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Abstract. We consider nonparametric estimation of the ridge of a probability density function for multivariate linear
processes with long-range dependence. We derive functional limit theorems for estimated eigenvectors and eigenvalues
of the Hessian matrix. We use these results to obtain the weak convergence for the estimated ridge and asymptotic
simultaneous confidence regions.
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1 Introduction

Let μ1, . . . , μn be an i.i.d. sample generated by a probability distribution with density pμ that has a compact
supportM ⊂ R

m. Furthermore, let X1, . . . ,Xn be generated by anm-dimensional linear process

Xt =

∞∑

j=0

Ajεt−j (t ∈ Z) (1.1)

with probability density function pX , where εt = (εt,1, . . . , εt,m)T ∈ R
m denote i.i.d. zero mean random

vectors, and Aj are suitablem×m-matrices. Define the process

Yt = (Yt,1, . . . , Yt,m)T = μt +Xt (t ∈ Z) (1.2)

with corresponding probability density function pY = pμ � pX , where � denotes convolution. For k < m, the
k-dimensional ridge of pY is the set of points that are local maxima of pY in at leastm−k directions. In this pa-
per, we consider kernel estimation of the ridge under long-memory assumptions. We use the i.i.d. assumption
on μt for simplicity of presentation. Analogous results can be derived under more general conditions, including
correlated or deterministic locations μt ∈ M . In contrast to standard smoothing methods in time series
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analysis, the method developed in this paper is very general in the sense that the order in which μt traversesM
does not have to be known.

Processes defined by (1.2) occur, for instance, in spatio-temporal remote sensing where temporal correla-
tions can be observed even at the level of individual pixels (see, e.g., [35] and references therein). A much
discussed issue is, for example, the statical analysis of time series of the so-called Synthetic Aperture Radar
(SAR) satellite data (see, e.g., [32]). Other applications, possibly with modified conditions on μt, include,
for instance, dynamic systems with random perturbations Xt. For example, in [30] parameter estimation in
m-dimensional ordinary differential equation (ODE) models is studied, where μt follows an ODE with un-
known parameters, and observations are of the formYt = μt+Xt with i.i.d. errorsXt. Uncertainty about the
dynamic system, together with random perturbations of observations, often leads to questions that go beyond
parameter estimation, including in particular the topological structure of orbits. For further references, see, for
example, [30].

Kernel density estimation for long-range dependent linear processes has been studied in [14, 22, 34] and
[44], among others (also see [19]; for the i.i.d. case, see, for example, [42] and references therein). Nonpara-
metric estimation of multivariate densities and their derivatives is considered in [8] under i.i.d. assumptions
(also see, e.g., [7, 21, 26, 39]). The asymptotic distribution of multivariate kernel density estimators and their
derivatives under long-memory assumptions is derived in [6]. A general introduction to long-memory pro-
cesses can be found, for instance, in [1,16,20] and [4]. For multivariate linear long-memory processes, see, for
example, [27] and reference therein. Ridge detection has a long history in image analysis and was introduced in
particular by [25]. Further developments can be found in [15,17,24,31,43] and [37], among others. So far sta-
tistical inference for density ridges has been considered only under i.i.d. assumptions. For instance, [10,11,12]
consider kernel estimation of density ridges. [18] establish bounds on the Hausdorff distance between the true
and estimated ridge. [10] calculate confidence regions via bootstrapping. The special case of one-dimensional
curves in a two-dimensional Euclidean space is addressed in [38]. In this paper, we consider error processes
that exhibit long-range dependence. As it turns out, the assumption of long memory simplifies the construction
of simultaneous confidence regions for density ridges.

The paper is organized as follows. General definitions and results on kernel density estimation for multi-
variate linear long-memory processes are summarized in Section 2. The asymptotic distributions of estimated
eigenvectors and eigenvalues of the Hessian matrix are derived in Section 3. Confidence regions for the ridge
are obtained in Section 4. Simulation results are discussed in Section 5. Proofs, tables, and figures are given
in the appendix.

2 Basic definitions and notation

Let f : Rm → R be a twice continuously differentiable function. The k-dimensional ridge of f is the set of
points that are local maxima in at leastm−k dimensions. Thus let∇f(y) and∇2f(y) denote the gradient and
the Hessian matrix of f , respectively. For a vector u ∈ R

m, the directional derivative of f (at y) in direction u
is given by ∂uf(y) = 〈∇f(y),u〉. A necessary condition for a local maximum in m − k dimensions is that
the directional derivatives ∂uf(y) vanish for at least m − k orthonormal vectors. Since ∇2f(y) is real and
symmetric for each y, the spectral theorem guarantees the existence of a set of orthonormal eigenvectors
u1(y), . . . ,um(y) of∇2f(y). Therefore the ridge points are defined in [15] as follows.

DEFINITION 1. Let f : Rm → R be twice continuously differentiable. Denote by ρi(y) and ui(y) (i = 1,
. . . ,m) the eigenvalues and orthonormal eigenvectors of ∇2f(y), and assume that ρ1(y) � · · · � ρm(y).
Then a point y ∈ R

m lies on the k-dimensional ridge of f if

∂ui
f(y) = 0 (i = k + 1, . . . ,m) (2.1)

and
ρk+1(y) < 0. (2.2)

Remark 1. Note that condition (2.2) implies ρk+2(y), . . . , ρm(y) < 0 because the eigenvalues are ordered.
Thus f(y) is locally maximal in these directions.
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The processYt defined in (1.2) has anm-dimensional marginal distribution function

FY (y) = P(Yt � y) = P(Yt,1 � y1, . . . , Yt,m � ym)
(
y ∈ R

m
)

with density pY . We will use the notation ∇pY and ∇2pY for the gradient and Hessian matrix of pY , respec-
tively. Also, Ȳn = n−1

∑n
t=1 Yt is the sample mean,

ḞY (y) =

(
∂

∂y1
F (y), . . . ,

∂

∂ym
F (y)

)T

is the gradient of FY , and the eigenvalues and eigenvectors of∇2pY (y) are denoted by λ1(y) � · · · � λm(y)
and v1(y), . . . , vm(y) respectively. Finally, M(m,R) denotes the set of m × m matrices with real-valued
coefficients,GL(m,R) is the general linear group, and I = Im is them×m identity matrix. IfP is a symmetric
positive semidefinite matrix, then we denote its unique symmetric positive semidefinite square root by P 1/2.
For η > 0 andM,Mj ∈ M(m,R) (j ∈ N), we write

Mj ∼
j→∞

j−ηM if lim
j→∞

jηMj = M.

Let Gk : Rm → R
m−k be defined by

Gk(y) =

⎛

⎝
gk+1(y)

...
gm(y)

⎞

⎠ =

⎛

⎝
〈∇pY (y), vk+1(y)〉

...
〈∇pY (y), vm(y)〉

⎞

⎠ .

Condition (2.1) can be written as Gk(y) = 0, and the k-dimensional ridge of pY is the set

Rk =
{
y ∈ R

m
∣∣ Gk(y) = 0, λk+1(y) < 0

}
. (2.3)

We will use the following assumptions:

(A1) Xt is a linear process defined by (1.1), μt are i.i.d. random vectors with compact support M ⊂ R
m

and independent ofXt (t ∈ Z), and

Yt = μt +Xt = μt +

∞∑

j=0

Ajεt−j ,

where

A0 = I, Aj =
[
a
(j)
kl

]
k,l=1,...,m

(j ∈ N).

and εt = (εt,1, . . . , εt,m)T ∈ R
m are i.i.d. zero mean random vectors with

Σε = var(εt) ∈ GL(m,R).

Moreover,
E[μt] = 0.

(A2) There exists a matrix A∞ ∈ GL(m,R) such that

Aj ∼
j→∞

jd−1A∞

for some d ∈ (0, 1/2).
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(A3) E
[|εt,j |4+κ

]
< ∞ (j = 1, . . . ,m)

for some κ > 0.

(A4) Fε(u) = P(εt � u) =

u1∫

−∞
· · ·

um∫

−∞
pε(y) dy1 · · · dym

(
u ∈ R

m
)
.

(A5) The density function pε is infinitely differentiable with all bounded and square-integrable partial
derivatives.

(A6) FY is infinitely differentiable with all bounded and square-integrable partial derivatives.

To derive asymptotic expressions for the kernel density estimator and its derivatives, an extension of the
reduction principle for empirical processes is required. Denote by

FY,n(y) =
1

n

n∑

t=1

1{Yt � y}

the empirical distribution function ofYt (t ∈ Z).

Theorem 1. Under (A1)–(A6), we have

n1/2−d sup
y∈Rm

∣∣FY,n(y)− FY (y) + ḞT
Y (y)Ȳn

∣∣ −→
P

0.

Remark 2. Assume without loss of generality that E[μt] = 0 and note that n1/2−dȲn converges in distribution
to a zero-mean Gaussian random variable with covariance matrix V (see [13, Thm. 1]). Theorem 1 implies

n1/2−d
[
FY,n(y)− FY (y)

] ⇒ −ḞT
Y (y)V 1/2ξ,

where “⇒” denotes weak convergence in Skorokhod space D(−∞,∞) equipped with the supremum norm,
and ξ = (ξ1, . . . , ξm) is a vector of i.i.d. standard normal random variables. The covariance matrix V is of the
form

V = c(d) ·A∞ΣεA
T
∞,

where [13]

c(d) =
1

d2

{
1

1 + 2d
+

0∫

−∞

[
(1− t)d − (−t)d

]2
dt

}
.

In the following let K : Rm → R+ be a kernel function, H a symmetric and positive definite m × m
bandwidth matrix and |H| its determinant. A kernel density estimator of pY is defined by

p̂Y (y) =
1

n|H|1/2
n∑

t=1

K
(
H−1/2(y −Yt)

) (
y ∈ R

m
)
.

More generally, using Kronecker powers, all rth partial derivatives of pY may be stacked into an mr-
dimensional vector p(r)Y (r � 0). More specifically,

p
(r)
Y (y) = D⊗rpY (y) =

∂pY
(∂y)⊗r

∈ R
mr

.
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The corresponding kernel estimator is of the form

p̂
(r)
Y (y) = D⊗rp̂Y (y)

=
1

n|H|1/2
(
H−1/2

)⊗r
n∑

t=1

D⊗rK
(
H−1/2(y −Yt)

) ∈ R
mr

.

For details on the Kronecker product, we refer to [33] and [28], and in the context of multivariate kernel
density derivative estimation, we refer to [7]. In particular, the gradient of a real-valued function f is given by
∇f = D⊗1f , whereas the relationship between the Hessian matrix ∇2f andD⊗2f can be expressed by

vec
(∇2f

)
= D⊗2f,

where the vectorization operator vec stacks the elements ∇2f columnwise into a vector. We will use the
following assumptions onK andH:

(K1) −∞ < K(u) < ∞.
(K2) K is a symmetric kernel of order ν � 2, that is, K(−u) = K(u), and

∫

Rm

K(u) du = 1,

∫

Rm

K(u)u⊗ν du �= 0,

∫

Rm

K(u)u⊗j du = 0 (j = 1, . . . , ν − 1).

(K3) K is infinitely differentiable, and all partial derivatives are square integrable.
(K4) There is a compact set ΩK ⊂ R

m such thatK(u) = 0 (u /∈ ΩK).
(K5) H = H(n) = [hjl]j,l=1,...,m is a symmetric positive definite matrix such that

lim
n→∞ max

j,l=1,...,m
|hjl| = 0.

Some additional notation will be needed in the following. Define the process

Ŷt = Yt − εt = μt +

∞∑

j=1

Ajεt−j (t ∈ Z)

with sample mean ¯̂Yn. Since A0 = I , it is easy to verify that the asymptotic behavior of n1/2−dȲn and
n1/2−d ¯̂Yn is the same. In particular, denote by FŶ ,n, FŶ , and ḞŶ the empirical distribution function, the
marginal distribution function, and the gradient of the marginal distribution function of Ŷt, respectively. Then
Theorem 1 implies

n1/2−d
[
FŶ ,n(y)− FŶ (y)

] ⇒ −ḞT
Ŷ
(y)V 1/2ξ,

where V and ξ are as in Remark 2. For y ∈ R
m, we define w(z) = (w1(z), . . . , wm(z))T ∈ R

m, b(r)
j (y) ∈

R
mr

(j = 1, . . . ,m) andM(y) ∈ M(mr,R) by

w(z) = V 1/2ḞŶ (z) ∈ R
m,

Lith. Math. J., 60(3):291–314, 2020.
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b
(r)
j (y) =

∫
wj(z)

∂m

∂z1 . . . ∂zm
p(r)ε (y − z) dz1 · · · dzm ∈ R

mr

,

and

M(y) = pY (y)

∫ [
D⊗rK(u)

][
D⊗rK(u)

]T
du1 · · · dum.

Note that M(y) is symmetric and positive semidefinite for every y. Thus we denote by M1/2(y) its positive
semidefinite matrix square root. Furthermore, we will write “⇒Cb

” for weak convergence in the space of
bounded continuous functions and “→d” for (pointwise) convergence in distribution.

The bias of p̂(r)Y does not depend on the autocorrelation structure. The asymptotic distribution of p̂(r)Y −
E[p̂

(r)
Y ] follows from Theorem 1 and the results in [6].

Theorem 2. For r � 0, let Zi (i = 1, . . . ,mr) and ξ1, . . . , ξm be i.i.d. standard normal random variables and
set Z = (Z1, . . . , Zmr )T. Also, let λH,1(n), . . . , λH,m(n) > 0 denote the eigenvalues of H = H(n). Then,
under (A1)–(A6) and (K1)–(K5), we have:

(i) If

lim
n→∞n2d/(m+2r) max

j=1,...,m
λ
1/2
H,j(n) = 0, (2.4)

then, for any fixed y ∈Rm,
√

n|H|1/2(H1/2)⊗r
[
p̂
(r)
Y (y)−E

[
p̂
(r)
Y (y)

]] −→
d

M1/2(y)Z .

(ii) If

lim
n→∞n2d/(m+2r) min

j=1,...,m
λ
1/2
H,j(n) = ∞, (2.5)

then

n1/2−d
[
p̂
(r)
Y (y)−E

[
p̂
(r)
Y (y)

]]
=⇒

Cb(Rm,Rmr )
ξ(r)(y), (2.6)

where

ξ(r)(y) = (−1)m+1
m∑

j=1

b
(r)
j (y)ξj

(
y ∈ R

m
)
.

Remark 3. We call a bandwidthH small if conditions (2.4) and (K5) are met and large if (2.5) and (K5) hold.
Since 2d/(m + 2r) < 1 for all d ∈ (0, 1/2), conditions (2.5) and (K5) imply that the elements of H1/2

converge to zero rather slowly. Note that for large bandwidths, we have a functional limit theorem. This is in
sharp contrast to small bandwidths, where only pointwise convergence can be achieved. Moreover, the limiting
process obtained for large bandwidths is degenerate. Given the standard normal random variables ξ1, . . . , ξm,
the deterministic functions b(r)

j (·) fully determine how the sample path of ξ(r)(y) changes as a function of y.
Note also that ξ1, . . . , ξm are the same random variables as in Remark 2.

Remark 4. Conditions (2.4) and (2.5) follow from an additive decomposition of p̂(r)Y (y) − E[p̂
(r)
Y (y)] into

a martingale and a long memory part. Consider, for instance, H = diag(h, . . . , h). Then the martingale part
is of order Op(n

−1/2h−m/4h−r/2), whereas the long memory part is of order Op(n
d−1/2). If (2.4) holds, then

the order of the martingale part is larger, whereas the opposite is true under condition (2.5). Note also that
there is a typo in [6] since the cases r � 1 and m � 2 are not taken into account in the conditions for small
and large bandwidths.
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Remark 5. For simplicity of presentation, the asymptotic expressions in Theorems 1 and 2 are derived under
the assumption that the random vectors μt are i.i.d. The same results can be derived for short-range dependent
processes μt ∈ M under mild regularity conditions.

Remark 6. Assumption (K4) is needed to apply multivariate integration by parts in the proof of Theorem 2.
This assumption can be weakened by assuming that the kernel decays fast enough so that the boundary terms
in the divergence theorem are asymptotically negligible. For instance, we can use Gaussian kernels.

To determine the bias C
(r)
n (y) = E[p̂

(r)
Y (y)] − p

(r)
Y (y), we will use the following notation: For f, g :

R
p → R

q, we write f(x) = o(g(x)) if ‖f(x)‖ = o(‖g(x)‖). Then C
(r)
n can be written asymptotically as

follows (see, e.g., [7, 8]):

Lemma 1. Under the assumptions of Theorem 2,

C(r)
n (y) =

1

ν!

[
Imr ⊗

( ∫

Rm

K(w)w⊗ν dw

)T][
Imr ⊗ (−H1/2

)⊗ν]
p
(r+ν)
Y (y) + rn,

where

rn = o

(
1

ν!

[
Imr ⊗ (−wTH1/2

)⊗ν]
p
(r+ν)
Y (y)

)
.

In the following, we will use the notation ξn
.
= ηn if ζn = ξnη

−1
n converges in distribution to a stochastically

bounded random variable or random vector ζ with P(ζ �= 0) > 0. To understand the practical implications of
Theorem 2 and Lemma 1, consider for simplicity a diagonal bandwidth matrix H = diag(h1, . . . , hm) with
h1

.
= h2

.
= · · · .

= hm = h. For a discussion in the univariate case, see [5]. From Theorem 2 (and its proof)
and Lemma 1 we obtain

p̂
(r)
Y (y)− p

(r)
Y (y) = A(r)

n (y) +B(r)
n (y) + C(r)

n (y),

whereA(r)
n andB(r)

n denote the martingale and long-memory components of p̂(r)Y −E[p̂
(r)
Y ], respectively. More

specifically,

A(r)
n (y) =

1

n|H|1/2
(
H−1/2

)⊗r
n∑

t=1

{
τr(Yt,y) − E

[
τr(Yt,y)

∣∣ εs, s � t− 1
]}

,

where
τr(Yt,y) = D⊗rK

(
H−1/2(y −Yt)

)

and

B(r)
n (y) = p̂

(r)
Y (y)−E

[
p̂
(r)
Y (y)

]−A(r)
n (y).

The asymptotic orders of the three terms are

A(r)
n (y)

.
= n−1/2h−m/4−r/2, B(r)

n (y)
.
= nd−1/2, C(r)

n (y)
.
= h1/2ν .

The order of B(r)
n does not depend on h. Therefore h (or more generallyH) is called asymptotically optimal if

max
{
A(r)

n (y), C(r)
n (y)

}
= op

(
nd−1/2

)
. (2.7)

Lith. Math. J., 60(3):291–314, 2020.
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Due to the trade-off between bias and variance, the smallest order of A
(r)
n + C

(r)
n is obtained for h

.
=

n−2/(2ν+m+2r), which leads to

max
{
A(r)

n (y), C(r)
n (y)

} .
= n−ν/(2ν+m+2r).

Thus (2.7) can be achieved if and only if

d > g(ν,m, r) =
1

2
− ν

2ν +m+ 2r
. (2.8)

Since g(ν,m, r) decreases to zero monotonically as a function of ν, and the range of d is bounded from
above by 1/2, (2.8) can always be satisfied by choosing ν large enough. For a general bandwidth matrix H
with eigenvalues λH,1, . . . , λH,n

.
= h, analogous arguments apply. In the following, we will therefore use the

additional assumption:

(K6) The order ν of the kernel and the bandwidth matrix are such that (2.7) holds.

Remark 7. Note that the bound for the bias C(r)
n (y) is uniform in y, provided that p(r)Y is smooth enough. The

order of the bias can therefore be reduced uniformly by choosing ν large enough. Moreover, (2.6) implies that,
for bandwidths satisfying (2.5), A(r)

n (y) is uniformly negligible. Thus, for kernels with a sufficiently large
order ν, (2.7) can be achieved uniformly.

3 Asymptotic results for eigenvectors and eigenvalues

The detection of ridge points involves checking conditions on eigenvectors and eigenvalues of the Hessian
matrix. We therefore need asymptotic results for estimators of these quantities. As before, we write the deriva-
tives of pY as vectors. In particular,D⊗2f = vec(∇2f) ∈ R

m2

. Denoting by vec−1 the operator reversing this
vectorization, the Hessian matrix of pY at y ∈ R

m can be written as

∇2pY (y) = vec−1
(
p
(2)
Y (y)

)
.

Similarly, we will write ∇2p̂Y (y) = vec−1(p̂
(2)
Y (y)). Denote by λ1(y) � · · · � λm(y) and v1(y), . . . , vm(y)

the eigenvalues and eigenvectors of ∇2pY (y) and by λ̂1(y) � · · · � λ̂m(y) and v̂1(y), . . . , v̂m(y) the corre-
sponding quantities for∇2p̂Y (y). The following specific assumptions will be used:

(V1) For all i, j = 1, . . . ,m and y ∈ R
m,

〈
vi(y), vj(y)

〉
= δij ,

〈
v̂i(y), v̂j(y)

〉
= δij .

(V2) For l = 1, . . . ,m, sign
(〈vl(y), v̂l(y)〉

)
= 1.

Since∇2pY (y) and∇2p̂Y (y) are symmetric, the spectral theorem guarantees the existence of an orthonor-
mal system of eigenvectors as in (V1). Note that the eigenvectors are determined only up to a sign. Condi-
tion (V2) ensures without loss of generality that the estimated eigenvectors are adjusted in the correct direction.

The perturbation behavior of eigenvectors corresponding to nonsimple eigenvalues can be rather compli-
cated (see, e.g., [40]). The reason is that vl(·) may not be continuous at points y where λl(y) is nonsimple.
We therefore exclude this case. Let supp(pY ) be the support of pY , define

Λk :=
{
y ∈ supp(pY )

∣∣ λk(y) > · · · > λm(y)
} ⊆ R

m,

and denote by Λ0
k the interior of Λk. Then, restricted to Λ0

k, the functions vl(·) (l = k + 1, . . . ,m) are con-
tinuous. For y ∈ Λ0

k, l = k + 1, . . . ,m and j = 1, . . . ,m, we then define

Bj(y) = vec−1
(
b
(2)
j (y)

) ∈ M(m,R),



On nonparametric ridge estimation for multivariate long-memory processes 299

cλ;l,j(y) = vTl (y)Bj(y)vl(y) ∈ R,

cv;l,j(y) =
∑

1�i�m
i �=l

1

λl(y)− λi(y)
vi(y)v

T
i (y)Bj(y)vl(y) ∈ R

m,

and the processes

ξ∇pY
(y) = (−1)m+1

m∑

j=1

b
(1)
j (y)ξj , ξ∇2pY

(y) = (−1)m+1
m∑

j=1

Bj(y)ξj (y ∈ R
m),

ξλl
(y) = (−1)m+1

m∑

j=1

cλ;l,j(y)ξj ∈ R (y ∈ Λ0
k),

and

ξvl(y) = (−1)m+1
m∑

j=1

cv;l,j(y)ξj ∈ R
m (y ∈ Λ0

k),

where ξj are the same i.i.d. N(0, 1) random variables as in Theorem 2. Under assumption (K6), Theorem 2
implies

n1/2−d
[∇2p̂Y (y)−∇2pY (y)

]
=⇒
Cb

ξ∇2pY
(y),

where “⇒Cb
” denotes weak convergence in the space Cb(R

m,M(m,R)) of bounded continuous functions
f : Rm → M(m,R). The asymptotic distribution of estimated eigenvalues and eigenvectors is given in the
following theorem.

Theorem 3. Suppose that (K6), (V1), (V2), and the assumptions of Theorem 2 hold, with r = 2 in (2.5) equal
to 2. Then, for l = k + 1, . . . ,m,

n1/2−d
[
λ̂l(y) − λl(y)

]
=⇒

Cb(Λ0
k,R)

ξλl
(y) (3.1)

and

n1/2−d
[
v̂l(y) − vl(y)

]
=⇒

Cb(Λ0
k,R

m)
ξvl(y).

Remark 8. Theorem 3 means that, under long-memory assumptions, weak convergence of kernel estimators
of the Hessian matrix carries over to estimated eigenvalues and eigenvectors. In contrast, for independent or
short-range dependent observations, we have no functional limit theorem for kernel estimators and therefore
also no weak convergence result for eigenvalues and eigenvectors. Note also that the limiting processes in
Theorem 3 are degenerate in the sense that the coefficients cλ;l,j(·) and cv;l,j(·), respectively, determine how
the sample paths change as functions of y.

Remark 9.

lim
n→∞n1−2d cov

(
λ̂l(y), λ̂l(ỹ)

)
= σ2

λl
(y, ỹ) =

m∑

j=1

cλ;l,j(y)cλ;l,j(ỹ),

lim
n→∞n1−2d var

(
v̂l(y)

)
= Σvl(y) =

m∑

j=1

cv;l,j(y)c
T
v;l,j(y).
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4 Ridge estimation

Following the definition of Rk in (2.3), the estimated ridge is given by

R̂k =
{
y ∈ R

m
∣∣ Ĝk(y) = 0, λ̂k+1(y) < 0

}
,

where

Ĝk(y) =

⎛

⎝
ĝk+1(y)

...
ĝm(y)

⎞

⎠ =

⎛

⎝
〈∇p̂Y (y), v̂k+1(y)〉

...
〈∇p̂Y (y), v̂m(y)〉

⎞

⎠ .

To obtain confidence regions for Rk, we derive a functional limit theorem for Ĝk(y). We will use the notation

ζl(y) = ξT∇pY
(y)vl(y) + ξTvl(y)∇pY (y) (l = k + 1, . . . ,m, y ∈ Λ0

k)

and
ζ(y) =

[
ζk+1(y), . . . , ζm(y)

]T ∈ R
m−k.

Theorem 4. Suppose that (K6), (V1), and (V2) hold. Moreover, let Hj (j = 1, 2) be the bandwidth matrices
used for calculating ∇p̂Y (y) and ∇2p̂Y (y), respectively. Assume that the assumptions of Theorem 2 hold,
with r in (2.5) equal to 1 forH1 and equal to 2 forH2. Then

n1/2−d
[
Ĝk(y) −Gk(y)

]
=⇒
Cb

ζ(y),

where “⇒Cb
” denotes weak convergence in Cb(Λ

0
k,R

m−k).

Remark 10. Theorem 4 means that long memory leads to a functional limit theorem for Ĝk with a degenerate
limiting process. In contrast, under short-range dependence, a functional limit theorem cannot be obtained.
Note in particular that setting

cl,j(y) = vTl (y)b
(1)
j (y) + cTv;l,j(y)∇pY (y),

ζl(y) can be written as

ζl(y) = (−1)m+1
m∑

j=1

cl,j(y)ξj ,

where ξj are the same i.i.d. N(0, 1) random variables as in Theorem 2.

Remark 11.

Σζ(y, ỹ) =
[
cov

(
ζl1(y), ζl2(ỹ)

)]
l1,l2=k+1,...,m

=
[
σl1l2(y, ỹ)

]
l1,l2=k+1,...,m

with

σl1l2(y, ỹ) =

m∑

j=1

cl1,j(y)cl2,j(ỹ).

Consider the decomposition

Λ0
k = Gk ∪ GC

k ,
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where

Gk =
{
y ∈ Λ0

k

∣∣ Gk(y) = 0
}

and
GC
k =

{
y ∈ Λ0

k

∣∣ Gk(y) �= 0
}
.

The following corollary is useful for obtaining simultaneous confidence regions for Rk.

Corollary 1. Suppose the assumptions of Theorem 4 hold. Then

sup
y∈Gk

∥∥n1/2−d
[
Ĝk(y) −Gk(y)

]− ζ(y)
∥∥ −→

P
0

and
sup
y∈GC

k

∥∥n1/2−d
[
Ĝk(y)−Gk(y)

] − ζ(y)
∥∥ −→

P
0.

Corollary 1 is an immediate consequence of Theorem 4. It implies that n1/2−dĜk(y) converges to a zero-
mean random variable if Gk(y) = 0. On the other hand, if Gk(y) �= 0, then

∥∥n1/2−dĜk(y)
∥∥ −→

P
∞.

Assuming that Rk ⊂ Λ0
k, we may write

Rk = Gk ∩
{
y ∈ Λ0

k

∣∣ λk+1(y) < 0
}
.

We therefore adopt an approach based on testing whether directional derivatives are zero and λk+1(y) � 0. If
Σζ(y,y) is invertible, then a simultaneous (1− α)-confidence region for points y ∈ Gk can be defined by

Aα =
{
y
∣∣ ĜT

k (y)
[
Σζ(y,y)

]−1
Ĝk(y) � n2d−1χ2

m−k(1− α)
}
,

where χ2
m−k(1 − α) denotes the (1 − α)-quantile of the χ2-distribution with m − k degrees of freedom.

Similarly, based on (3.1), we define a simultaneous (1− α)-confidence set for points with λk+1(y) � 0 by

Bα =
{
y
∣∣ λ̂k+1(y) � nd−1/2σλk+1

(y,y)Φ−1(1− α)
}
,

where Φ denotes the cumulative standard normal distribution. A ridge point has to satisfy both conditions.
Using a Bonferroni correction, we therefore define a simultaneous (1− α)-confidence region for Rk by

Cα = Aα/2 ∩Bα/2.

Remark 12. The simple construction of simultaneous confidence regions for density ridges relies on the func-
tional limit theorems obtained (Theorems 3 and 4). These results are only valid under long-memory assump-
tions. For weakly dependent error processesXt, only pointwise convergence can be obtained.

Remark 13. The Bonferroni correction is used here for multiple testing with two simultaneous tests only, thus
replacing α by α/2 in the individual tests. For practical purposes, this is reasonable and justifies the use of
such a simple correction. The development of more refined methods that would be simple to implement would
however be worth investigating in future research. For instance, in principle, it would be possible to design
a test based on the joint distribution of Ĝk(y) and λ̂k+1(y).
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5 Simulations

The asymptotic results are illustrated by a small simulation study. We consider the following models:

Model 1. Yt = μt +Xt where μt (t = 1, . . . , n) are points on a spiral parameterized by arc length, that is,

μt = μ(ut) =

(
cos

√
2ut +

√
2ut sin

√
2ut − e1

sin
√
2ut −

√
2ut cos

√
2ut − e2

)
,

where ut are i.i.d. uniformly distributed on [0, (2π)2/2], and e1, e2 are constants such that E[μt] = 0. The
error process Xt is of the form Xt = (Xt,1,Xt,2)

T ∈ R
2, where Xt,1 and Xt,2 are independent univariate

Gaussian FARIMA(0, d, 0) processes with variance σ2
X = 4.

Model 2. Yt = μt +Xt with

μt = μ(ut) =
3

2

(
sinut
cos ut

)
(0 � ut � 2π),

μt = μ(ut) =
5

2

(
sinut
cos ut

)
(2π < ut � 4π),

where ut are i.i.d. uniformly distributed on [0, 4π]. The error processXt is of the formXt=(Xt,1,Xt,2)
T∈R

2,
whereXt,1 andXt,2 are independent univariate Gaussian FARIMA(0, d, 0) processes with variance σ2

X = 0.1.

In both cases, we use a bivariate Gaussian kernel. Following a simple adaptation of Silverman’s rule
of thumb for multivariate kernel density estimators (see, e.g., [8]), we choose the scalar bandwidth matri-
ces H0 = h0I (for the density), H1 = h1I (for the gradient), and H2 = h2I (for the Hessian matrix)
such that h0, h1, h2 > 0 are proportional to σXn−2/6, σXn−2/8, and σXn−2/10, respectively. Since we use
a second-order kernel, condition (2.8) implies that the asymptotic results above are applicable for d > 0.3. For
d = 0.35, 0.4, and 0.45 and sample sizes n = 500, 1000, 2000, 3000, 5000, and 10000, we carried out four
hundred simulations. We summarize numerical results in Tables 1 and 2.

For Model 1, the one-dimensional ridge R of pY has a strong decay at the end points (see Fig. 1(a). We
therefore only consider the part of R where the density is larger than 0.6max pY (y) to exclude a possible
eigenvalue crossing. Figures 1(a) and 1(b) show the true and estimated densities for d = 0.4 and n = 10000.
Simulated point clouds and the corresponding confidence regions are displayed in Figs. 2, 3, and 4 for n=1000
and 10000 and d = 0.35, 0.4, and 0.45 respectively. We calculated the confidence regions using the equally
spaced grid consisting of 250 × 250 points in [−11, 11]2. We summarize numerical results in Table 1. For all

Table 1. Model 1 – proportions of simulated data where the true ridge of pY was inside
the 95%-confidence region

n = 500 n = 1000 n = 2000 n = 3000 n = 5000 n = 10000

d = 0.35 0.9775 0.9575 0.9750 0.9775 0.9725 0.9700
d = 0.4 0.9825 0.9900 0.9850 0.9600 0.9875 0.9675
d = 0.45 1 0.9975 0.9850 0.9800 0.9675 0.9500

Table 2. Model 2 – proportions of simulated data where the true ridge of pY was inside
the 95%-confidence region

n = 500 n = 1000 n = 2000 n = 3000 n = 5000 n = 10000

d = 0.35 0.9725 0.9800 0.9900 0.9750 0.9850 0.9675
d = 0.4 0.9725 0.9875 0.9950 0.9925 0.9950 0.9975
d = 0.45 0.9825 0.9675 0.9475 0.9325 0.9100 0.9200
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(a) (b)

Figure 1. True and estimated density for Model 1 (d = 0.4 and n = 10000).

Figure 2. Points generated by Model 1 with d = 0.35 and (a) n = 1000 and (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d), respectively, together with the true ridge (red). (Online version in color.)

three values of d, the coverage probability turns out to be very close to the desired value of 0.95. On the other
hand, since nd−1/2 converges to zero rather slowly, the size of the confidence regions shrinks slowly as well.

For Model 2, the one-dimensional ridge consists of two concentric circles (see Fig. 5(a)). Figure 5(b) shows
the estimated density for d = 0.4 and n = 10000. Table 2 summarizes the results for the 95%-confidence
regions. Simulated point clouds and the corresponding confidence regions for n = 1000 and 10000 and
d = 0.35, d = 0.4, and d = 0.45 are displayed in Figs. 6, 7, and 8. An equally spaced grid consisting of
250 × 250 points in [−4, 4]2 was used. The same comments as for Model 1 apply.

An alternative method for constructing confidence sets for a ridge has been proposed, for instance, in [10].
Their approach is based on bootstrapped Hausdorff distances. In principle, similar ideas could be developed
for the model considered in the present paper. However, some nontrivial adjustments should be made. The
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Figure 3. Points generated by Model 1 with d = 0.4 and (a) n = 1000 and (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d), respectively, together with the true ridge (red). (Online version in color.)

Figure 4. Points generated by Model 1 with d = 0.45 and (a) n = 1000; (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d), respectively, together with the true ridge (red). (Online version in color.)
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main problem is that [10] use the simplest version of the bootstrap that destroys all temporal dependence. We
may therefore expect that confidence sets based on their method would tend to have coverage probabilities far
below the nominal one. To illustrate this, 95%-confidence regions based on [10] were computed for simulated
series generated by Model 1 with n = 500 and d = 0.35, 0.4, and 0.45. As expected, the simulated coverage
probabilities based on 100 simulations turned out to be very low, namely 0.81, 0.75, and 0.77, respectively.
Moreover, the coverage probability appears to decrease with increasing sample size. For instance, for d =
0.4 and sample size n = 2000, the simulated coverage probability was 0.65. An interesting question for
future research is defining a suitable modification of [10], which would be applicable to the case of long-
range dependence. This could be done by designing suitable bootstrap algorithms. In simple situations such as
location estimation, this has been done, for instance, in [29] and [23].

(a) (b)

Figure 5. True and estimated density for Model 2 (d = 0.4 and n = 10000).

Figure 6. Points generated by Model 2 with d = 0.35 and (a) n = 1000; (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d) respectively, together with the true ridge (red). (Online version in color.)
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Figure 7. Points generated by Model 2 with d = 0.4 and (a) n = 1000 and (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d), respectively, together with the true ridge (red). (Online version in color.)

Figure 8. Points generated by Model 2 with d = 0.45 and (a) n = 1000 and (b) n = 10000. Corresponding 95%-confidence regions
(green) are displayed in (c) and (d), respectively, together with the true ridge (red). (Online version in color.)
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6 Final remarks

In this paper, we considered nonparametric inference for the ridge of a probability density function. This
approach can be used in particular for manifold estimation and topological inference. For instance, suppose
that i.i.d. observations on a compact differentiable k-manifold M embedded in R

m are perturbed by a linear
processXt with long memory. Then, under mild assumptions on the curvature ofM and the variance ofXt, the
k-dimensional ridge of the associated probability density function is homotopy equivalent to the manifold M
(see, e.g., [9]).

The method presented here relies on using a kernel of sufficiently high order such that inequality (2.8)
holds. Although (2.8) depends on the unknown parameter d, very precise knowledge of d is not required for
choosing a sufficiently high order. For instance, given a confidence interval [dlow, dup] for d, we may evaluate
(2.8) using the lower value dlow to identify a minimal required order ν. In the limiting case, that is, with
a kernel of infinite order, there is no restriction on d > 0. Similarly, no precise knowledge of d is required for
choosing a bandwidth for which the functional limit theorem (Theorem 2 with large bandwidths) holds.

The present paper is a first step toward statistical inference for ridge functions under long-memory errors.
We expect that, given consistent estimators of the unknown quantities, asymptotic theory should not change.
A more difficult question is how to design data driven algorithms to allow for optimal estimation of all param-
eters. In nonparametric regression with strongly dependent errors, [2,3] defined iterative algorithms that allow
for simultaneous estimation of nuisance parameters and optimal trend estimation with a data-driven asymptot-
ically optimal bandwidth. A similar approach may be adapted in the more complex context considered here.
A detailed development of such data driven methods will have to be considered in future research.

Another open problem that will be worth pursuing in future research is ridge estimation at points with
multiple eigenvalues. A possible approach may be adapting results in [36] and [41]

Acknowledgment. We would like to thank the referees for their insightful and constructive comments.

Appendix: Proofs

Proof of Theorem 1. Let

Fi = σ(εs, s � i)

denote the σ-algebra generated by εs (s � i), whereas

F̃i = σ(εs, μs, s � i)

is generated by εs and μs (s � i). We define them-dimensional vectors

uj = (uj,1, . . . , uj,m)T = y −
∞∑

s=j

Asεt−s

and the functions

Fj(uj) = P
(
Yt � y

∣∣ F̃t−j

)
= P(μt +Xt � y | F̃t−j).

Note that the random variables μt are i.i.d. Hence, for j � 1, we have

P(Yt � y | F̃t−j) = P(Yt � y | Ft−j),

whereas for j = 0,

F0(u0) = P(Yt � y | F̃t) = 1{Yt � y}.
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Setting
ζt(j) = Fj(uj)− Fj+1(uj+1),

we obtain the decomposition

1{Yt � y} − FY (y) =

∞∑

j=0

ζt(j),

where equality is in the L2-space of random variables. The rest of the proof follows by the same arguments as
in the proof of Theorem 1 in [6]. ��
Proof of Theorem 2. The proof follows from Theorem 1 by the same arguments as in the proof of Theorem 2
in [6]. ��
Proof of Lemma 1.

E
[|H|−1/2

(
H−1/2

)⊗r
D⊗rK

(
H−1/2(y −Yt)

)]

=

∫

Rm

|H|−1/2
(
H−1/2)⊗rD⊗rK

(
H−1/2(y − u)

)
pY (u) du

=

∫

Rm

(
H−1/2

)⊗r
D⊗rK(w)pY

(
y −H1/2w

)
dw,

where the last line is obtained by substitutingw = H−1/2(y − u). Applying the divergence theorem leads to

E
[|H|−1/2

(
H−1/2

)⊗r
D⊗rK

(
H−1/2(y −Yt)

)]

=

∫

Rm

(−1)r
(−H1/2

)⊗r(
H−1/2

)⊗r
K(w)p

(r)
Y

(
y −H1/2w

)
dw

=

∫

Rm

K(w)p
(r)
Y

(
y −H1/2w

)
dw.

Now consider the following Taylor expansion of the density derivative (see, e.g., [7])

p
(r)
Y

(
y −H1/2w

)
= p

(r)
Y (y) +

ν∑

k=1

1

k!

[
Imr ⊗ (−wTH1/2

)⊗k]
p
(r+k)
Y (y) + rn,

where

rn = o

(
1

ν!

[
Imr ⊗ (−wTH1/2

)⊗ν]
p
(r+ν)
Y (y)

)
.

Then, under (K2),
∫

Rm

K(w)p
(r)
Y

(
y−H1/2w

)
dw

=

∫

Rm

K(w)

[
p
(r)
Y (y) +

ν∑

k=1

1

k!

[
Imr ⊗ (−wTH1/2

)⊗k]
p
(r+k)
Y (y)

]
dw + rn
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= p
(r)
Y (y) +

ν∑

k=1

1

k!

[
Imr ⊗

( ∫

Rm

K(w)w⊗k dw

)T][
Imr ⊗ (−H1/2

)⊗k]
p
(r+k)
Y (y) + rn

= p
(r)
Y (y) +

1

ν!

[
Imr ⊗

( ∫

Rm

K(w)w⊗ν dw

)T][
Imr ⊗ (−H1/2

)⊗ν]
p
(r+ν)
Y (y) + rn. ��

Proof of Theorem 3. For the matrices ∇2p̂Y (y) and ∇2pY (y) with eigenvectors v̂l(y) and vl(y) and corre-
sponding eigenvalues λ̂l(y) and λl(y) for some fixed l ∈ {k + 1, . . . ,m}, we have

∇2p̂Y (y)v̂l(y) = λ̂l(y)v̂l(y), (A.1)

∇2pY (y)vl(y) = λl(y)vl(y). (A.2)

Then (A.1) can be written as

{∇2pY (y) +
[∇2p̂Y (y)−∇2pY (y)

]}{
vl(y) +

[
v̂l(y) − vl(y)

]}

=
{
λl(y) +

[
λ̂l(y)− λl(y)

]}{
vl(y) +

[
v̂l(y)− vl(y)

]}
,

which by (A.2) leads to

[∇2p̂Y (y) −∇2pY (y)
]
vl(y) +∇2pY (y)

[
v̂l(y) − vl(y)

]

× [∇2p̂Y (y) −∇2pY (y)
][
v̂l(y)− vl(y)

]

=
[
λ̂l(y) − λl(y)

]
vl(y) + λl(y)

[
v̂l(y) − vl(y)

]

+
[
λ̂l(y) − λl(y)

][
v̂l(y) − vl(y)

]
.

Neglecting higher-order terms, we obtain

[∇2p̂Y (y) −∇2pY (y)
]
vl(y) +∇2pY (y)

[
v̂l(y) − vl(y)

]

≈ [
λ̂l(y) − λl(y)

]
vl(y) + λl(y)

[
v̂l(y) − vl(y)

]
.

By (V1) the eigenvectors v1(y), . . . , vm(y) form an orthonormal basis of Rm. Therefore

v̂l(y)− vl(y) =

m∑

j=1

eljvj(y) (A.3)

for some constants elj ∈ R. Representation (A.3) leads to

[∇2p̂Y (y)−∇2pY (y)
]
vl(y) +∇2pY (y)

m∑

j=1

eljvj(y)

≈ [
λ̂l(y)− λl(y)

]
vl(y) + λl(y)

m∑

j=1

eljvj(y),
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which by (A.2) simplifies to

[∇2p̂Y (y)−∇2pY (y)
]
vl(y) +

m∑

j=1

λj(y)eljvj(y)

≈ [
λ̂l(y) − λl(y)

]
vl(y) + λl(y)

m∑

j=1

eljvj(y).

Hence, multiplying by vTl (y), we get

vTl (y)
[∇2p̂Y (y)−∇2pY (y)

]
vl(y) + vTl (y)ellλl(y)vl(y)

≈ vTl (y)
[
λ̂l(y)− λl(y)

]
vl(y) + vTl (y)ellλl(y)vl(y),

so that

λ̂l(y)− λl(y) ≈ vTl (y)
[∇2p̂Y (y) −∇2pY (y)

]
vl(y).

From Theorem 2 we have

n1/2−d
[∇2p̂Y (y) −∇2pY (y)

] ⇒ (−1)m+1
m∑

j=1

Bj(y)ξj . (A.4)

Since the eigenvalues λl(y) are simple for all y ∈ Λ0
k and l ∈ {k+1, . . . ,m}, the functions vl are continuous

functions of y. The continuous mapping theorem then implies

n1/2−d
[
λ̂l(y)− λl(y)

] ⇒ (−1)m+1
m∑

j=1

[
vTl (y)Bj(y)vl(y)

]
ξj ,

completing the first part of the proof.
To derive the asymptotic distribution of v̂l, we need to determine the coefficients elj in the approximation

[∇2p̂Y (y)−∇2pY (y)
]
vl(y) +

m∑

j=1

λj(y)eljvj(y)

≈ [
λ̂l(y) − λl(y)

]
vl(y) + λl(y)

m∑

j=1

eljvj(y).

Multiplying by vTi (y) (i �= l) from the left leads to

vTi (y)
[∇2p̂Y (y)−∇2pY (y)

]
vl(y) + λi(y)eli ≈ λl(y)eli.

Thus, for i �= l and l ∈ {k + 1, . . .},

eli ≈ 1

λl(y) − λi(y)
vTi (y)

[∇2p̂Y (y) −∇2pY (y)
]
vl(y).

In particular,

n1/2−d
[∇2p̂Y (y)−∇2pY (y)

]
=⇒
Cb

ξ∇2pY
(y),
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together with d < 1/2, implies

n1/2−d
∑

j �=l

e2lj = n1/2−d
∑

j �=l

e2lj(y) =⇒
Cb

0. (A.5)

For ell, note that

1 = 〈v̂l, v̂l〉 =
〈
vl + (v̂l − vl), vl + (v̂l − vl)

〉

=

〈
vl +

m∑

j=1

eljvj , vl +

m∑

j=1

eljvj

〉

= 〈vl, vl〉+ 2

m∑

j=1

elj〈vl, vj〉+
〈

m∑

j=1

eljvj,

m∑

j=1

eljvj

〉

= 1 + 2ell + ell
2 +

∑

j �=l

elj
2 =

(
1 + ell(y)

)2
+
∑

j �=l

elj
2,

so that

1− (
1 + ell(y)

)2
=

∑

j �=l

elj
2.

Due to (A.5), we have

−n1/2−d
[
2ell(y) + ell

2(y)
]
= n1/2−d

[
1− (

1 + ell(y)
)2]

=⇒
Cb

0.

Since, asymptotically, v̂l is assumed to have the same orientation as vl by (V2), this implies

n1/2−dell(y) =⇒
Cb

0.

Thus, recalling the asymptotic distribution of the Hessian matrix in (A.4), we obtain

n1/2−d
[
v̂l(y) − vl(y)

]
=⇒

Cb(Λ0
k,R

m)
ξvl(y).

Proof of Theorem 4. For y ∈ Λ0
k and i = k + 1, . . . ,m, we have

ĝi(y) =
〈∇p̂Y (y), v̂i(y)

〉

=
〈∇p̂Y (y) −∇pY (y) +∇pY (y), v̂i(y)− vi(y) + vi(y)

〉

= gi(y) +
〈∇pY (y), v̂i(y) − vi(y)

〉
+
〈∇p̂Y (y)−∇pY (y), vi(y)

〉

+
〈∇p̂Y (y) −∇pY (y), v̂i(y) − vi(y)

〉
.

Recall that

n1/2−d
[∇p̂Y (y) −∇pY (y)

]
=⇒

Cb(Rm,Rm)
ξ∇pY

(y)

and

n1/2−d
[
v̂i(y) − vi(y)

]
=⇒

Cb(Λ0
k,R

m)
ξvi(y).
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Note also that both limit theorems, for ∇p̂Y and for v̂i, followed from the functional limit theorem for
∇2p̂Y . The proof of Theorem 3 can be extended along the same lines to obtain the joint weak convergence of
ψn(y) = n1/2−d[∇p̂Y (y)−∇pY (y), v̂k+1(y)−vk+1(y), . . . , v̂m(y)−vm(y)] to ψ(y) = [ξ∇pY

(y), ξvk+1
(y),

. . . , ξvm(y)]. To save space, we omit the details. Next, set ζi(y) = 〈∇pY (y), ξvi(y)〉 + 〈ξ∇pY
(y), vi(y)〉.

Since the scalar product is continuous, the continuous mapping theorem, together with weak convergence of
ψn(y) to ψ(y), leads to

n1/2−d
[
ĝk+1(y)− gk+1(y), . . . , ĝm(y) − gm(y)

]T
=⇒

Cb(Λ0
k,R)

ζ(y),

and hence

n1/2−d
[
Ĝk(y) −Gk(y)

]
=⇒

Cb(Λ0
k,R

m−k)
ζ(y). ��
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