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Boundary value problems in elastostatics with singular data
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Abstract. We consider the main boundary value problems of linear elastostatics with nonregular data. We prove existence
and uniqueness results for bounded and exterior domains of R3 of class Ck (k � 2). In the case of isotropic body, we
prove the results for domains of class C1,α (α ∈ (0, 1]) and of class C1 in the case of the displacement problem.
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1 Introduction

The boundary-value problems of elastostatics for regular domains and data are today a well-defined part of
the variational theory for elliptic systems. For instance, let Ω be a bounded domain of R3, and let {S1,S2} be
complementary subsurfaces of ∂Ω. If Ω is of class Ck (k � 2) and

û ∈ W k−1/q, q(S1), ŝ ∈ W k−1−1/q, q(S2),

q ∈ (1,+∞), then it is well known that the classical mixed problem

divC [∇u] = 0 in Ω, (1.1)

u = û on S1, (1.2)

τu+ s(u) = ŝ on S2 (τ � 0), (1.3)

has a unique solution u ∈ W k,q(Ω), provided that the elasticity tensor C is regular and satisfies natural
definiteness assumptions and ŝ is in equilibrium for S1 = ∅ and τ = 0; see, for example, [11, Chap. VI]
and [1, 3, 6, 12]. Here s(u) = C[∇u]n, with n unit normal on ∂Ω, is the traction field on the boundary. For
S2 = ∅ (resp. S1 = ∅ and τ = 0) we have the Dirichlet (or displacement) problem (resp., the Neumann, or
traction, problem) [8]. For S1 = ∅ and τ > 0, we have the Robin problem.

Clearly, even in view of possible applications, it is quite natural to detect whether the existence and unique-
ness for (1.1)–(1.3) still hold under weaker regularity assumptions on the boundary data, for instance, in the
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Boundary value problems in elastostatics with singular data 397

presence of concentrated loads. From the existence of a regular solution of a boundary value problem with da-
tum in a spaceH it follows, by transposition, the existence of a so-called very weak solution (see, e.g., [1,12]),
which is defined by a suitable integral equation and corresponds to data in the dual spaceH ′. In this approach
the main problem concerns the sense to give to the attainability of the boundary value (see [1, Chap. 6]). An
alternative approach to the existence of a solution to the boundary value problem of elastostatics, confined to
homogeneous bodies but undoubtedly more sharp and strictly connected to the structure of system (1.1), is
based on the classical theory of layer integral equations [11, Chap. VI]. (From a historical point of view, this
approach has been the first one treating in full generality, at least for isotropic and homogeneous bodies, the
boundary value problems of elastostatics.) Following this technique and assuming the body to be homoge-
neous and isotropic with boundary of class C1,α, α ∈ (0, 1], Cialdea [2] was able to show the existence of
a solution to the traction problem with a nonregular datum ŝ, that is, system (1.1)–(1.3) with S1 = ∅, τ = 0,
and ŝ a Borel measure on ∂Ω. He proved that (1.1)–(1.3) has a solution expressed by a double layer potential
with density in Lq(∂Ω) the tractions of which take the boundary value ŝ in a well-defined sense.

In this paper, we are concerned just with the problem of establishing the existence and uniqueness of
a solution of (1.1)–(1.3) with singular data (the result for the displacement problem, that is, S2 = ∅ in (1.1)–
(1.3), was recently proved in [19]). In particular, using the results we recall in Section 2 on the trace operators
associated with the elastic layer potentials [17] and the Fredholm alternative, in Sections 3–4, we prove that if
Ω is of class Ck (k � 2), C is constant and positive definite (strongly elliptic for S2 = ∅), and

û ∈ W 2−k−1/q, q(S1), ŝ ∈ W 1−k−1/q, q(S2),

then (1.1)–(1.3) has a solution u expressed by layer potentials and thus taking the boundary values in a well-
defined sense. It is unique in reasonable function classes.

Moreover, we consider the problem

divC[∇u] = 0 in Ω,

u = û on S1, τu+ s(u) = ŝ on S2, lim
r→+∞u(x) = 0

(1.4)

(τ � 0, and r will be defined further) in an exterior domain of R3 (see, e.g., [13, 14]). We show that under the
stated hypotheses on C, û, and ŝ, (1.4) has a unique solution.

We also consider the particular case of isotropic bodies. In this case, we prove the existence and uniqueness
for bounded and exterior domains of class C1,α (α ∈ (0, 1]) (Section 5) and of class C1 for the displacement
problem (Section 6).

Notation and classical results

We essentially use the notation of the classical monograph [8]. A domain Ω is an open connected set of R3.
We deal with bounded or exterior domains with connected boundaries, although the results of this paper can
be easily extended to more general bounded or exterior domains with compact but not necessarily connected
boundaries. A domainΩ is said to be of class Ck (k ∈ N) (resp., Ck,α, k ∈ N, α ∈ (0, 1]) if for every ξ ∈ ∂Ω,
there is a neighborhood of ξ (on ∂Ω) that is the graph of a function of class Ck (resp., Ck,α). We assume that
Ω is at least of class C1. The symbol c is used to denote a positive constant the numerical value of which is
unessential to our purposes. We denote by n the unit normal to ∂Ω exterior (resp., interior) with respect to Ω
for a bounded (resp., exterior) domainΩ. We denote by o the origin of the reference frame; we suppose o ∈ Ω
(resp., o ∈ �Ω) for a bounded (resp., exterior) domain Ω. For every x ∈ R

3, we set x = x− o and r = |x|. If
Ω is exterior, then we set ΩR = Ω ∩ SR, where SR = {x ∈ R

3: r < R}. As usual, if f(x) and g(r) > 0 are
two functions on Ω, by f = o(g) and f = O(g) we mean that limr→+∞ f(x)/g(r) = 0 and |f(x)| � cg(r).

R denotes the set of all (infinitesimal) rigid displacements. The Sobolev space W k,q(Ω) consists of all
ϕ ∈ L1

loc(Ω) such that ‖ϕ‖W k,q(Ω) = ‖ϕ‖Lq(Ω)+‖∇kϕ‖Lq(Ω) < +∞;W k,q
0 (Ω) is the completion of C∞

0 (Ω)
with respect to ‖ϕ‖W k,q(Ω), andW−k,q′(Ω) is its dual space;D1,2

0 (Ω) denotes the completion of C∞
0 (Ω) with
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398 G. Starita and A. Tartaglione

respect to ‖∇φ‖L2(Ω);W k−1/q, q(∂Ω) is the trace space ofW k,q(Ω), andW 1−k−1/q′, q′(∂Ω) is its dual space.
By

∫ �
Ω fϕ (

∫ �
∂Ω fϕ) we denote (say) the value of the functional f ∈ W−k,q′(Ω) (f ∈ W−k,q′(∂Ω)) at

ϕ ∈ W k,q
0 (Ω) (ϕ ∈ W k,q(∂Ω)). Of course, if fϕ is integrable, then

∫
≡

∫ �.
If Ω is of class Ck, then sinceW k−1/q, q(∂Ω) ↪→ Ck−1, μ(∂Ω), for kq > 3 and μ = 1− 3/q, we have that

[Ck−1,μ(∂Ω)]′ ↪→ W 1−k−1/q′, q′(∂Ω). Then, in particular, W−1,q(∂Ω), q ∈ (1, 2) contains the space of all
Borel measures on ∂Ω.

Let Ω be a bounded domain, and let Lq
div(Ω) = {φ ∈ Lq(Ω): divφ ∈ Lq(Ω)}. Endowed with the

norm ‖φ‖Lq
div(Ω) = ‖φ‖Lq(Ω) + ‖divφ‖Lq(Ω), L

q
div(Ω) is a Banach space, and for q ∈ (1,+∞), the map

φ ∈ C1(Ω) → φ · n ∈ C(∂Ω) extends to a continuous operator from Lq
div(Ω) → W−1/q,q(∂Ω), and the

following (generalized) divergence theorem holds (see [20, Chap. 1]):

∫

Ω

f divφ =

�∫

∂Ω

fφ · n−
∫

Ω

φ · ∇f

for all φ ∈ Lq
div(Ω) and f ∈ W 1,q′(Ω).

LetB,D be two Banach spaces and denote byB′,D′ their dual spaces. A linear continuousmap T : B → D
is said to be Fredholmian if its range is closed and dimKernT = dimKernT′ ∈ N0, where T′ : D′ → B′
is the adjoint of T. The classical Fredholm alternative [16] states that the equation a = T[u] has a solution if
and only if 〈φ′, a〉 = 0 for all φ′ ∈ KernT′. Moreover, the equation a′ = T′[u′] has a solution if and only if
〈a′, φ〉 = 0 for all φ ∈ KernT.

2 The elastic layer potentials

We refer to [8] for the basics of the theory of linear elastostatics. Recall that the elasticity tensor C in (1.1) is
a linear map from Lin → Sym such that C[W ] = 0 for allW ∈ Skw. We suppose C to be symmetric, that is,

E · C[L] = L · C[E] ∀ E,L ∈ Lin.

C is positive definite if

π[E] = E · C[E] � |SymE|2 ∀E ∈ Lin,

and strongly elliptic if

π[a⊗ b] > 0 ∀a, b �= 0.

Unless otherwise specified, we will suppose C to be at least strongly elliptic.
If the body is isotropic, then C is defined by

C[E] = 2μ SymE + λ(trE)1 ∀E ∈ Lin, (2.1)

where λ, μ are the Lamé moduli. In such a case, C is positive definite and strongly elliptic if μ(3λ+2μ)> 0
and μ(λ+ 2μ) > 0, respectively, and (1.1) writes

μΔu+ (λ+ μ)∇ divu = 0.

A weak solution of (1.1) is a field u ∈ W 1,q
loc (Ω) such that

∫

Ω

∇φ · C[∇u] = 0 ∀φ ∈ C∞
0 (Ω).

If q = 2, then a weak solution is said to be a variational solution.
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The following work and energy theorem holds for a variational solution u ∈ W 1,2
loc (Ω) of (1.1) (with

u = o(1) for exterior Ω):
∫

Ω

π[∇u] =

�∫

∂Ω

u · s(u). (2.2)

From (2.2) and the inequality (see [8, p. 105] and [21])
∫

Ω

|∇u|2 �
∫

Ω

π[∇u] ∀u ∈ D1,2
0 (Ω)

the classical uniqueness results follow: if u|∂Ω = 0, then u ≡ 0; if C is positive definite and
∫ �
∂Ω u ·s(u) � 0,

then u ∈ R (u = 0 for exterior Ω).
As far as the traction problem for bounded domains is concerned, the uniqueness is meant in the class of

normalized displacements, that is, the fields u satisfying (see [8, p. 186])

�∫

∂Ω

u = 0,

�∫

∂Ω

x× u = 0.

Equation (1.1) admits a fundamental solution U(x − y) (see [9, Chap. III]), that is, a regular solution for
all x �= y to

divC
[
∇U(x− y)

]
= δ(x− y),

where δ is the Dirac distribution, expressed by U(z) = Φ(z)/|z| with homogeneous second–order tensor
function Φ of degree zero. If C satisfies (2.1), then Φ is expressed by (see [8, p. 174])

Φ(z) =
1

16π(1 − ν)

{

(3− 4ν)1+
z ⊗ z

|z|2

}

,

where ν = λ/2(λ + μ) is the Poisson ratio.
For all ψ,φ ∈ L1(∂Ω), the fields

v[ψ](x) =

∫

∂Ω

U(x− ζ)ψ(ζ) dσζ , (2.3)

w[ϕ](x) =

∫

∂Ω

C
[
∇U(x− ζ)

]
(ϕ⊗ n)(ζ) dσζ (2.4)

represent analytical solutions of (1.1) in R
3 \ ∂Ω and are known as simple-layer potential and double layer

potential with densities ψ and ϕ, respectively.
The fields (2.3) and (2.4) have the following asymptotic behavior:

∇kv[ψ](x) = O
(
r−1−k

)
, ∇kw[ϕ](x) = O

(
r−2−k

)
,

and ∫

∂Ω

ψ = 0 =⇒ ∇kv[ψ](x) = O
(
r−2−k

)
.

Lith. Math. J., 60(3):396–409, 2020.



400 G. Starita and A. Tartaglione

We have
∥
∥v[ψ]

∥
∥
W k,q(Ω)

� c‖ψ‖W k−1−1/q, q(∂Ω), (2.5)
∥
∥w[ϕ]

∥
∥
W k,q(Ω)

� c‖ϕ‖W k−1/q, q(∂Ω)

for some constants c depending only on k, q, and Ω, and the following limits exist for almost all ξ ∈ ∂Ω and
axis l in a ball tangent (on the side of n) to ∂Ω at ξ:

lim
ε→0+

v[ψ]
(
ξ ∓ εl(ξ)

)
= S[ψ](ξ), (2.6)

lim
ε→0+

w[ϕ]
(
ξ ∓ εl(ξ)

)
= W±[ψ](ξ), (2.7)

lim
ε→0+

C
[
∇v[ψ]

](
ξ ∓ εl(ξ)

)
n(ξ) = T ±[ψ](ξ), (2.8)

lim
ε→0+

C
[
∇w[ϕ]

](
ξ ∓ εl(ξ)

)
n(ξ) = Z[ϕ](ξ). (2.9)

Note that (2.6) represents the trace of the simple-layer potential with density ψ and shows that v[ψ] is contin-
uous in R

3; (2.7) represent the traces of the double layer potential on both “faces" of ∂Ω; (2.8) are the traces
of the traction field associated with the simple-layer potential on the faces of ∂Ω; (2.9) represents the trace of
the traction field associated with the double layer potential and shows that C[∇w[ϕ]]n is continuous in R

3.
The values (2.6)–(2.9) define the linear and continuous operators

S : W k−1−1/q, q(∂Ω) → W k−1/q, q(∂Ω), (2.10)

W± : W k−1/q, q(∂Ω) → W k−1/q, q(∂Ω),

T ± : W k−1−1/q, q(∂Ω) → W k−1−1/q, q(∂Ω),

Z : W k−1−1/q, q(∂Ω) → W k−1−1/q, q(∂Ω),

and the classical jump conditions hold:

ψ = T +[ψ]− T −[ψ], (2.11)

ϕ = W+[ϕ]−W−[ϕ]. (2.12)

As observed in [17], (2.10) can be extended to its adjoint operator

S ′ : W 1−k−1/q′, q′(∂Ω) → W 2−k−1/q′, q′(∂Ω),

defining the trace of the simple-layer potential with density ψ ∈ W 1−k−1/q′, q′(∂Ω), that is,

v[ψ](x) =

�∫

∂Ω

U(x− ζ)ψ(ζ) dσζ

(for the meaning of
∫ �, see Notation in Section 1), and from (2.5) it follows that

∥
∥v[ψ]

∥
∥
W 2−k, q′ (Ω)

� c‖ψ‖W 1−k−1/q′ , q′ (∂Ω). (2.13)
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Moreover,W± and T ∓ are adjoint to each other, so that (say)

W− : W 2−k−1/q′, q′(∂Ω) → W 2−k−1/q′, q′(∂Ω)

is the adjoint of T + and defines the trace of a double layer potentialw[ϕ] with density in W 2−k−1/q′, q′(∂Ω):

w[ϕ](x) =

�∫

∂Ω

C
[
∇U(x− ζ)

]
(ϕ⊗ n)(ζ) dσζ .

Finally, Z can be extended to its adjoint operator

Z ′ : W 2−k−1/q′, q′(∂Ω) → W 1−k−1/q′, q′(∂Ω),

which defines the trace of the traction field of the double layer potential w[ϕ] with density ϕ ∈
W 2−k−1/q′, q′(∂Ω).

The following results are proved in [17].

Lemma 1. Let Ω be a bounded or an exterior domain of class Ck (k � 2). The operator S is Fredholmian,
and KernS = KernS ′ = {0}.
Lemma 2. Let Ω be a bounded or an exterior domain of class Ck (k � 2). The operators W± and T ± are
Fredholmian, KernW+ = Kern T − = {0}, and

KernT + =

{
{ψ : S[ψ] ∈ R}, Ω bounded,

{0}, Ω exterior,

KernW− =

{
R, Ω bounded,
{0}, Ω exterior.

(2.14)

Lemma 3. Let Ω be a bounded or an exterior domain of class Ck (k � 2). The operator Z is Fredholmian,
and KernZ = KernZ ′ = R.

3 The Dirichlet–Neumann–Robin problem

First of all, let us recall the following well-known existence theorems for regular data (see [1, 7, 12]).

Theorem 1. Let Ω be a bounded domain of class Ck (k � 2). If û ∈ W k−1/q, q(∂Ω), q ∈ (1,+∞), and
φ ∈ C∞

0 (Ω), then the displacement problem

divC[∇u] = φ in Ω, u = û on ∂Ω

has a unique solution u ∈ W k,q(Ω), and

‖u‖W k,q(Ω) � c
{
‖û‖W k−1/q, q(∂Ω) + ‖φ‖W k−2,q(Ω)

}
.

Theorem 2. Let Ω be a bounded domain of class Ck (k � 2), and let C be positive definite. If ŝ ∈
W k−1−1/q, q(∂Ω), q ∈ (1,+∞) satisfies

∫

∂Ω

� · ŝ−
∫

Ω

� · φ = 0 ∀� ∈ R

Lith. Math. J., 60(3):396–409, 2020.
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and φ ∈ C∞
0 (Ω), then the traction problem

divC[∇u] = φ in Ω, s(u) = ŝ on ∂Ω

has a unique normalized solution u ∈ W k,q(Ω), and

‖u‖W k,q(Ω) � c
{
‖ŝ‖W k−1−1/q, q(∂Ω) + ‖φ‖W k−2,q(Ω)

}
.

By the results on the trace operators associated with the layer potentials recalled in the previous section
we can apply the Fredholm alternative to prove the existence and uniqueness for the classical problems of
elastostatics with singular data. Let us consider the general boundary-value problem

divC[∇u] = 0 in Ω, (3.1)

αu+ γs(u) = a on ∂Ω, (3.2)

where α and γ are assigned scalars, not both zero and such that αγ � 0. For exterior Ω, we require that

u(x) = o(1).

Note that for γ = 0, α = 0, and αγ > 0, we have the Dirichlet, Neumann, and Robin problems, respec-
tively. The following theorem holds. (The result stated by Theorem 3 for the Dirichlet problem was recently
proved in [19].)

Theorem 3. Let Ω be a bounded or an exterior domain of class Ck (k � 2), and assume that C is positive
definite for γ �= 0. If

a ∈ W h−k−1/q, q(∂Ω), h =

{
2, γ = 0,

1 otherwise,

and
�∫

∂Ω

a · � = 0 ∀� ∈ R

for bounded Ω and α = 0, then (3.1)–(3.2) has a solution expressed by a simple-layer potential with density
ψ ∈ W 1−k−1/q, q(∂Ω). It satisfies the estimate

‖u‖W 2−k,q(Ω) � c‖a‖W h−k−1/q, q(∂Ω), (3.3)

and for γ �= 0, it is unique in the class of all u ∈ W 2−k,q
loc (Ω) such that

�∫

Ω

u · φ =

{
− 1

γ

∫ �
∂Ω a · z, Ω bounded,

+ 1
γ

∫ �
∂Ω a · z, Ω exterior,

(3.4)

for all φ ∈ C∞
0 (Ω), with z solution of

divC[∇z] = φ in Ω, αz + γs(z) = 0 on ∂Ω,
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and z = o(1) if Ω is exterior. If γ = 0, then u is unique in the class of all u ∈ W 2−k,q
loc (Ω) such that

�∫

Ω

u · φ =

{
+ 1

α

∫ �
∂Ω a · s(z), Ω bounded,

− 1
α

∫ �
∂Ω a · s(z), Ω exterior,

(3.5)

for all φ ∈ C∞
0 (Ω) such that

∫
Ω � · φ = 0 ∀� ∈ R, with z solution of

divC[∇z] = φ in Ω, z = 0 on ∂Ω,

and z = o(1) if Ω is exterior.

Proof. Let Ω be bounded. If αγ = 0, then by Lemma 1 or Lemma 2 the equation
(
αS ′ + γT +

)
[ψ] = a (3.6)

has a solution ψ ∈ W 1−k−1/q, q(∂Ω), and the field u = v[ψ] is a solution that is C∞ in Ω and satisfies (3.2)
in the sense of (3.6). Let aj be a regular sequence on ∂Ω that converges to a strongly in W h−k−1/q, q(∂Ω).
Let α = 0 (say), and let v[ψj ] be the solution of (3.1)–(3.2) with datum aj . By (2.13) v[ψj] converges to v[ψ]
strongly in W 2−k,q(Ω). Integration by parts gives

∫

Ω

v[ψj ] · φ = −1

γ

∫

∂Ω

aj · z.

Hence (3.4) follows by letting j → +∞. Analogously, for γ = 0, we obtain (3.5). Estimate (3.3) follows from
Theorems 1 and 2 and a duality argument.

If αγ > 0, then since S is compact fromW 1−k−1/q, q(∂Ω) into itself, αS+γT + is a compact perturbation
of a Fredholmian operator, and so it enjoys the same property. Set

σ[ϕ] = αv[ϕ]− γw[ϕ].

To prove existence of a solution of (3.6), it is sufficient to show that if ϕ ∈ Kern(αS − γW−), then ϕ = 0.
Now, since σ[ϕ]− = 0, by uniqueness σ[ϕ] = 0 in �Ω. By the jump conditions (2.11) and (2.12) we have
σ[ϕ]+ = −γϕ, s(σ[ϕ])+ = αϕ so that, integrating by parts,

∫

Ω

π
[
∇σ[ϕ]

]
=

∫

∂Ω

σ[ϕ]+ · s
(
σ[ϕ]

)+
= −αγ

∫

∂Ω

|ϕ|2.

Hence ϕ = 0. The uniqueness follows from the usual argument. The proof of the existence and uniqueness in
exterior domains is analogous to the previous one and so is omitted. ��

Note that, choosing φ = divC[∇ζ] in (3.5) (say) with ζ ∈ Ck(Ω) vanishing on ∂Ω, we have1

�∫

Ω

u · divC[∇ζ] = ± 1

α

∫

∂Ω

a · s(ζ) ∀ζ ∈ Ck(Ω). (3.7)

In particular, if ζ ∈ C∞
0 (Ω), then

∫ �
Ω u · divC[∇ζ] = 0 for all ζ ∈ C∞

0 (Ω), that is, u satisfies (3.1)–(3.2) in
the sense of distributions.

1 Some authors call a field u ∈ L1
loc(Ω) satisfying (3.7) a very weak solution of (3.1)–(3.2) (see, e.g., [1, 12]).
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Remark 1. Similar results to those stated in Theorem 3 have been proved for the Dirichlet problem associated
to Stokes and Oseen systems in [18] (also see [15]).

Remark 2. By the well-known interpolation and stability results [10] Theorem 3 ensures that αS + γT ± are
Fredholmian. Hence the existence and uniqueness follows for boundary data in the Sobolev–Besov space
W s,q(∂Ω). In particular, for every a ∈ Lq(∂Ω), (3.1)–(3.2) has a unique very weak solution, which takes the
boundary datum in the following sense:

lim
t→0±

(
αu+ γs(u)

)(
ξ − tl(ξ)

)
= a(ξ)

for almost all ξ ∈ ∂Ω and axis l in a ball tangent to ∂Ω at ξ.

4 Mixed problems

Once a regular boundary-value problem is solved, we can construct the associated Green function. Consider,
for instance, the Dirichlet problem in a bounded domain

divC[∇u] = 0 in Ω, u = û on ∂Ω. (4.1)

For every y ∈ Ω, the equations

divx C
[
∇A(x, y)

]
= 0 in Ω,

A(ξ, y)−U(x− ξ) = 0 on ∂Ω

have a unique regular solution, and the fieldG(x, y) = U(x− y)−A(x, y) defines the Green function of the
Dirichlet problem. The very weak solution of (4.1) can be written as

�∫

∂Ω

C[∇G](x, ζ)(û⊗ n)(ζ) dσζ . (4.2)

Beside its intrinsic interest, (4.2) is also useful to deal with mixed problems as the Dirichlet–Neumann–Robin
problem (1.1)–(1.3) in a bounded domain we treat in details as a sample. To this end, we follow [11, p. 606].
Let us look for a solution of (1.1)–(1.3) expressed by

u(x) = −
�∫

S2

G(x, ζ)ψ(ζ) dσζ +

�∫

S1

C[∇G](x, ζ)(û ⊗n)(ζ) dσζ

= ṽ[ψ](x) + w̃[û](x). (4.3)

Since by construction u satisfies (1.2), we have to find ψ such that, on S2,

τ ṽ[ψ] + s
(
ṽ[ψ]

)
= ŝ− τw̃[û]− s

(
w̃[û]

)
. (4.4)

By the regularity properties of the Green function over regular boundaries (4.4) is a Fredholm equation of
index zero. Thus, to show that (4.4) is uniquely solvable, it is sufficient that the homogeneous equation has
only the trivial solution. If τ ṽ[ψ] + s(ṽ[ψ]) = 0 on S2, then ṽ[ψ] is a regular solution of

divC[∇u] = 0 in Ω, u = 0 on S1, τu+ s(u) = 0 on S2.
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By uniqueness ṽ[ψ] = 0 in Ω. Since ṽ[ψ] is continuous through ∂Ω, again by uniqueness ṽ[ψ] = 0 in �Ω,
so that (2.11) implies ψ = 0.

Moreover, the usual argument shows that u satisfies

�∫

Ω

u · φ =

∫

S1

û · s(z)−
∫

S2

ŝ · z (4.5)

for all φ ∈ C∞(Ω), with z solution of

divC[∇z] = φ in Ω, z = 0 on S1, τz + s(z) = 0 on S2. (4.6)

Therefore, calling a very weak solution of (1.1)–(1.3) a field u ∈ W 2−k,q(Ω) that satisfies (4.5) for all φ ∈
C∞(Ω) with z the solution of (4.6), we can state the following:

Theorem 4. Let Ω be a bounded domain of class Ck (k � 2). If û ∈ W 2−k−1/q, q(S1) and ŝ ∈
W 1−k−1/q, q(S2), then (1.1)–(1.3) has a unique very weak solution

u ∈ W 2−k,q(Ω) ∩ C∞(Ω),

expressed by (4.3) for some ψ ∈ W 1−k−1/q, q(S2), and

‖u‖W 2−k, q(Ω) � c
{
‖û‖W 2−k−1/q, q(S1) + ‖ŝ‖W 1−k−1/q, q(S2)

}
.

Analogous problems in exterior domains (like (1.4)) can be treated by the same method.

Remark 3. Taking into account that, for every x ∈ Ω,

∣
∣∇mv[ψ]

∣
∣(x) =

∣
∣
∣
∣
∣

�∫

∂Ω

[
∇mU(x− ζ)

]
ψ(ζ) dσζ

∣
∣
∣
∣
∣
� c(x,m,Ω,C)‖ψ‖W 1−k−1/q, q(∂Ω),

we see that for all Ω′′ such that Ω′′ ⊂ Ω, there is a positive constant c depending only on Ω′′, Ω, and C such
that

‖u‖Wm,q(Ω′′) � c
{
‖û‖W 2−k−1/q, q(S1) + ‖ŝ‖W 1−k−1/q, q(S2)

}
.

5 The Dirichlet–Neumann–Robin problem in domains of classC1,α

Let C be expressed by (2.1). If Ω is of class C1,α for some α ∈ (0, 1], then classical results of V. Kupradze
and S. Mikhlin ensure that the operators

W± : Lq(∂Ω) → Lq(∂Ω)

are Fredholmian for all q ∈ (1,+∞) and KernW±,Kern T ± ⊂ C0,α(∂Ω) (see [11, Chap. VI]). Thus,
proceeding as for Lemma 2 in [17], we see that KernW± and KernT ± are expressed by (2.14). Hence from
the same argument used in the proof of Theorem 3 the following existence results easily follow.

Theorem 5. Let Ω be a bounded or an exterior domain of class C1,α (α ∈ (0, 1]). If ŝ ∈ Lq(∂Ω) is in
equilibrium for Ω bounded and α = 0, then the problem

μΔu+ (λ+ μ)∇ divu = 0 in Ω, αu+ γs(u) = ŝ on ∂Ω

Lith. Math. J., 60(3):396–409, 2020.
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(α, γ not both zero and such that αγ � 0) with u = o(1) if Ω is exterior, has a unique solution expressed by
a simple-layer potential with density in Lq(∂Ω), and

∥
∥(∇u)∗

∥
∥
Lq(∂Ω)

� c‖ŝ‖Lq(∂Ω),

where f∗ = ess sup f .

From (2.11) it follows

‖ψ‖Lq(∂Ω) �
∥
∥T +[ψ]

∥
∥
Lq(∂Ω)

+
∥
∥T −[ψ]

∥
∥
Lq(∂Ω)

� c
∥
∥S[ψ]

∥
∥
W 1,q(∂Ω)

.

Therefore, proceeding as for Lemma 1 in [17], we see that the operator S : Lq(∂Ω) → W 1,q(∂Ω) is Fred-
holmian and KernS = {0}. Hence we have the following:
Theorem 6. Let Ω be a bounded or an exterior domain of class C1,α (α ∈ (0, 1]). If û ∈ Lq(∂Ω), then the
problem

μΔu+ (λ+ μ)∇ divu = 0 in Ω, u = û on ∂Ω,

with u = o(1) if Ω is exterior, has a unique solution expressed by a simple-layer potential with density
ψ ∈ W−1,q(∂Ω), and

‖u∗‖Lq(∂Ω) � c‖û‖Lq(∂Ω).

Moreover, if û ∈ W 1,q(∂Ω), then ψ ∈ Lq(∂Ω), and
∥
∥(∇u)∗

∥
∥
Lq(∂Ω)

� c‖û‖W 1,q(∂Ω).

From (2.12) it follows

‖ϕ‖W 1,q(∂Ω) �
∥
∥W+[ϕ]

∥
∥
W 1,q(∂Ω)

+
∥
∥W−[ϕ]

∥
∥
W 1,q(∂Ω)

� c
∥
∥Z[ϕ]

∥
∥
Lq(∂Ω)

.

Proceeding as for Lemma 3 in [17], we see that the operator Z : W 1,q(∂Ω) → Lq(∂Ω) is Fredholmian and
KernZ = R. Let C = {ψ: S[ψ] ∈ R}.
Theorem 7. Let Ω be a bounded or an exterior domain of class C1,α (α ∈ (0, 1]). If μ(3λ + 2μ) > 0 and
ŝ ∈ W−1,q(∂Ω) is in equilibrium for boundedΩ, then the problem

μΔu+ (λ+ μ)∇ divu = 0 in Ω, s(u) = ŝ on ∂Ω,

with u = o(1) if Ω is exterior, has a unique solution expressed by

u =

{
w[ϕ], Ω bounded,

w[ϕ] + v[ψ], Ω exterior,

for some ϕ ∈ Lq(∂Ω) and ψ ∈ C. Moreover, if ŝ ∈ Lq(∂Ω), then ϕ ∈ W 1,q(∂Ω).

Proof. Let Ω be exterior. Consider the equation

Z[ϕ] = ŝ− T −[ψ] (5.1)

with ψ ∈ C. Of course, (5.1) has a solution if and only if

�∫

∂Ω

(ŝ− T −[ψ]) · � = 0 ∀� ∈ R.
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This is equivalent to say that the homogeneous system
∫

∂Ω

T −[ψ] · � = 0 ∀� ∈ R

has only the null solution ψ = 0. To show this, choose � such that S[ψ] = �. Then, integrating by parts, we
have

∫

Ω

π
[
∇v[ψ]

]
=

∫

∂Ω

S[ψ] · T −[ψ] = 0.

Hence it follows that ψ = 0. The proof for bounded Ω is immediate. ��

Remark 4. Since for q ∈ (1, 2), W−1,q(∂Ω) contains the space of Borel measures on ∂Ω, Theorem 7 extends,
in particular, the existence theorem of [2].

6 The displacement problem in domains of class C1

In this section, we are concerned with the problem

μΔu+ (λ+ μ)∇ divu = 0 in Ω, (6.1)

u = û on ∂Ω, (6.2)

for boundedΩ.
Taking into account the identity Δu = ∇(divu)− curl curlu, we can write (6.1) as

(μ+ κ)Δu+ (λ+ μ− κ)∇(divu)− κ curl curlu = 0

for every κ ∈ R. In particular, choosing κ = μ(λ+ μ)/(λ+ 3μ) and calling

S0(u) =
2μ(λ+ 2μ)

λ+ 3μ
∇u+

(λ+ μ)(λ+ 2μ)

λ+ 3μ
(divu)1+ 2

μ(λ+ μ)

λ+ 3μ
∇̃u

the pseudostress field and
s0(u) = S0(u)n

the pseudotraction field, we obtain the Somigliana-type formula

u(x) = v
[
s0(u)

]
(x) +w0[u](x),

where v[s0(u)] is the simple-layer potential with density s0(u), and

w0[u](x) =

∫

∂Ω

S0

(
U(x− ζ)

)
(u⊗ n)(ζ) dσζ .

Clearly, for every density ϕ ∈ L1(∂Ω), the double-layer field w0[ϕ] is an analytical solution of (6.1) in
R
3 \ ∂Ω. Moreover, a direct computation shows that [5, 11]

w0[ϕ] =

∫

∂Ω

[(x− ζ) · n(ζ)](ζ)
|x− ζ|3

{

λ′ϕ(ζ) + μ′ [(x− ζ) · ϕ(ζ)](x− ζ)

|x− ζ|5

}

dσζ ,
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and if Ω is of class C1, then the trace of w0[ϕ] exists on both “faces” of ∂Ω:

w0[ϕ](x) → W±
0 [ϕ](ξ) = ±1

2
ϕ(ξ) +

∫

∂Ω

S0

(
U(ξ − ζ)

)
(ϕ⊗ n)(ζ) dσζ

=

(

±1

2
I +K

)

[ϕ](ξ)

for almost all ξ ∈ ∂Ω with compactK : Lq(∂Ω) → Lq(∂Ω), and the conjugates of W±
0 give the trace on ∂Ω

of the pseudotractions of the simple-layer potential v[ψ]:

T ±
0 [ψ] = s0

(
v[ψ]

)±
= ±1

2
ψ(ξ)−K′[ψ],

where K′ is the adjoint of K.
Using the results of [4], we are able to prove the following:

Lemma 4. Let Ω be a bounded domain of class C1. If μ(λ + 2μ) > 0, then the operatorW+
0 from Lq(∂Ω)

into itself and fromW 1,q(∂Ω) into itself, q ∈ (1,+∞), is Fredholmian, and KernW+
0 = KernT −

0 = {0}.

Proof. The Fredholm property of W+
0 follows from the results of [4]. If ψ ∈ Kern T −

0 , then ψ ∈ Lq(∂Ω)
for all q ∈ (1,+∞) (see [4] p. 182), so that we can integrate by parts to see that v[ψ] is zero in �Ω. By
uniqueness v[ψ] = 0 in Ω, so that ψ = T +

0 [ψ]− T −
0 [ψ] = 0 and KernT −

0 = {0} = KernW+
0 . ��

The existence and uniqueness of a solution of (6.1)–(6.2) is now a simple consequence of Fredholm’s
alternative.

Theorem 8. Let Ω be a bounded domain of class C1, and let μ(λ+ 2μ) > 0. If û ∈ Lq(∂Ω), q ∈ (1,+∞),
then (6.1)–(6.2) has a solution expressed by

u = w0[ϕ]

for some ϕ ∈ Lq(∂Ω). The solution is unique in the class of all fields u ∈ L1
loc(Ω) that satisfy the relation

∫

Ω

u · φ =

∫

∂Ω

û · s0(z)

for all φ ∈ C∞
0 (Ω), with z the solution of

μΔz + (λ+ μ)∇ div z = φ in Ω, z = 0 on ∂Ω.

If û ∈ W 1,q(∂Ω), then ϕ ∈ W 1,q(∂Ω).

Remark 5. By this method we can also consider the displacement problem (6.1)–(6.2) in exterior domains of
class C1 with the condition u = o(1). If Ω is of class C2, the theorem also holds in the borderline case
û ∈ L1(∂Ω) [5].
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