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Abstract. We present upper bounds of the integral
∫∞
−∞ |x|l|P{ZN < x}−Φ(x)| dx for 0 � l � 1+δ, where 0 < δ � 1,

Φ(x) is a standard normal distribution function, and ZN = SN/
√
ES2

N is the normalized random sum with ES2
N > 0

(SN = X1 + · · ·+XN ) of centered random variablesX1, X2, . . . satisfying the uniformly strong mixing condition. The
number of summandsN is a nonnegative integer-valued random variable independent ofX1, X2, . . . .
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1 Introduction and main results

Let X1,X2, . . . be a sequence of real centered random variables (r.v.s). For a � b, we denote by Fb
a the

σ-algebra of events generated by r.v.s Xa,Xa+1, . . . ,Xb. As usual, R is the real line, N = {1, 2, . . . }, N0 =
{0, 1, 2, . . . }, and 1A is the indicator of an event A.

We consider the weak dependence condition defined between the “past” and “future” in terms of the
uniformly strong mixing coefficient ϕ(τ) introduced by Ibragimov (1959): We say that a sequence of r.v.s
X1,X2, . . . satisfies the uniformly strong mixing (u.s.m.) condition (or the ϕ-mixing condition) with the
u.s.m. coefficient ϕ(τ) if

ϕ(τ) = sup
t∈N

sup
A∈Ft

1, B∈F∞
t+τ

P(A)>0

|P(AB)−P(A)P(B)|
P(A)

→
τ→∞ 0 (1.1)

(see [4] or [5]).
In what follows, Φ(x) is the standard normal distribution function. By C(·) with an index or without it we

denote a positive finite factor depending only on the quantities indicated in the parentheses (not necessarily the
same at different occurrences).
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Recall the following result for sums with a fixed number n of random summands satisfying the u.s.m.
condition (1.1), which will be used to prove the corresponding results for random sums.

Theorem A. (See [15, Cor. 3].) Let a sequence of r.v.s X1,X2, . . . with EXi = 0 and E|Xi|2+δ < ∞, where
0 < δ � 1, i = 1, . . . , n, satisfy the u.s.m. condition (1.1) with coefficient ϕ(τ) � Ke−μτ , where 0 < K < ∞
and μ > 0 are constants. Denote

Zn =
Sn√
ES2

n

, Sn =

n∑

i=1

Xi, Il,n =

∞∫

−∞
|x|l∣∣P{Zn < x} − Φ(x)

∣
∣dx,

λl,n =
∣
∣E|Zn|l −E|Y |l∣∣, Lr,n =

1

(ES2
n)

r/2

n∑

i=1

E|Xi|r,

where ES2
n > 0, and Y is a standard normal r.v. Then

Il,n � C0L2+δ,n ln
1+δ(1 + n) (1.2)

if (i) 0 � l � 1 or (ii) 1 < l � 1 + δ and L2,n � C∗; and

λl,n � C0L2+δ,n ln
1+δ(1 + n)

if (i) 1 � l � 2 or (ii) 2 < l � 2 + δ and L2,n � C∗.
Here C0 = C(K,μ, l) in cases (i), and C0 = C(K,μ, l, C∗) in cases (ii).

Recall that to prove Theorem A, we used the powerful and general direct Stein method introduced in [13]
for estimating the rate of convergence of sums of weakly dependent r.v.s to the normal distribution.

In this paper, we are interested in estimates of the quantities

Il =
∞∫

−∞
|x|l∣∣P{ZN < x} − Φ(x)

∣
∣ dx, λl =

∣
∣E|ZN |l −E|Y |l∣∣,

where

ZN =
SN√
ES2

N

, SN =

N∑

i=1

Xi, S0 = 0,

assuming that ES2
N > 0, the number of summands N is a nonnegative integer-valued r.v. independent of X1,

X2, . . . , the centered summandsX1,X2, . . . satisfy the u.s.m. condition (1.1), and Y is a standard normal r.v.
There are not many results on the convergence rate in the central limit theorem for random sums with

weakly dependent summands. Strictly stationary sequences satisfying the u.s.m. condition (1.1), assuming
that the number of summands and summands are dependent, were considered in [9]. Similar results for strictly
stationary sequences of martingales have been obtained in [8]. A stationary sequence of m-dependent r.v.s,
assuming that the number of summands and summands are independent, was investigated in the recent paper
[10]. Without the convergence rate, the asymptotic normality of random sums of stationary m-dependent r.v.s
was investigated in [12], in the recent paper [6], and that of martingales in [11].

For a wide range of various well-known and less common methods for estimation of the accuracy of prob-
abilistic approximations, we refer to [2] and references therein. For the results on the convergence rate in the
central limit theorem for weakly dependent random variables, we refer to [1, 7, 14] and references therein.

However, the author has not found any published results on the upper bounds of the quantities Il and λl,
l � 0, for random sums with summands satisfying the u.s.m. condition (1.1). Note that for independent
summandsX1, X2, . . . , the corresponding upper estimates of Il for 0 � l � 1 + δ, where 0 < δ � 1 (and λl
for 1 � l � 2 + δ) have been obtained in the recent paper [16].
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To investigate the asymptotic normality and the convergence rate for random sums of independent (as well
as dependent) summands, we use, as usual, the additional r.v.s

AN =

N∑

i=1

EXi, B2
N =

N∑

i=1

VXi, lr,N =

N∑

i=1

E|Xi|r.

In [17], seemingly for the first time, we introduced the additional r.v.s

κ2N =

N∑

i=1

N∑

j=1

cov(Xi,Xj) = B2
N + 2

∑

1�i<j�N

cov(Xi,Xj),

which are very useful for investigating the asymptotics of the normality and the convergence rate for random
sums of dependent (including weakly dependent) summands. Here cov(ξ, η) = Eξη−EξEη is the covariance
of real r.v.s ξ and η. Moreover, we assume that

∑0
i=1(·) = 0.

The main results of this paper are Theorems 1–3.

Theorem 1. Let a sequence of real r.v.s X1,X2, . . . with EXi = 0 and E|Xi|2+δ < ∞, where 0 < δ � 1,
i = 1, 2, . . . , satisfy the u.s.m. condition (1.1) with coefficient ϕ(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0
are constants. LetN be a nonnegative integer-valued r.v. independent of X1,X2, . . . . Then

Il � C1
El2+δ,N ln1+δ(1 +N)

(Eκ2N )(2+δ)/2
+ C2

E|κ2N −Eκ2N |
Eκ2N

, (1.3)

for 0 � l � 1; if, in addition, L2,k � C∗ for k = 1, 2, . . . , then

Il � C3
Ell+1,N

(Eκ2N )(l+1)/2
+ C4

El2+δ,N ln1+δ(1 +N)

(Eκ2N )(2+δ)/2
+ C5

E|κl+1
N − (Eκ2N )(l+1)/2|
(Eκ2N )(l+1)/2

(1.4)

for 1 < l � 1 + δ. Here the factors C1 = C1(l, δ, C0), C2 = C2(l), C3 = C(K,μ, l, C∗), C4 = C(l, δ, C0),
and C5 = C(K,μ, l, C∗), where C0 is taken from Theorem A.

In particular, if the summands are identically distributed with zero mixed moments, then we have the
following result.

Corollary 1. Let X,X1,X2, . . . be real identically distributed r.v.s with EX = 0, 0 < σ2 = EX2, β2+δ =
E|X|2+δ < ∞, where 0 < δ � 1, and EXiXj = 0, 1 � i �= j � ∞, satisfy the u.s.m. condition (1.1)
with coefficient ϕ(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants. Let N be a nonnegative
integer-valued r.v. with EN > 0, independent ofX1,X2, . . . . Then ZN = SN/(σ

√
EN),

Il � C1
β2+δ

σ2+δ

EN ln1+δ(1 +N)

(EN)(2+δ)/2
+ C2

E|N −EN |
EN

(1.5)

for 0 � l � 1 with EN ln1+δ(1 +N) < ∞, and

Il � C3
βl+1

σl+1

1

(EN)(l−1)/2
+ C4

β2+δ

σ2+δ

EN ln1+δ(1 +N)

(EN)(2+δ)/2
+ C5

E|N (l+1)/2 − (EN)(l+1)/2|
(EN)(l+1)/2

for 1 < l � 1 + δ with EN (l+1)/2 < ∞.
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By λl we denote the absolute value of the difference between the absolute moments of the random sum ZN

and the standard normal r.v. Y ,

λl =
∣
∣E|ZN |l −E|Y |l∣∣.

The estimates of λl follow from the estimates of Il of Theorem 1. Namely, we have the following result.

Theorem 2. Let the conditions of Theorem 1 hold. Then

λl � C6
El2+δ,N ln1+δ(1 +N)

(Eκ2N )(2+δ)/2
+ C7

E|κ2N −Eκ2N |
Eκ2N

for 1 � 1 � 2; if, in addition, L2,k � C∗ for k = 1, 2, . . . , then

λl � C8
Ell,N

(Eκ2N )l/2
+ C9

El2+δ,N ln1+δ(1 +N)

(Eκ2N )(2+δ)/2
+ C10

E|κlN − (Eκ2N )l/2|
(Eκ2N )l/2

for 2 < l � 2 + δ.
Here the factors Ci = lCi−5, i = 6, 7, 8, 9, 10, where C1, C2, C3, C4, and C5 are taken from Theorem 1.

If, in addition, the summands are identically distributed with zero mixed moments, then from Theorem 2
we obtain the following result.

Corollary 2. Let X,X1,X2, . . . be real identically distributed r.v.s with EX = 0, 0 < σ2 = EX2, β2+δ =
E|X|2+δ < ∞, where 0 < δ � 1, and EXiXj = 0, 1 � i �= j � ∞, satisfy the u.s.m. condition (1.1)
with coefficient ϕ(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants. Let N be a nonnegative
integer-valued r.v. with EN > 0, independent ofX1,X2, . . . . Then ZN = SN/(σ

√
EN),

λl � C6
β2+δ

σ2+δ

EN ln1+δ(1 +N)

(EN)(2+δ)/2
+ C7

E|N −EN |
EN

(1.6)

for 1 � l � 2 with EN ln1+δ(1 +N) < ∞, and

λl � C8
βl
σl

1

(EN)(l−2)/2
+ C9

β2+δ

σ2+δ

EN ln1+δ(1 +N)

(EN)(2+δ)/2
+ C10

E|N l/2 − (EN)l/2|
(EN)l/2

for 2 < l � 2 + δ with EN l/2 < ∞.

To present the results for three concrete random indicesN , we recall the definition of the τ -shifted L distri-
bution (τ -shifted Poisson distribution, τ -shifted binomial distribution, τ -shifted negative binomial distribution,
and so on), which was first introduced in [16]. We write ξ ∼ L if the distribution of a r.v. ξ is L.

DEFINITION 1. We say that a discrete r.v. N is distributed by the τ -shifted L distribution (τ � 0) (for short,
N − τ ∼ L) or thatN is a τ -shifted r.v. if for any discrete r.v. ξ ∼ L taking values xk with probabilities pk,

P{N = xk + τ} = P{ξ = xk} = pk.

In particular, the 0-shifted L distribution coincides with the L distribution.

Lith. Math. J., 60(3):410–423, 2020.
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DEFINITION 2. We say that a r.v.N is distributed by the τ -shifted Poisson distribution with parameters τ ∈ N0

and λ > 0 (for short, N − τ ∼ P(λ)) if

P{N = k + τ} =
λk

k!
e−λ, k = 0, 1, 2, . . . .

DEFINITION 3. We say that a r.v. N is distributed by the τ -shifted binomial distribution with parameters
τ ∈ N0, n ∈ N, and 0 < p < 1 (for short, N − τ ∼ B(n, p)) if

P{N = k + τ} =

(
n
k

)

pk(1− p)n−k, k = 0, 1, . . . , n.

DEFINITION 4. We say that a r.v. N is distributed by the τ -shifted negative binomial distribution with param-
eters τ ∈ N0, r ∈ N, and 0 < p < 1 (for short, N − τ ∼ NB(r, p) if

P{N = k + τ} =

(
k − 1
r − 1

)

pr(1− p)k−r, k = r, r + 1, . . . .

Now, we present the following statement for three presented τ -shifted L distributions.

Theorem 3. Let X,X1,X2, . . . be real identically distributed r.v.s with EX = 0, 0 < σ2 = EX2, β2+δ =
E|X|2+δ < ∞, where 0 < δ � 1, and EXiXj = 0, 1 � i �= j � ∞, satisfy the u.s.m. condition (1.1)
with coefficient ϕ(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants. Let N be a nonnegative
integer-valued r.v. independent of X1,X2, . . . . Then ZN = SN/(σ

√
EN), and:

1. If N − τ ∼ P(λ) with τ ∈ N0 and λ > 0, then

Il � C11
ln1+δ(1 + τ + λ)

(τ + λ)δ/2
(1.7)

for 0 � l � 1, and

λl � C12
ln1+δ(1 + τ + λ)

(τ + λ)δ/2
(1.8)

for 1 � l � 2.
2. If N − τ ∼ B(n, p) with τ ∈ N0, n ∈ N, and 0 < p < 1, then

Il � C13
ln1+δ(1 + τ + np)

(τ + np)δ/2
(1.9)

for 0 � l � 1, and

λl � C14
ln1+δ(1 + τ + np)

(τ + np)δ/2
(1.10)

for 1 � l � 2.
3. If N − τ ∼ NB(r, p) with τ ∈ N0, r ∈ N, and 0 < p < 1, then

Il � C15
ln1+δ(1 + τ + r/p)

(τp + r)δ/2
(1.11)
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for 0 � l � 1, and

λl � C16
ln1+δ(1 + τ + r/p)

(τp+ r)δ/2
(1.12)

for 1 � l � 2.

Here Ci = Ci(K,μ, σ, β2+δ , δ), i = 11, . . . , 16.

Since the 0-shifted L distribution coincides with the L distribution, taking τ = 0 in Theorem 3, we obtain
the corresponding estimates of Il and λl for Poisson, binomial, and negative binomial random sums.

2 Auxiliary results

To prove the main results, we use some lemmas, which were also useful for estimating Il and λl for l � 0 for
random sums of independent summands (see [16]) and for estimating the uniform metrics supx∈R |P{ZN <
x} − Φ(x)| for random sums of summands satisfying the u.s.m. condition (1.1) (see [17]). Here we present
them without proofs.

In the following lemma, we give a relationship between the first moments of the random sum SN and the
corresponding moment characteristics of r.v.s AN and κ2N .

Lemma 1. (See [17].) Let X1,X2, . . . be (arbitrarily dependent, not necessarily identically distributed) r.v.s
with EX2

i < ∞, and let N be a nonnegative integer-valued r.v. independent of X1,X2, . . . . Denote

SN =

N∑

i=1

Xi, AN =

N∑

i=1

EXi, B2
N =

N∑

i=1

VXi, κ2N =

N∑

i=1

N∑

j=1

cov(Xi,Xj).

Then

ESN = EAN , ES2
N = Eκ2N +EA2

N ,

VSN = Eκ2N +VAN . (2.1)

If r.v.sX1,X2, . . . are independent, then

ES2
N = EB2

N +EA2
N , VSN = EB2

N +VAN .

In Lemma 2, we present the upper estimates of the second momentES2
N and varianceVSN of the random

sum SN with summands satisfying the u.s.m. condition.

Lemma 2. (See [17].) Let a sequence of real r.v.s X1,X2, . . . satisfy the u.s.m. condition (1.1) with∑∞
τ=1ϕ

1/2(τ) < ∞, and let N be a nonnegative integer-valued r.v. independent of X1,X2, . . . . Let the
notation of Lemma 1 hold, and let

b2N =

N∑

i=1

EX2
i , C∞

(
ϕ1/2

)
= 1 + 4

∞∑

τ=1

ϕ1/2(τ).

Then

ES2
N � C∞

(
ϕ1/2

)
Eb2N +EA2

N , (2.2)

VSN � C∞
(
ϕ1/2

)
Eb2N +VAN .

We recall that to obtain inequality (2.2) while estimating ES2
k with a fixed number k = 1, 2, . . . of sum-

mands, it suffices to use inequality (1.3) in [5, p. 363, Lemma1.1] or the inequality in [3, p. 278, Thm.A.6].

Lith. Math. J., 60(3):410–423, 2020.
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To transfer estimate (1.2) for random sums, we need Lemmas 3, 4, and 5.

Lemma 3. (See [16, Lemma 1].) Let ξ and η be real r.v.s with E|ξ|l+1 < ∞ and E|η|l+1 < ∞ for some l � 0,
respectively. Then

∞∫

−∞
|x|l∣∣P{ξ < x} −P{η < x}∣∣ dx � E|ξ|l+1 +E|η|l+1

l + 1
.

In particular, if η = Y is a standard normal r.v., then, for l � 0,

∞∫

−∞
|x|l∣∣P{ξ < x} − Φ(x)

∣
∣ dx �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
l+1(E|ξ|l+1 + 2(l+1)/2Γ((l+2)/2)√

π
) if l � 0,

1
l+1(E|ξ|l+1 + 1) if 0 � l � 1,

1
l+1(E|ξ|l+1 + 2

√
2√
π
) if 1 < l � 2,

(2.3)

where Γ is the gamma function. Moreover, if Eξ2 = 1, then, for all 0 � l � 1,

∞∫

−∞
|x|l∣∣P{ξ < x} − Φ(x)

∣
∣ dx � 2

l + 1
. (2.4)

Furthermore, to estimate Il,n for 1 < l � 1 + δ, we use an estimate, which follows from estimate (58)
in [15] under the condition of exponentially decreasing u.s.m. coefficient ϕ(τ) and truncation level t = 1.

Lemma 4. Let X1,X2, . . . be a sequence of r.v.s with EXi = 0 and E|Xi|κ < ∞ for i = 1, . . . , n, where
κ � 2, satisfying the u.s.m. condition (1.1) with ϕ(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants.
Let L2,n =

∑n
i=1 EX2

i /ES2
n � C∗. Denote

Il,n =

∞∫

−∞
|x|l∣∣P{Zn < x} − Φ(x)

∣
∣dx, Zn =

Sn√
ES2

n

, Sn =

n∑

i=1

Xi,

where ES2
n > 0. Then, for all 1 < l � κ− 1,

Il,n � C0

(

1 +
1

(ES2
n)

(l+1)/2

n∑

i=1

E|Xi|l+11{|Xi|>
√

ES2
n}

)

, (2.5)

where C0 = C(K,μ, l, C∗).

Lemma 5. (See [16].) For all a>0 and l�0, we have

∞∫

−∞
|x|l∣∣Φ(xa)− Φ(x)

∣
∣ dx =

2(l+2)/2Γ((l + 2)/2)√
2π

|a− 1|
1∫

0

dt

(γ(t))(l+2)/2
(2.6)

� 2(l+2)/2Γ((l + 2)/2)√
2π(l + 1)

·
∣
∣
∣
∣1−

1

al+1

∣
∣
∣
∣, (2.7)

where γ(t) = [1 + t(a− 1)]2 > 0.
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In Lemmas 6, 7, and 8, we present some useful estimates of (E|N−EN |)/EN , where the random number
N is a τ -shifted Poisson r.v., a τ -shifted binomial r.v., and a τ -shifted negative binomial r.v., respectively.

Lemma 6. (See [17].) If N − τ ∼ P(λ) with τ ∈ N0 and λ > 0, then

E|N −EN |
EN

� 1√
τ + λ

. (2.8)

Lemma 7. (See [17].) If N − τ ∼ B(n, p) with τ ∈ N0, n ∈ N, and 0 < p < 1, then

E|N −EN |
EN

<
1√

τ + np
. (2.9)

Lemma 8. (See [17].) If N − τ ∼ NB(r, p) with τ ∈ N0, r ∈ N, and 0 < p < 1, then

E|N −EN |
EN

<
1√

τp+ r
. (2.10)

3 Basic inequality for Il with EXi = 0, i = 1, 2, . . .

Denote

Il =
∞∫

−∞
|x|l∣∣Δ(x)

∣
∣ dx, Δ(x) = P

{
SN < x

√
ES2

N

}− Φ(x), SN =

N∑

i=1

Xi,

ξk =
Sk√
ES2

k

, ak =

√
ES2

N
√

ES2
k

, Sk =

k∑

i=1

Xi, k = 1, 2, . . . ,

whereX1,X2, . . . are (arbitrarily dependent) r.v.s, ES2
N > 0, and S0 = 0. It is clear that ifN is a nonnegative

integer-valued r.v. with pk = P{N = k}, k = 0, 1, 2, . . . , independent of X1,X2, . . . , then, for all x ∈ R,

Δ(x) =

∞∑

k=0

[
P
{
Sk < x

√
ES2

N

}− Φ(x)
]
pk.

Let

K(α) =
{
k ∈ N:

∣
∣ES2

k −ES2
N

∣
∣ � (1− α)ES2

N

}

and

K(α) =
{
k ∈ N:

∣
∣ES2

k −ES2
N

∣
∣ > (1− α)ES2

N

}

for α ∈ (0, 1).
First, we observe that ES2

k � αES2
N > 0 for k ∈ K(α). Since

[
P
{
S0 < x

√
ES2

N

}− Φ(x)
]
p0 =

[
1{x>0} − Φ(x)

]
p0

Lith. Math. J., 60(3):410–423, 2020.
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and
∞∑

k=1

[
P
{
Sk < x

√
ES2

N

}− Φ(x)
]
pk

=
∑

k∈K(α)

[
P{ξk < xak} − Φ(xak)

]
pk +

∑

k∈K(α)

[
Φ(xak)− Φ(x)

]
pk

+
∑

k∈K(α)

[
P{ξk < xak} − Φ(x)

]
pk,

we can state the following:

Basic inequality for Il. Let X1,X2, . . . be (arbitrarily dependent, not necessarily identically distributed)
r.v.s with EXi = 0 for all i = 1, 2, . . . , and let N be a nonnegative integer-valued r.v. with pk = P{N = k},
k = 0, 1, 2, . . . , independent ofX1,X2, . . . . Then, for all l � 0,

Il �
∑

1
+
∑

2
+
∑

3
+
∑

4
, (3.1)

where

∑

1
=

∑

k∈K(α)

∞∫

−∞
|x|l∣∣P{ξk < xak} − Φ(xak)

∣
∣ dxpk,

∑

2
=

∑

k∈K(α)

∞∫

−∞
|x|l∣∣Φ(xak)− Φ(x)

∣
∣ dxpk,

∑

3
=

∞∫

−∞
|x|l∣∣1{x>0} − Φ(x)

∣
∣ dxp0,

∑

4
=

∑

k∈K(α)

∞∫

−∞
|x|l∣∣P{

Sk < x
√

ES2
N

}− Φ(x)
∣
∣ dxpk,

whereK(α) = {k ∈ N: |ES2
k−ES2

N | � (1−α)ES2
N} andK(α) = {k ∈ N: |ES2

k−ES2
N | > (1−α)ES2

N}
for α ∈ (0, 1).

4 Proofs of Theorems 1–3 and Corollaries 1, 2

In what follows, the sequence of r.v.s X1,X2, . . . satisfies the u.s.m. condition (1.1).
First of all, note that under the condition EXi = 0 for all i = 1, 2, . . . ,

κ2N =

N∑

i=1

N∑

j=1

EXiXj = b2N + 2
∑

1�i<j�N

EXiXj ,

where b2N =
∑N

i=1 EX2
i .
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Proof of Theorem 1. For the sum ξk with fixed number k of summands, we use the notation

Il,k =

∞∫

−∞
|x|l∣∣P{ξk < x} − Φ(x)

∣
∣ dx, k = 1, 2, . . . .

Estimation of
∑

1. First, we observe that

∑

1
=

∑

k∈K(α)

1

al+1
k

Il,kpk. (4.1)

Since ak � 1/
√
2− α andES2

k � αES2
N for k ∈ K(α), using (1.2) of Theorem A, from (4.1) we obtain that,

for all 0 � l � 1 + δ,

∑

1
� (2− α)(l+1)/2C0

∑

k∈K(α)

1

(ES2
k)

(2+δ)/2

k∑

i=1

E|Xi|2+δ ln1+δ(1 + k)pk

� (2− α)(l+1)/2C0

α(2+δ)/2

El2+δ,N ln1+δ(1 +N)1{N∈K(α)}
(ES2

N )(2+δ)/2
, (4.2)

where l2+δ,k =
∑k

i=1 E|Xi|2+δ and C0 is taken from (1.2) of Theorem A.

Estimation of
∑

2. To estimate
∑

2, using (2.6) of Lemma 5, we get that, for all l � 0,

∞∫

−∞
|x|l∣∣Φ(xak)− Φ(x)

∣
∣dx =

2(l+2)/2Γ((l + 2)/2)√
2π

|ak − 1|
1∫

0

dt

(γk(t))(l+2)/2
, (4.3)

where γk(t) = [1 + t(ak − 1)]2.
Since

1√
2− α

� ak � 1√
α

for k ∈ K(α), we easily obtain that

γk(t) �
1

2− α
(4.4)

for 0 � t � 1, α ∈ (0, 1), and k ∈ K(α) (see [16, p. 255]).
The upper bound of |ak − 1| for k ∈ K(α) easily follows:

|ak − 1| = |ES2
k −ES2

N |
√

ES2
k(
√

ES2
k +

√
ES2

N )
� 1

α+
√
α

|ES2
k −ES2

N |
ES2

N

. (4.5)

Substituting (4.5) and (4.4) into (4.3), we obtain that, for all l � 0 and k ∈ K(α),

∞∫

−∞
|x|l∣∣Φ(xak)− Φ(x)

∣
∣dx � [2(2 − α)](l+2)/2Γ((l + 2)/2)√

2π(α+
√
α)

|κ2k −ES2
N |

ES2
N

. (4.6)
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Here we used the fact that ES2
k = κ2k for k = 1, 2, . . . if EXi = 0 for i = 1, 2, . . . . It only remains to

substitute (4.6) into the expression of
∑

2. We obtain that, for all l � 0,

∑

2
� [2(2 − α)](l+2)/2Γ((l + 2)/2)√

2π(α+
√
α)

E|κ2N −ES2
N |1{N∈K(α)}

ES2
N

. (4.7)

Estimation of
∑

3 +
∑

4. Taking into account that S0 = 0, from (2.3) of Lemma 3 the estimate of
∑

3 for
0 � l � 2 follows:

∑

3
� p0

l + 1
·
{
1 if 0 � l � 1,

2
√
2√
π

if 1 < l � 2.
(4.8)

We easily see that
∑

4
�

∑

41
+
∑

42
+
∑

43
, (4.9)

where

∑

41
=

∑

k∈K−
(α)

1

al+1
k

Il,kpk,
∑

42
=

∑

k∈K+
(α)

1

al+1
k

Il,kpk,

∑

43
=

∑

k∈K(α)

∞∫

−∞
|x|l∣∣Φ(xak)− Φ(x)

∣
∣ dxpk,

andK(α) = K
−
(α) ∪K

+
(α) is rewritten as the union ofK−

(α) = {k ∈ N: ES2
k < αES2

N} andK+
(α) =

{k ∈ N: ES2
k > (2− α)ES2

N}.
Since 1/ak � √

α for k ∈ K
−
(α) and Il,k � 2/(l + 1) for 0 � l � 1 by (2.4) of Lemma 3, using (4.8),

we obtain that, for 0 � l � 1,

∑

3
+
∑

41
� 1

l + 1
p0 +

2α(l+1)/2

l + 1

∑

k∈K−
(α)

pk

� max
{
1, 2α(l+1)/2

} 1

l + 1

∑

k�0:|κ2
k−ES2

N |>(1−α)ES2
N

pk

� max
{
1, 2α(l+1)/2

} 1

(l + 1)(1 − α)

E|κ2N −ES2
N |1{N∈K(α)∪{0}}
ES2

N

. (4.10)

Now let 1 < l � 1 + δ, 0 < δ � 1. In this case, instead of (2.4) of Lemma 3, we use (2.5) of Lemma 4,
whereby for any fixed k = 1, 2, . . . ,

Il,k � C0

(

1 +
1

(ES2
k)

(l+1)/2

k∑

i=1

E|Xi|l+11{|Xi|>
√

ES2
k}

)

,

and therefore

1

al+1
k

Il,k � C0
1

al+1
k

+C0
1

(ES2
N )(l+1)/2

k∑

i=1

E|Xi|l+11{|Xi|>
√

ES2
k}. (4.11)
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Thus, using (4.8) and (4.11) and recalling that 1/ak � √
α for k ∈ K

−
(α), we obtain that, for 1 < l � 1+δ,

0 < δ � 1,

∑

3
+
∑

41
� 2

√
2p0√

π(l + 1)
+ C0α

(l+1)/2
∑

k∈K−
(α)

pk

+ C0
1

(ES2
N )(l+1)/2

∑

k∈K−
(α)

k∑

i=1

E|Xi|l+11{|Xi|>
√

ES2
k}pk

� max

{
2
√
2√

π(l + 1)
, C0α

(l+1)/2

} ∑

k∈K−
(α)∪{0}

pk + C0

Ell+1,N1{N∈K−
(α)}

(ES2
N )(l+1)/2

� max

{
2
√
2√

π(l + 1)
, C0α

(l+1)/2

}
1

1− α

E|κ2N −ES2
N |1{N∈K(α)∪{0}}
ES2

N

+ C0

Ell+1,N1{N∈K−
(α)}

(ES2
N )(l+1)/2

. (4.12)

To estimate
∑

42, we use (1.2) of Theorem A. Since ES2
k > (2 − α)ES2

N for k ∈ K
+
(α), we obtain that,

for all 0 � l � 1 + δ, 0 < δ � 1,

∑

42
� C0

∑

k∈K+
(α)

1

al+1
k

1

(ES2
k)

(2+δ)/2

k∑

i=1

E|Xi|2+δ ln1+δ(1 + k)pk

= C0

∑

k∈K+
(α)

1

(ES2
N )(l+1)/2

1

(ES2
k)

(1+δ−l)/2

k∑

i=1

E|Xi|2+δ ln1+δ(1 + k)pk

� C0

∑

k∈K+
(α)

1

(ES2
N )(l+1)/2

∑k
i=1E|Xi|2+δ ln1+δ(1 + k)pk
((2− α)ES2

N )(1+δ−l)/2

=
C0

(2− α)(1+δ−l)/2

El2+δ,N ln1+δ(1 +N)1{N∈K+
(α)}

(ES2
N )(2+δ)/2

. (4.13)

To estimate
∑

43, we use (2.7) of Lemma 5 and obtain that, for all l � 0,

∑

43
� 2(l+2)/2Γ((l + 2)/2)√

2π(l + 1)

∑

k∈K(α)

∣
∣
∣
∣1−

1

al+1
k

∣
∣
∣
∣pk

� 2(l+2)/2Γ((l + 2)/2)√
2π(l + 1)

E|κl+1
N − (ES2

N )(l+1)/2|1{N∈K(α)}
(ES2

N )(l+1)/2
. (4.14)

Substituting (4.10) in the case 0 � l � 1 ((4.12) in the case 1 < l � 1 + δ), (4.13), and (4.14) into (4.9)
and observing that the function f(l) = |1− 1/al+1|, where 0 < a < ∞, is nondecreasing for l ∈ [−1,∞), we
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obtain that

∑

3
+
∑

4
�

(

max
{
1, 2α(l+1)/2

} 1

1− α
+

2(l+2)/2Γ((l + 2)/2)√
2π

)

× 1

l + 1

E|κ2N −ES2
N |1{N∈K(α)∪{0}}
ES2

N

+
C0

(2− α)(1+δ−l)/2

El2+δ,N ln1+δ(1 +N)1{N∈K+
(α)}

(ES2
N )(2+δ)/2

(4.15)

for 0 � l � 1 and

∑

3
+
∑

4
�

(

max

{
2
√
2√
π
,C0α

(l+1)/2

}
1

1− α
+

2(l+2)/2Γ((l + 2)/2)√
2π

)

× 1

l + 1

E|κl+1
N − (ES2

N )(l+1)/2|1{N∈K(α)∪{0}}
(ES2

N )(l+1)/2
+ C0

Ell+1,N1{N∈K−
(α)}

(ES2
N )(l+1)/2

+
C0

(2− α)(1+δ−l)/2

El2+δ,N ln1+δ(1 +N)1{N∈K+
(α)}

(ES2
N )(2+δ)/2

(4.16)

for 1 < l � 1 + δ, 0 < δ � 1.
Substituting (4.2), (4.7), and (4.15) for 0 � l � 1 ((4.16) for 1 < l � 1 + δ) into (3.1), taking into account

that ES2
N = Eκ2N in the case of EXi = 0 for i = 1, 2, . . . and

∑0
i=1(·) = 0 (see (2.1) of Lemma 1), and

taking a concrete α ∈ (0, 1), for example, α = 1/2, we obtain estimates (1.3) and (1.4) of Theorem 1.
Theorem 1 is proved. 	


Proof of Corollary 1. The proof immediately follows from Theorem 1. 	

Proof of Theorem 2. The proof immediately follows from Theorem 1 since for all l � 1,

λl � lIl−1. 	
 (4.17)

Proof of Corollary 2. The proof immediately follows from Theorem 2. 	

Proof of Theorem 3. Since Il � 2/(l + 1) for 0 � l � 1 and λl � 2 for 1 � l � 2 (see (2.4) and (4.17)),
we assume, without loss of generality, that EN is sufficiently large. To estimate the first terms in (1.5) of
Corollary 1 and in (1.6) of Corollary 2, we use the estimate

EN ln1+δ(1 +N) �
√
VNE1/2 ln2(1+δ)(1 +N) +ENE ln1+δ(1 +N). (4.18)

Now observing that the functions f1(x) = ln2(1+δ)(e1+2δ + 1 + x) and f2(x) = ln1+δ(eδ + 1 + x), where
0 < δ � 1, are strictly concave for all x ∈ (−1,∞), we obtain by Jensen’s inequality that

E ln2(1+δ)(1 +N) < ln2(1+δ)
(
e1+2δ + 1 +EN

)
, (4.19)

E ln1+δ(1 +N) < ln1+δ
(
eδ + 1 +EN

)
. (4.20)

Now substituting (4.19) and (4.20) into (4.18), substituting the obtained inequality into (1.5) and (1.6) of
Corollaries 1 and 2, respectively, and estimating, in the corresponding cases of the number N of summands,
the second terms in (1.5) and (1.6) by (2.8) of Lemma 6, by (2.9) of Lemma 7, and by (2.10) of Lemma 8, we
obtain (1.7)−(1.12) of Theorem 3.

Theorem 3 is proved. 	




On the rate of convergence in the global central limit theorem for random sums 423

References

1. A.V. Bulinskii, Limit Theorems under Weak Dependence Conditions, Moscow State Univ. Press, Moscow, 1989
(in Russian).
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