.) = P(zn = ξn = an +m i.o.) = 1. (1.11)

(ii) If condition (1.10) does not hold, then for any integerm > 0,

P
(
zn = ξn ∈ (an −m, an +m) i.o.

)
= P

(
ξn ∈ (an −m, an +m) i.o.

)
= 0. (1.12)

Note that Eqs. (1.11) and (1.12) describe the asymptotics of zn at the moments of “high jumps”, that is,
ξn � zn−1. Such “high jumps” seem to be the most interesting for applications. We do not know whether
Eq. (1.12) is true for all zn if condition (1.10) is not satisfied.

To state the following result, we introduce some necessary notation. We extend the sequence (r(n)) to the
function r : (0,∞) → R by setting r(x) = r(�x�), where �x� is the least integer � x.

Let R(x) =
∫ x
0 r(y) dy. The function R is a piecewise linear extension of the sequenceR(n).

Given a function H : R → R, we denote byH−1 its generalized inverse defined by

H−1(y) = inf
{
x ∈ R: H(x) � y

}
, y ∈ R.

Put

αm(t) =

m∑

i=1

Li(t), am(t) = R−1
(
αm(t)

)
, d(n) = R−1

(
L1(n)− L3(n)

)
.

Theorem 2. Let (ξk)k∈N be a sequence of independent copies of a discrete random variable ξ with distribution
(i, pi), i � 0, and letm � 1 be some fixed integer. Let the following condition be satisfied:

lim
t→∞

r(tx)

r(t)
= xρ, ρ > −1, ∀x > 0. (1.13)
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Then

P

(
lim sup
n→∞

r(a1(n))(zn + θn − am(n))

Lm+1(n)
= 1

)
= 1, (1.14)

P

(
lim inf
n→∞

L2(n)r(a1(n))(zn + θn − d(n))

2L3(n)
= −1

)
= 1, (1.15)

where θn is a r.v. such that 0 � θn � 1.

Corollary 1.
(i) If condition (1.9) holds, then the value θn in formula (1.14) can be omitted.
(ii) Similarly, θn can be omitted in formula (1.15) if L2(n)r(a1(n))/L3(n) → 0, n → ∞.
(iii) If L2(n)r(a1(n))/L3(n) → ∞, n → ∞, then

P
(
lim inf
n→∞

(
zn − d(n)

)
= κ

)
= 1, (1.16)

where κ ∈ [−1, 0]. Here and further, by κ we denote a nonrandom constant, not necessarily the same
in different parts of the paper.

In the statements mentioned, we assumed that the functions F (x) and r(x) are known exactly. Unfortu-
nately, in many important practical cases, they are not. More often, only their asymptotics is known as x → ∞.
Consider one such example.

Proposition 1. Let (ξk)k∈N be a sequence of independent copies of a discrete random variable ξ with distri-
bution (i, pi), i � 0, and letm � 1 be some fixed integer.

Suppose that for some γ > 0 and C1 < ∞, we have the asymptotic relation

R(n) = γn+ C1 + o(1). (1.17)

Then for any integerm, Eq. (1.11) holds with an = [(ln n−C1 + o(1))/γ], and

P

(
lim sup
n→∞

γzn − αm(n)

Lm+1(n)
= 1

)
= 1, (1.18)

P

(
lim inf
n→∞

zn − (L1(n)− L3(n))

γ
= κ

)
= 1, (1.19)

where κ ∈ [−1− C1/γ, −C1/γ].

At the end of the paper, we consider examples of application of the obtained results on asymptotics of
extreme values of birth and death processes and processes in queuing systems (QSs).

Such problems were studied in many works [2, 3, 9, 13, 21, 24]. However, it was mainly the case of weak
convergence.

2 Proof of Theorem 1

Let us start with auxiliary lemmas. For a sequence of discrete i.i.d.r.v.s ξ, ξ1, ξ2, . . . with distribution (i, pi),
i � 0, we construct random events An, A′

n as follows:

An = {ξn = zn = an +m}, A′
n =

{
ξn ∈ [an −m, an +m)

}
, (2.1)

where an is defined by formula (1.2), andm is some integer.
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Lemma 1. Let random eventsAn be given by (2.1), and letm be an arbitrary fixed integer. If, under Theorem 1,
the function r(n) satisfies Eq. (1.10), then

∞∑

n=1

P(An) = ∞. (2.2)

Proof. In Lemma 3 of [18] the following lower bounds for the series in (2.2) are obtained:

∞∑

n=1

P(An) =

∞∑

n=1

P(ξ = an +m)
(
1−P(ξ � an +m+ 1)

)n−1

�
∞∑

k=0

P(ξ = k +m)
(
1−P(ξ � k +m+ 1)

)exp(R(k+1))
∑

n: an=k

1, (2.3)

∑

n: an=k

1 = exp
(
R(k + 1)

)(
1− exp

(−r(k + 1)
))

+ θk, (2.4)

where |θk| � 1, and

P(ξ = k +m) = exp
(−R(k +m)

)− exp
(−R(k +m+ 1)

)

= exp
(−R(k +m)

)(
1− exp

(−r(k +m+ 1)
))
. (2.5)

Obviously,
∞∑

k=0

P(ξ = k +m)
(
1−P(ξ � k +m+ 1)

)exp(R(k+1))|θk| � 1. (2.6)

Putting (2.3)–(2.6) together, we get

∞∑

n=1

P(An) �
∞∑

k=0

exp
(−R(k +m) +R(k + 1)

)(
1− exp

(−r(k + 1)
))

× (
1− exp

(−r(k +m+ 1)
))(

1− exp
(−R(k +m+ 1)

))exp(R(k+1))

− 1. (2.7)

Further, note that if condition (1.8) of Theorem 1 is satisfied, then only two cases are possible:

(a) There exist δ > 0 and subsequence (ki) such as r(ki) � δ, r(ki + 1) � δ, . . . , r(ki +m+ 1) � δ;
(b) r(k) → 0 as k → ∞.

Let us start with case (a). By estimate (2.7) we have

∞∑

n=1

P(An) �
∑

i

exp
(−|m|C0

)(
1− exp(−δ)

)2

× (
1− exp

(−R(ki +m+ 1)
))exp(R(ki+1))

− 1. (2.8)

As it is well known,
(
1− 1

x

)x

↑ 1

e
as x ↑ ∞. (2.9)
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Suppose thatm � 0. ThenR(k+m+1) � R(k+1), and the series on the right-hand side of inequality (2.8)
diverges, and therefore the series on the left-hand side also diverges.

Letm < 0. As mentioned before, inequality (2.8) also holds. Given the inequality
∣∣R(k + 1)−R(k +m+ 1)

∣∣ � |m|C0 (2.10)

and asymptotic relation (2.9) obtained for sufficiently large k and ε � 0.1, we have

(
1− exp

(−R(k +m+ 1)
))exp(R(k+1)) �

(
1

e
− ε

)exp(mC0)

,

that is, again, the series in the right- and left-hand sides of (2.8) diverge.
Let us turn to case (b). Again, we use estimate (2.7) and the elementary inequality 1−exp(−x) � x−x2/2,

x � 0. Then for sufficiently large k, the corresponding item in the sum on the right-hand side is estimated
from below by the value

exp
(−R(k +m) +R(k + 1)

)(
r(k +m+ 1)− r(k +m+ 1)2

2

)

×
(
r(k + 1)− r(k + 1)2

2

)(
1− exp

(−R(k +m+ 1)
))exp(R(k+1))

.

Since r(k) → 0 as k → ∞, for any fixed integerm, we have

−R(k +m) +R(k + 1) → 0 and
(
1− exp

(−R(k +m+ 1)
))exp(R(k+1)) → 1

e
.

If we add condition (1.10), then we easily to see that the series (2.2) diverges. 
�
Lemma 2. Let random events A′

n be given by Eq. (2.1), let m be an arbitrary fixed integer, and let the condi-
tions of Theorem 1 hold except (1.10), that is,

∑

n�1

r2(n) < ∞. (2.11)

Then
∞∑

n=1

P(A′
n) < ∞. (2.12)

Proof. Just as in Lemma 1, we have the equality

∞∑

n=1

P(A′
n) =

∞∑

n=1

P
(
ξn ∈ [an −m, an +m)

)
=

∞∑

k=0

P
(
ξ ∈ [k −m, k +m)

) ∑

n: an=k

1

=

m∑

j=−m

∞∑

k=0

P(ξ = k + j)
∑

n: an=k

1.

Clearly, to prove inequality (2.12), it suffices to establish the boundedness of the sums

Sj =

∞∑

k=0

P(ξ = k + j)
∑

n: an=k

1, j ∈ [−m,m]. (2.13)
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Under condition (1.8), we have r(k +m) = r(k)(1 + o(1)), k → ∞.
Therefore

P(ξ = k + j) = exp
(−R(k + j)

)− exp
(−R(k + j + 1)

)

= exp
(−R(k + j)

)
r(k)

(
1 + o(1)

)
. (2.14)

Further, we put estimates (2.14) and (2.4) into formula (2.13):

Sj �
∞∑

k=0

exp
(
R(k + 1)−R(k + j)

)
r(k)2

(
1 + o(1)

)
+

∞∑

k=0

P(ξ = k + j)|θk|.

Obviously, in the last estimate the second sum on the right is less that 1. Hence, taking into account condi-
tion (1.9) of Theorem 1 and condition (2.11), we obtain the boundedness of the values Sj . 
�

We proceed directly to the proof of Theorem 1. For the sequence of random events (An) defined by (2.1),
we introduce the following notation:

S′
n =

n∑

j=1

P(Aj), S
′′
n =

∑

1�j<l�n

P(Aj ∩Al).

Firstly, we show that under the conditions of Theorem 1, there exists a constantK < ∞ such that

lim sup
n→∞

S
′′
n

S′
n
2 � K. (2.15)

To this end, we use the simple equality

S
′′
n =

∑

1�j<l�n

P(Aj)P(Al)Cj,l, (2.16)

where Cj,l = (P(ξi � al +m, i = 1, . . . , j))−1 (see [18, Lemma 3]).
Let us estimate the value of Cj,l from above. Suppose that al = k. Then l < exp(R(k + 1)), and

Cj,l �
(
1− exp

(−R(k +m+ 1)
))−l �

(
1− exp

(−R(k +m+ 1)
))− exp(R(k+1))

.

Note that for x > 1, the function (1 − 1/x)−x decreases as x increases. From this and from inequality (2.10)
we obtain

Cj,l � C2 =
(
1− exp

(−R(1)
))− exp(R(1)+|m|C0).

Substituting the last estimate into (2.16), we have

S′′
n � C2

∑

1�j<l�n

P(Aj)P(Al).

Finally, by Lemma 1 S′
n → ∞ as n → ∞. Then

S′2
n = 2

∑

1�j<l�n

P(Aj)P(Al) +O(S′
n).

The last estimates together give inequality (2.15) atK = C2/2.
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It remains to rewrite inequality (2.15) as follows:

lim sup
n→∞

∑n
j=1

∑n
l=1P(Aj ∩Al)

(
∑n

j=1P(Aj))2
� lim sup

n→∞
2S

′′
n + S′

n

S′
n
2 � 2K. (2.17)

The generalized Borel–Cantelli lemma (see [22, Chap. 6, Sec. 26]) allows us to derive the following inequality
from estimates (2.2) and (2.17):

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
� 1

2K
.

Hence from the Hewitt–Savage zero–one law we have

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 1,

that is, Eq. (1.11) of the Theorem 1 is proved.
Item (ii) of Theorem 1 follows directly from Lemma 2 and the Borel–Cantelli lemma.

3 Proof of Theorem 2

DEFINITION 1. We say that a functionH : R → R satisfies condition (U1) if the following holds:

(i) limx→+∞H(x) = +∞;
(ii) the function H is strictly increasing for x ∈ (x0,∞), where x0 := inf{x ∈ R: H(x) > 0};
(iii) there exists ρ > −1 such that the derivativeH ′ is regularly varying at +∞ with index ρ.

The notion of regularly varying functions is well known; see [5, 20].
The main results of [17] on the asymptotic behavior of extreme values of a continuous r.v. obtained just in

the case where the functionH(x) = − ln(1− F (x)) satisfies condition (U1).
If the function r satisfies condition (1.13), then it is regularly varying at+∞with index ρ, denoted r ∈ RVρ.

Then also R ∈ RVρ+1, R−1 ∈ RV1/(ρ+1) [5, Prop. 1.5.8, Thm. 1.5.12], and h ∈ RV−ρ/(ρ+1). Moreover,

R−1(x) =

x∫

0

h(y) dy, h(y) =
1

r(R−1(y))
. (3.1)

Consider a r.v. ξc with distribution function F (x) = 1 − exp(−R(x)), x > 0, F (0) = 0. Let (ξck)k∈N be
a sequence of independent copies of a r.v. ξc, and let

zcn = max
1�i�n

ξci .

First, we show that under the conditions of the Theorem 2, we have the following asymptotic equalities:

lim sup
n→∞

r(am(n))(zcn − am(n))

Lm+1(n)
= 1 a.s. ∀m ∈ N, (3.2)

lim inf
n→∞

L2(n)r(d(n))(z
c
n − d(n))

2L3(n)
= −1 a.s. (3.3)



Asymptotic behavior of maxima of independent random variables. Discrete case 153

If the function R would satisfy condition (U1), then Eqs. (3.2) and (3.3) would a simple consequence of
Theorems 1 and 2 in [17]. Unfortunately, the function R is not differentiable in a countable set of points.
Therefore we have to slightly modify the corresponding proof from [17].

Let us establish Eq. (3.2). Let τ e be a standard exponentially distributed r.v., that is, P(τ e < x) =
1− exp(−x). Let (τ ek)k∈N be a sequence of independent copies of a r.v. τ e, and let

zen = max
1�k�n

τ ek .

Without loss of generality, we can assume that

zn − am(n) = R−1
(
zen
)−R−1

(
αm(n)

)
(3.4)

(see proof of Theorem 1 in [17]).
The following equality was obtained in Lemma 2 in [17]:

lim sup
n→∞

zen − αm(n)

Lm+1(n)
= 1 a.s. (3.5)

Furthermore, we assume that
zen(n) � αm(n) (3.6)

(since R−1(x) is an increasing function, taking into account (3.5), it suffices to choose only those n for which
(3.6) holds).

We fix an arbitrary sufficiently small ε > 0 and introduce the following notation:

h−n = inf
αm(n)�t�ze

n

h(t), h+n = sup
αm(n)�t�ze

n

h(t),

ζ−n = sup
(
t � zen: h(t) � h−n (1 + ε)

)
, ζ+n = sup

(
t � zen: h(t) � h+n (1− ε)

)
.

Then by (3.1) we obtain

h−n
(
zen − αm(n)

)
� R−1

(
zen
)−R−1

(
αm(n)

)
� h+n

(
zen − αm(n)

)
.

The functions r(t) and h(t) after construction are continuous from the left. Therefore

h
(
ζ−n

)
� h−n (1 + ε), h

(
ζ+n

)
� h+n (1− ε),

and thus

1

1 + ε
h
(
ζ−n

)(
zen − αm(n)

)
� R−1

(
zen
)−R−1

(
αm(n)

)

� 1

1− ε
h
(
ζ+n

)(
zen − αm(n)

)
.

Keeping in mind the equality h(αm(n)) = 1/r(am(n)) and Eq. (3.4), we can rewrite the last inequality as

1

1 + ε

h(ζ−n )

h(αm(n))

zen − αm(n)

Lm+1(n)
� r(am(n))(zn − am(n))

Lm+1(n)

� 1

1− ε

h(ζ+n )

h(αm(n))

zen − αm(n)

Lm+1(n)
. (3.7)
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It is known (see [10, Chap. 4, Ex. 4.3.3]) that

zen
lnn

→ 1 and
zen

αm(n)
→ 1 a.s.

as n → ∞. However, ζ−n , ζ+n ∈ (αm(n), zen), and therefore

ζ−n
αm(n)

→ 1,
ζ+n

αm(n)
→ 1.

From this we obtain that

h(ζ−n )

h(αm(n))
→ 1,

h(ζ+n )

h(αm(n))
→ 1 (3.8)

as n → ∞ (see similar conversions in [17]).
Putting together relations (3.5), (3.7), and (3.8), we obtain

1

1 + ε
� lim sup

n→∞
r(am(n))(zn − am(n))

Lm+1(n)
� 1

1− ε
a.s. (3.9)

Estimates (3.9) are satisfied for any ε > 0, from which we obtain Eq. (3.2). Similarly, based on Lemma 4
in [17], we can prove Eq. (3.3).

It remains to make the transformation from (3.2) and (3.3) to equalities (1.14) and (1.15) in Theorem 2.
Further, note that for k ∈ N, the random events

{
ξc < k

}
and

{[
ξc
]
< k

}

are equivalent, that is,

P
([
ξc
]
< k

)
= P

(
ξc < k

)
= 1− exp

(
R(k)

)
.

Thus r.v.s [ξc] and ξ are identically distributed. The same is true for r.v.s [zcn] and zn. If we denote θcn =
zcn − [zcn], then zcn − θcn and zn have the same asymptotic behavior at infinity. Hence by (3.2) and (3.3) we
obtain that there exist θn, 0 � θn � 1, such that for every fixedm ∈ N,

lim sup
n→∞

r(am(n))(zn + θn − am(n))

Lm+1(n)
= 1 a.s., (3.10)

lim inf
n→∞

L2(n)r(d(n))(zn + θn − d(n))

2L3(n)
= −1 a.s. (3.11)

Since the functions r(x) and R−1(x) are regularly varying at infinity, we have the implication

αm(n))

α1(n))
→ 1 =⇒ r(am(n))

r(a1(n))
→ 1, n → ∞

(see [6]).
In the same way, we get

r(d(n))

r(a1(n))
→ 1, n → ∞,

which, together with Eqs. (3.10) and (3.11), completes the proof of Theorem 2.
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Proof of Corollary 1. Here only item (iii) needs some explanation. It is simply deduced from Theorem 2.
Indeed, put

χn =
L2(n)r(a1(n))

L3(n)
.

Then by Eq. (1.15), for all ε > 0, we have

P

(
∃(ni): zni

− d(ni) + θni
� −1 + ε

χni

i.o.
)

= 1,

P

(
∃n0: ∀n � n0, zn − d(n) + θn � −1− ε

χn

)
= 1.

Since ε is an arbitrary positive number and χn → ∞ as n → ∞, from the last relations it follows that

lim inf
n→∞

(
zn − d(n)

)
= κ ∈ [−1, 0] a.s. (3.12)

Moreover, by the Hewitt–Savage zero–one law, κ is a degenerate r.v., that is, (1.16) holds. 
�

Remark 1. Since zn is an integer r.v., then the following relations seem of interest:

P
(
zn − [dn] ∈ {−1, 0, 1} i.o.

)
= 1, P

(
zn − [dn] < −1 i.o.

)
= 0,

which we obtain from Eq. (3.12).

4 Proof of Proposition 1

From condition (1.17) we obtain r(n) = γ+o(1). Thus condition (1.8) is satisfied. Accordingly, by Theorem 1
we have Eq. (1.11). The formula for a(n) simply follows from definition (1.2):

an = max

(
k � 0: exp

(−R(k)
)
� 1

n

)
= max

(
k � 0: k � lnn− C1 + o(1)

γ

)

=

[
lnn− C1 + o(1)

γ

]
.

We obtain relations (1.18) and (1.19) from Theorem 2, since its conditions are also satisfied. It only remains
to find the asymptotic behavior of the function R−1(x).

An anonymous reviewer has somewhat refined the interval for κ compared to the original version. Here is
his reasoning. If R denotes the piecewise linear extension of the sequence (R(n)), then

R(x) = R
(
[x]

)− r
(
[x]

)(
[x]− x

)
= γ[x] + C1 + o(1) − (

γ + o(1)
)(
[x]− x

)

= γx+ C1 +O(1)

as x → ∞. Therefore, denoting xu = R−1(u), we get, as u → ∞,

u = R(xu) = γxu + C1 + o(1), xu =
u− C1 − o(1)

γ
=

u

γ
− C1

γ
+ o(1).

Hence d(n) = (L1(n)− L3)/γ − C1/γ + o(1), and (1.19) holds with κ ∈ [−1− C1/γ, −C1/γ].

Lith. Math. J., 61(2):145–160, 2021.
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5 Examples

Let us consider some examples of application of Theorems 1 and 2 and Proposition 1.

Example 1 [Geometric distribution]. Let 0 < q < 1, and let

P(ξ = k) = pk = q(1− q)k, k � 0.

Then

P(ξ � k) = (1− q)k = exp(−γk), γ = ln
1

1− q
,

that is, R(k) = γk, r(k) = γ.
It is clear that conditions (1.9) and (1.10) of Theorem 1 hold, and therefore r.v.s zn satisfy Eq. (1.11).

Moreover, via formula (1.2) we find an = [(1/γ) ln n].
Similarly, the conditions of the Theorem 2 hold. By Corollary 1 we obtain

lim sup
n→∞

γzn − αm(n)

Lm+1(n)
= 1, lim inf

n→∞
zn − (L1(n)− L3(n))

γ
= κ a.s.,

where κ ∈ [−1, 0].
In fact, the last equation can be refined. Namely, based on the results of [15], we can prove that the

geometric distribution satisfies the following:

P

(
zn �

[
L1(n)− L3(n)

γ

]
i.o.

)
= 1.

From this and Remark 1 we have

P

(
zn −

[
L1(n)− L3(n)

γ

]
∈ {−1, 0} i.o.

)
= 1,

P

(
zn −

[
L1(n)− L3(n)

γ

]
< −1 i.o.

)
= 0.

Example 2 [Queuing system M/M/m]. Let us now consider a queuing system with m servers, 1 � m < ∞,
and customers that arrive according to the Poisson process with intensity λ, service times being independent
copies of a random variable η with exponential distribution

P(η � x) = 1− exp(−μx), x � 0.

In the standard notation, this queuing system has the type M/M/m; see [12, 14].
We impose the following assumption on the parameters λ and μ ensuring the existence of the stationary

regime: ρ := λ/(mμ) < 1. For t � 0, let Q(t) denote the length of the queue at time t, that is, the total
number of customers in service or pending. Set

Q̄(t) = sup
0�s<t

Q(s), t � 0.

Let us introduce the regeneration moments (Sk) for the processQ: S0 := 0 and, for i ∈ N, Si is the arrival time
of a new customer after the ith busy period. Let Ti be the duration of the ith regeneration cycle, and let Q̄(T1)
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be the maximum length of the queue in the first regeneration cycle. It is well known that aT = ET1 = 1/(λp0)
and

p0 =

(
m∑

k=0

(mρ)k

k!
+

ρmmm

m!(1ρ − 1)

)−1

.

Put

P
(
Q̄(T1) � n

)
= exp

(−R(n)
)
. (5.1)

In recent paper [9] the authors established that the sequence (R(n)) in (5.1) satisfies conditions (1.17) with

γ = ln
1

ρ
, C1 = ln

ρm!

mm(1− ρ)
. (5.2)

Based on these equalities in [9], it was found that Q̄(t) satisfies a law of the iterated logarithm for the lim sup
and a law of the triple logarithm for the lim inf .

Here we will strengthen this result as follows:

lim sup
t→∞

γQ̄(t)− αk(t)

Lk+1(t)
= 1 a.s. ∀k � 1, (5.3)

and

lim inf
t→∞

(
Q̄(t)− 1

γ

(
L1(t)− L3(t)

))
= κ a.s., (5.4)

where κ ∈ [−1− (C1 + ln aT )/γ, −(C1 + ln aT )/γ].
Indeed, denote by N the counting process for the sequence (Sk), that is,

N(t) = max{k � 0: Sk � t}, t � 0.

By the strong law of large numbers for N , we have limt→∞N(t)/t = 1/aT a.s., whence, as t → ∞,

lnN(t) = ln
t

aT
+ o(1) a.s. (5.5)

Put Zn = Q̄(Sn). From Proposition 1 it follows that for r.v. Zn, Eqs. (1.18) and (1.19) hold with γ and C1

defined in (5.2), that is,

lim sup
n→∞

γZn − αk(n)

Lk+1(n)
= 1, lim inf

t→∞

(
Zn − 1

γ

(
L1(n)− L3(n)

))
= κ a.s.,

where κ ∈ [−1− C1/γ, −C1/γ].
The procedure of the transition from here to (5.3) and (5.4) is known and is based on estimate (5.5) and the

following inequalities:

ZN(t) � Q̄(t) � ZN(t)+1 a.s.

(see, e.g., [9]).
Further, we consider the r.v.s

Q̄n = sup
0�k�n

Q(tk), n � 0,

where t0 = 0, t1, t2, . . . are the moments of receipt of applications in the system.

Lith. Math. J., 61(2):145–160, 2021.



158 K. Akbash, N. Doronina, and I. Matsak

We easily see that

lim
n→∞

N(tn)

n
= lim

n→∞
N(tn)

tn

tn
n

=
1

λaT
= p0 a.s.

Repeating the observations mentioned from Proposition 1, we obtain

lim sup
n→∞

γQ̄n − αk(n)

Lk+1(n)
= 1, lim inf

n→∞

(
Q̄n − L1(n)− L3(n)

γ

)
= κ a.s.,

where κ ∈ [−1− (C1 + ln p0)/γ, −(C1 + ln p0)/γ].

Example 3 [Birth and death processes]. Let X = (X(t))t�0 be a birth and death process with parameters

λn = λvn +A, μn = μvn +B, n = 1, 2, . . . ,

λ0 = A, μ0 = 0, λ, μ, vn, A,B > 0,
(5.6)

that is, (X(t))t�0 is a time-homogeneous Markov process such that, for t � 0, given {X(t) = n}, the
probability of transition to state n+1 over a small period of time δ is (λvn+A)δ+o(δ), and the probability of
transition to n−1 is (μvn+B)δ+o(δ), n = 1, 2, 3, . . . . The parameter a can be interpreted as the infinitesimal
intensity of population growth due to immigration, andB characterizes the intensity of population decline due
to emigration.

In the case vn = n the birth-death processX is usually called the process with linear grow (see [14, Chap. 7,
Sec. 6]).

We assume thatX(0) = 0, vn ↑ ∞ as n ↑ ∞,

∑

n�1

1

vn
< ∞, and ρ :=

λ

μ
< 1. (5.7)

Put

θ0 = 1, θk =

k∏

i=1

λi−1

μi
, k ∈ N.

Under condition (5.7), there exists a stationary regime, that is, limt→∞P(X(t) = k) = pk with pk = θkp0,
k = 0, 1, 2, 3, . . . , where p0 = 1/(

∑∞
k=0 θk).

Further, X is a regenerative process with regeneration moments (Sk), where S0 = 0 and Si, i ∈ N, is the
moment of ith return to state 0. It is known that aT = ETk = 1/(Ap0), where Tk = Sk −Sk−1 is the duration
of the kth regeneration cycle; see [24].

Put

X̄(t) = sup
0�s<t

X(s), t � 0,

and

q(n) := P
(
X̄(T1) � n

)
= exp

(−R(n)
)
.

It is known (see [3] or [24, Eq. (34)]) that q(n) = 1/
∑n−1

k=0 αk, where α0 = 1 and αk =
∏k

i=1 μi/λi for k ∈ N.
Further, we write αk in the following form:

αk =
βk
ρk

, βk =

k∏

i=1

(1 + δi), δi =
B/μ−A/λ

vi +A/λ
.
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As it is known from the analysis, if the series of condition (5.7) converges, then there exists

lim
k→∞

βk = β∗ =
∞∏

i=1

(1 + δi) (5.8)

(see [23, Chap. 1, Sec. 4]).
To estimate the value q(n), we need the following:

Lemma 3. For arbitrary p > 1 and βk that satisfies equality (5.8),

Λn :=

n∑

k=1

pkβk = β∗ pn+1

p− 1

(
1 + o(1)

)
, n → ∞.

Proof. By the Stolz–Cesàro theorem we have

lim
n→∞

Λn

pn+1
= lim

n→∞
Λn − Λn−1

pn+1 − pn
= lim

n→∞
pnβn

pn+1 − pn
=

β∗

p− 1
.

The proof is complete. 
�
The estimate follows directly from Lemma 3:

q(n) =
1− ρ

ρβ∗ ρn
(
1 + o(1)

)
,

that is,

R(n) = − ln q(n) = γn+ C1 + o(1),

where

γ = ln
1

ρ
, C1 = ln

ρβ∗

1− ρ
. (5.9)

It remains to apply Proposition 1 and repeat the reasoning from the previous example. Thus, for birth and
death processes with parameters defined in (5.6), we obtain

lim sup
t→∞

γX̄(t)− αk(t)

Lk+1(t)
= 1, lim inf

t→∞

(
X̄(t)− 1

γ

(
L1(t)− L3(t)

))
= κ a.s.,

where κ ∈ [−1− (C1 + ln aT )/γ, −(C1 + ln aT )/γ], and γ and C1 are given by Eqs. (5.9).
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