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Abstract. In this paper, we propose and analyze numerical treatment for a singularly perturbed convection–diffusion
boundary value problem with nonlocal condition. First, the boundary layer behavior of the exact solution and its first
derivative have been estimated. Then we construct a finite difference scheme on a uniform mesh. We prove the uniform
convergence of the proposed difference scheme and give an error estimate. We also present numerical examples, which
demonstrate computational efficiency of the proposed method.
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1 Introduction

In this work, we treat the following singularly perturbed boundary value problem with nonlocal boundary
condition:

Lu := εu′′(x) + a(x)u′(x) = f(x), x ∈ Ω, (1.1)

u′(0) =
A

ε
, (1.2)

u(0) + γu(l1) = Bu(l) + d, l1 ∈ Ω, (1.3)

where 0 < ε � 1 is a small positive perturbation parameter, A, B, γ, and d are given constants, l1 and l are
given real numbers, and Ω = (0, l) and Ω̄ = [0, l]. We assume that a(x) � α > 0 and f(x) are sufficiently
smooth functions on Ω̄. Under these assumptions, singularly perturbed nonlocal problem (1.1)–(1.3) possesses
a unique solution indicating a boundary layer of exponential type at x = 0.

Differential equations with small positive parameter that multiplies the highest order derivative are said to
be singularly perturbed, and normally boundary layers occur in their solutions. These equations play an impor-
tant role in today’s advanced scientific computations. Many mathematical models starting from fluid dynamics
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to the problems in mathematical biology are modeled by singularly perturbed differential equations, such as
quantum mechanics, astrophysics, chemical reactor theory, heat transport problem, meteorology, reaction–
diffusion process, oceanography, Navier–Stokes flows with Reynolds numbers, and heat transfer problem with
large Peclet numbers. More details about these problems can be found in [20, 25] and references therein.

Due to the presence of boundary layers, standard numerical methods for solving such problems may give
rise to difficulties and do not give accurate results for small values of ε. Hence it is necessary to develop suitable
numerical methods that uniformly converge with respect to ε. There are two types of such methods, fitted
operator methods and fitted mesh methods. In the past few decades, various ε-uniform numerical methods are
proposed in the literature for solving singularly perturbed problems [12, 13, 19, 21, 22, 23, 24,27].

Differential equations with conditions connecting the values of the unknown solution at the boundary with
values in the interior are said to be nonlocal boundary value problems. Boundary value problems with non-
local conditions have been initiated by Il’in and Moiseev [16, 17], motivated by the work of Bitsadze and
Samarskii [5] on nonlocal linear elliptic boundary value problems. This kind of problems arise in a variety of
different areas of applied mathematics and physics. Typical examples include the vibrations of a guy wire of
a uniform cross-section, mathematical models of a large number of phenomena in catalytic processes in chem-
istry and biology, problems of semiconductors, problems of hydromechanics, heat transfer problems, and some
other physical phenomena [1, 15, 26]. In recent years, there has been increasing interest in studying boundary
value problems with nonlocal or integral boundary conditions exhibiting boundary layers. The existence and
uniqueness of solutions of nonlocal problems and also their numerical solution have been addressed by many
authors [2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 18,28].

Motivated by the works mentioned, we give an ε-uniformly convergent numerical method for solving sin-
gularly perturbed three-point boundary value problems. This paper is organized as follows. In Section 2, we
indicate the asymptotic behavior of the exact solution and its first derivative with respect to ε. In Section 3,
we construct a finite difference discretization on a uniform mesh. An approximation for the nonlocal condition
has been presented using simple deviation. In Section 4, we show the ε-uniform convergence of the numeri-
cal method and give the error estimate. In Section 5, we present some numerical experiments supporting the
theoretical results. Finally, this paper ends with conclusion.

Notation. Throughout the paper, C denotes any generic positive constant independent of ε and the mesh
parameter. Some specific fixed constants of this kind are indicated by subscripting C . For any continuous
function g(x) defined on the corresponding interval, we use the maximum norm ‖g‖∞ = max[0,l] |g(x)| and
‖g‖1 =

∫ l
0 |g(x)|dx.

2 Asymptotic estimates

In this section, we analyze asymptotic behavior of the exact solution of problem (1.1)–(1.3), which is needed
in the analysis of numerical methods. In the following, we first prove bounds for the solution of the singularly
perturbed nonlocal problem (1.1)–(1.3) and its derivative. Since the problem includes the convection term,
a single boundary layer near x = 0 is present, and a nonlocality condition is assumed to be outside the
boundary layer region.

Lemma 1. Let a, f ∈ C[0, l] and 1 + γ − B �= 0. Then the solution u(x) of problem (1.1)–(1.3) and its
derivative satisfy the following bounds:

‖u‖∞ � C0, (2.1)

where

C0 = c−1
0

[|d|+ α−1
(|B|+ |γ|)(|A|+ ‖f‖1

)]
+ α−1

(|A|+ ‖f‖1
)
,

c0 = |1 + γ −B|,
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and
∣
∣u′(x)

∣
∣ � C

(

1 +
1

ε
e−αx/ε

)

, x ∈ Ω̄. (2.2)

Proof. We first prove (2.1). We can write Eq. (1.1) in the form

u′(x) = u′(0)e−(1/ε)
∫

x

0
a(η) dη +

1

ε

x∫

0

f(ξ)e−(1/ε)
∫ x

ξ
a(η) dη dξ

=
A

ε
e−(1/ε)

∫
x

0
a(η) dη +

1

ε

x∫

0

f(ξ)e−(1/ε)
∫

x

ξ
a(η) dη dξ. (2.3)

Integrating Eq. (2.3) from 0 to x, we get

u(x) = u(0) +
A

ε

x∫

0

e−(1/ε)
∫ τ

0
a(η) dη dτ +

1

ε

x∫

0

dτ

τ∫

0

f(ξ)e−(1/ε)
∫

τ

ξ
a(η) dη dξ

= u(0) +
A

ε

x∫

0

e−(1/ε)
∫

τ

0
a(η) dη dτ +

1

ε

x∫

0

dξf(ξ)

x∫

ξ

e−(1/ε)
∫ τ

ξ
a(η) dη dτ. (2.4)

Taking into account the boundary condition (1.3), we obtain

u(0) =
1

1 + γ −B

{

d+
AB

ε

l∫

0

e−(1/ε)
∫

τ

0
a(η) dη dτ +

B

ε

l∫

0

dξf(ξ)

l∫

ξ

e−(1/ε)
∫ τ

ξ
a(η) dη dτ

− Aγ

ε

l1∫

0

e−(1/ε)
∫

τ

0
a(η) dη dτ − γ

ε

l1∫

0

dξf(ξ)

l1∫

ξ

e−(1/ε)
∫ τ

ξ
a(η) dη dτ

}

. (2.5)

From (2.5) it follows that

∣
∣u(0)

∣
∣ � c−1

0

{

|d|+ |A||B|
ε

l∫

0

e−ατ/ε dτ +
|B|
ε

l∫

0

dξ
∣
∣f(ξ)

∣
∣

l∫

ξ

e−α(τ−ξ)/ε dτ

+
|A||γ|
ε

l1∫

0

e−ατ/ε dτ +
|γ|
ε

l1∫

0

dξ
∣
∣f(ξ)

∣
∣

l1∫

ξ

e−α(τ−ξ)/ε dτ

}

� c−1
0

{

|d|+ α−1|A||B|(1− e−αl/ε
)
+ α−1|B|

l∫

0

∣
∣f(ξ)

∣
∣
(
1− e−α(l−ξ)/ε

)
dξ

+ α−1|A||γ|(1− e−αl1/ε
)
+ α−1|γ|

l1∫

0

∣
∣f(ξ)

∣
∣
(
1− e−α(l1−ξ)/ε

)
dξ

}
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� c−1
0

{

|d|+ α−1|A||B|+ α−1|B|
l∫

0

∣
∣f(ξ)

∣
∣ dξ + α−1|A||γ| + α−1|γ|

l∫

0

∣
∣f(ξ)

∣
∣ dξ

}

� c−1
0

{|d|+ α−1|A||B|+ α−1|B|‖f‖1 + α−1|A||γ|+ α−1|γ|‖f‖1
}
.

So, we obtain
∣
∣u(0)

∣
∣ � c−1

0

{|d|+ α−1
(|B|+ |γ|)(|A|+ ‖f‖1

)}
. (2.6)

From (2.4) we see that

∣
∣u(x)

∣
∣ �

∣
∣u(0)

∣
∣ +

|A|
ε

x∫

0

e−(1/ε)
∫

τ

0
a(η) dη dτ +

1

ε

x∫

0

dξ
∣
∣f(ξ)

∣
∣

x∫

ξ

e−(1/ε)
∫ τ

ξ
a(η) dη dτ

�
∣
∣u(0)

∣
∣ + |A|α−1

(
1− e−αl/ε

)
+ α−1

l∫

0

∣
∣f(ξ)

∣
∣
(
1− e−α(l−ξ)/ε

)
dξ

�
∣
∣u(0)

∣
∣ + |A|α−1 + α−1

l∫

0

∣
∣f(ξ)

∣
∣ dξ,

which, together with (2.6), leads to (2.1).
Next, from (2.3) it follows that

∣
∣u′(x)

∣
∣ � |A|

ε
e−(1/ε)

∫
x

0
a(η) dη +

1

ε

x∫

0

∣
∣f(ξ)

∣
∣e−(1/ε)

∫ x

ξ
a(η) dη dξ

� |A|
ε
e−αx/ε + α−1 max

0�t�x

∣
∣f(t)

∣
∣
(
1− e−αx/ε

)

� |A|
ε
e−αx/ε + α−1‖f‖∞,

which implies (2.2) and completes the proof of the lemma. ��

3 Discrete problem

We further denote by ωh the uniform mesh on Ω:

ωh =

{

xi = ih, i = 1, 2, . . . , N − 1; h =
l

N

}

, ω̄h = ωh ∪
{
x0 = 0, xN = l

}
.

To simplify the notation, we set gi = g(xi) for any function g(x), whereas yi denotes an approximation of
u(x) at xi. For any mesh function g(xi) defined on ω̄h, we use

gx̄,i =
gi − gi−1

h
, gx,i =

gi+1 − gi
h

, gx̊,i =
gx,i + gx̄,i

2
, gx̄x,i =

gx,i − gx̄,i
h

and

‖g‖∞ ≡ ‖g‖∞,ω̄N
:= max

0�i�N
|gi|, ‖g‖1,ωh

= h

N−1∑

i=1

|gi|.
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To obtain a difference approximation for (1.1), we integrate (1.1) over (xi−1, xi+1):

h−1

xi+1∫

xi−1

Lu(x)ϕi(x) dx = h−1

xi+1∫

xi−1

f(x)ϕi(x) dx, 1 � i � N − 1, (3.1)

with the basis functions {ϕi(x)}N−1
i=1 of the form

ϕi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ
(1)
i (x) := eai(x−xi−1)/ε−1

eaih/ε−1
, xi−1 < x < xi,

ϕ
(2)
i (x) := 1−e−ai(xi+1−x)/ε

1−e−aih/ε , xi < x < xi+1,

0 otherwise,

where ϕ(1)
i (x) and ϕ(2)

i (x), respectively, are the solutions of the following problems:

εϕ′′
i − aiϕ

′
i = 0, xi−1 < x < xi,

ϕi(xi−1) = 0, ϕi(xi) = 1,

and
εϕ′′

i − aiϕ
′
i = 0, xi < x < xi+1,

ϕi(xi) = 1, ϕi(xi+1) = 0.

Rearranging (3.1) gives

−εh−1

xi+1∫

xi−1

ϕ′
i(x)u

′(x) dx+ aih
−1

xi+1∫

xi−1

ϕi(x)u
′(x) dx = fi −Ri, 1 � i � N − 1, (3.2)

with

Ri = h−1

xi+1∫

xi−1

[
a(x)− a(xi)

]
ϕi(x)u

′(x) dx+ h−1

xi+1∫

xi−1

[
f(xi)− f(x)

]
ϕi(x) dx. (3.3)

Using the interpolating quadrature rules (2.1) and (2.2) from [3] with weight functions ϕi(x) on subintervals
(xi−1, xi) and (xi, xi+1) from (3.2), we obtain the following precise relation:

−εh−1

xi+1∫

xi−1

ϕ′
i(x)u

′(x) dx+ aih
−1

xi+1∫

xi−1

ϕi(x)u
′(x) dx

= −εh−1ux̄,i + aih
−1ux̄,i

xi∫

xi−1

ϕ
(1)
i (x) dx+ aih

−1ux,i

xi+1∫

xi

ϕ
(2)
i (x) dx+ εh−1ux,i

= εux̄x,i + ai(χ
(1)
i ux̄,i + χ

(2)
i ux,i), (3.4)

where

χ
(1)
i = h−1

xi∫

xi−1

ϕ
(1)
i (x) dx =

ε

hai
− 1

eaih/ε − 1
,
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χ
(2)
i = h−1

xi+1∫

xi

ϕ
(2)
i (x) dx =

1

1− e−aih/ε
− ε

hai
.

Substituting

ux̄,i = ux̊,i − h

2
ux̄x,i, ux,i = ux̊,i +

h

2
ux̄x,i

into (3.4), we get

εux̄x,i + ai
(
χ
(1)
i ux̄,i + χ

(2)
i ux,i

)
= εθiux̄x,i + aiux̊,i, (3.5)

where

θi = 1 +
aih

2
ε
(
χ
(2)
i − χ

(1)
i

)
= γi coth γi, γi =

aih

2ε
, (3.6)

χ
(1)
i + χ

(2)
i = h−1

xi∫

xi−1

ϕ
(1)
i (x) dx+ h−1

xi+1∫

xi

ϕ
(2)
i (x) dx = 1.

As a consequence, for Eq. (1.1), from (3.2) and (3.5) we obtain the approximate relation

�ui := εθiux̄x,i + aiux̊,i = fi −Ri, 1 � i � N − 1. (3.7)

It is now necessary to define an approximation for boundary condition (1.2). Similarly to the process
in (3.7), we start with the identity

x1∫

x0

Lu(x)ϕ0(x) dx =

x1∫

x0

f(x)ϕ0(x) dx, (3.8)

where

ϕ0(x) =

{
1−e−a0(x1−x)/ε

1−e−a0h/ε , x0 < x < x1,

0, x /∈ (x0, x1).

Note that the function ϕ0(x) is the solution of the following problem:

εϕ′′
0−a0ϕ

′
0 = 0, x0 < x < x1,

ϕ0(x0) = 1, ϕ0(x1) = 0.

Rearranging (3.8), we take

−ε

x1∫

x0

ϕ′
0(x)u

′(x) dx+ a0

x1∫

x0

ϕ0(x)u
′(x) dx = A+ f0

x1∫

x0

ϕ0(x) dx+ r(0),

where

r(0) = �u0 −A =

x1∫

x0

[
a0 − a(x)

]
ϕ0(x)u

′(x) dx+

x1∫

x0

[
f(x)− f0

]
ϕ0(x) dx. (3.9)
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By arguments similar to the process (3.7) we have

−ε

x1∫

x0

ϕ′
0(x)u

′(x) dx+ a0

x1∫

x0

ϕ0(x)u
′(x) dx = εux,0 + a0ux,0

x1∫

x0

ϕ0(x) dx = εθ0ux,0,

where

θ0 = 1 +
a0
ε

x1∫

x0

ϕ0(x) dx =
a0h

ε(1 − e−a0h/ε)
. (3.10)

For boundary condition (1.2), we can write an approximate relation in the form

�0u := εθ0ux,0 = A+ κ0f0 + r(0), (3.11)

where

κ0 =
h

1− e−a0h/ε
− ε

a0
. (3.12)

Next, we introduce an approach for the boundary condition (1.3). Let xN0
be the mesh point nearest to l1. By

Taylor’s formula with respect to xN0
we can write

u(x) = u(xN0
) + (x− xN0

)u′(ξ), ξ ∈ (xN0
, l1). (3.13)

Substituting x = l1 into (3.13), for the boundary condition (1.3), we obtain

u0 + γuN0
+ r(N) = BuN + d, (3.14)

where
r(N) = γ(l1 − xN0

)u′(ξ), ξ ∈ (xN0
, l1). (3.15)

As a consequence of (3.7), (3.11), and (3.14), we propose the following difference scheme for approximat-
ing problem (1.1)–(1.3):

�yi := εθiyx̄x,i + aiyx̊,i = fi, 1 � i � N − 1, (3.16)

�0y := εθ0yx,0 = A+ κ0f0, (3.17)

y0 + γyN0
= ByN + d, (3.18)

where θi, θ0, and κ0 are given by (3.6), (3.10), and (3.12), respectively.

4 Analysis of the method

Let zi = yi − ui, 0 � i � N . Then the error function in the numerical solution satisfies

εθizx̄x,i + aizx̊,i = Ri, 1 � i � N − 1, (4.1)

εθ0zx,0 = −r(0), (4.2)

z0 + γzN0
= BzN + r(N), (4.3)

where the errors Ri, r(0), and r(N) are defined by (3.3), (3.9), and (3.15), respectively.

Lith. Math. J., 60(2):147–160, 2020.
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Lemma 2. If a, f ∈ C1[0, l], then the errorsRi, r(0), and r(N) satisfy the following inequalities:

‖R‖1,ωh
� Ch, (4.4)

∣
∣r(0)

∣
∣ � Ch, (4.5)

∣
∣r(N)

∣
∣ � Ch. (4.6)

Proof. We can express the remainder term Ri as follows:

Ri = �ui − fi = R
(1)
i +R

(2)
i , (4.7)

where

R
(1)
i = h−1

xi+1∫

xi−1

[
a(x)− a(xi)

]
ϕi(x)u

′(x) dx, (4.8)

R
(2)
i = h−1

xi+1∫

xi−1

[
f(xi)− f(x)

]
ϕi(x) dx. (4.9)

Let us first prove (4.8). Using the mean value theorem for the functions in (4.8), we get

∣
∣R(1)

i

∣
∣ � C

xi+1∫

xi−1

∣
∣u′(x)

∣
∣
∣
∣ϕi(x)

∣
∣ dx. (4.10)

Substituting (2.2) into (4.10), since 0 < ϕi(x) � 1, we obtain

∥
∥R(1)

∥
∥
1,ωh

� Ch

N−1∑

i=1

xi+1∫

xi−1

∣
∣u′(x)

∣
∣ dx � Ch

l∫

0

∣
∣u′(x)

∣
∣ dx � Ch

l∫

0

(

1 +
1

ε
e−αx/ε

)

dx

� Ch
(
l + α−1

(
1− e−αl/ε

))
. (4.11)

We now prove (4.9). Also, using the mean value theorem for the functions in (4.9), we have |R(2)
i | �

C
∫ xi+1

xi−1
|ϕi(x)|dx. Consequently,

∥
∥R(2)

∥
∥
1,ωh

� Ch. (4.12)

Substituting (4.11) and (4.12) into (4.7), we obtain (4.4).
Next, we estimate the remainder term r(0). Using the mean value theorem for the functions in (3.9), since

0 < ϕ0(x) � 1, we obtain

∣
∣r(0)

∣
∣ � Ch

x1∫

x0

∣
∣u′(x)

∣
∣ϕ0(x) dx+ Ch

x1∫

x0

ϕ0(x) dx � Ch

( x1∫

x0

(

1 +
1

ε
e−αx/ε

)

dx+ h

)

� Ch
[
(2h+ α−1

(
1− e−αh/ε

)]
,

which leads to (4.5).
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It remains to estimate the remainder term r(N). Since we accept l1 except for the boundary layer domain,
u′(x) is bounded. From (3.15) we obtain

∣
∣r(N)

∣
∣ �

∣
∣γ(l1 − xN0

)
∣
∣
∣
∣u′(ξ)

∣
∣ � Ch. ��

Lemma 3. Let the error function zi be the solution of problem (4.1)–(4.3), and let 1 + γ −B �= 0. Then

‖z‖∞,ω̄N
� C

{∣
∣r(0)

∣
∣+

∣
∣r(N)

∣
∣+ ‖R‖1,ωh

}
. (4.13)

Proof. If vi = zx,i, then we can write Eq. (4.1) as follows:

εθivx̄,i +
ai
2
(vi + vi−1) = Ri, 1 � i � N − 1. (4.14)

From (4.14) we get

vi =
εθi − 0.5hai
εθi + 0.5hai

vi−1 +
hRi

εθi + 0.5hai
.

Solving this first-order difference equation with respect to vi and setting the boundary condition

v0 = −r(0)

εθ0
,

we have

vi = −r(0)

εθ0
Qi +

i∑

k=1

ϕkQik, (4.15)

where

Qik =

{
1, k = i,
∏i

j=k+1
εθj−0.5haj

εθj+0.5haj
, 1 � k � i− 1,

ϕk =
hRk

εθk + 0.5hak
.

From (4.15) we take

zi+1 = zi − hr(0)

εθ0
Qi + h

i∑

k=1

ϕkQik. (4.16)

Solving the first-order difference equation (4.16), we obtain

zi = z1 − h

i−1∑

k=1

r(0)

εθ0
Qk + h

i−1∑

k=1

k∑

j=1

ϕjQkj

= z0 − hr(0)

εθ0
− h

i−1∑

k=1

r(0)

εθ0
Qk + h

i−1∑

k=1

k∑

j=1

ϕjQkj, i � 2. (4.17)
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From condition (4.3) we get

|z0| � 1

|1 + γ −B|

{
∣
∣r(N)

∣
∣+

h|γ −B||r(0)|
εθ0

+ h|γ|
N0−1∑

k=1

|r(0)|
εθ0

Qk

+ h|γ|
N0−1∑

k=1

k∑

j=1

h|Rj |
εθj + 0.5haj

Qkj + h|B|
N−1∑

k=1

|r(0)|
εθ0

Qk

+ h|B|
N−1∑

k=1

k∑

j=1

h|Rj |
εθj + 0.5haj

Qkj

}

. (4.18)

Next, since εθi+0.5hai > 0 and 0 < (εθi−0.5hai)/(εθi+0.5hai) < 1 (1 � i � N), from (4.18) and (4.17)
we can easily obtain (4.13). ��

We now can state the convergence result of this paper.

Theorem 1. Let a, f ∈ C1[0, l]. Let u be the solution of (1.1)–(1.3), and let y be the solution of (3.16)–(3.18).
Then we have the following ε-uniform estimate:

‖y − u‖∞,ω̄N
� Ch.

5 Algorithm and numerical results

In this section, we propose a technique for solving problem (3.16)–(3.18). In addition, we demonstrate the
effectiveness of our method by applying it to two examples of problem (1.1)–(1.3).

First, reformulating (3.16), we can write

�yi := εθi
yx,i − yx̄,i

h
+ ai

yx,i + yx̄,i
2

= fi, 1 � i � N − 1,

and denoting yx,i = wi, we have

εθi
wi − wi−1

h
+ ai

wi + wi−1

2
= fi.

From this we get

wi = Aiwi−1 + Fi, (5.1)

where

Ai =
2εθi − aih

2εθi + aih
, Fi =

2hfi
2εθi + aih

.

From (3.17) and yx,0 = w0, together with (5.1), we have

wi = Aiwi−1 + Fi, 1 � i � N − 1,

w0 = A0,

where A0 = A/(εθ0). Solving this first-order difference problem, we obtain

wi = A0

i∏

k=1

Ak +

i∑

k=1

(
i∏

j=k+1

Aj

)

Fk, 1 � i � N − 1.
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Second, if we reconsider yx,i = wi and yx,0 = w0, we can write another first-order difference problem:

yi+1 = yi +A0h

i∏

k=1

Ak + h

i∑

k=1

(
i∏

j=k+1

Aj

)

Fk, 2 � i � N − 1, y1 = y0 +A0h.

Solving this problem, we obtain

yi = y0 +A0h+ h

i−1∑

k=1

[

A0

k∏

m=1

Am +

k∑

m=1

(
k∏

j=m+1

Aj

)

Fm

]

, 1 � i � N − 1. (5.2)

Finally, from (3.17) we have

y0 = (1 + γ −B)−1

{

d+ (B − γ)A0h− γh

N0−1∑

k=1

[

A0

k∏

m=1

Am +

k∑

m=1

(
k∏

j=m+1

Aj

)

Fm

]

+Bh

N−1∑

k=1

[

A0

k∏

m=1

Am +

k∑

m=1

(
k∏

j=m+1

Aj

)

Fm

]}

.

Thus, if we consider this value in (5.2), then we can solve problem (3.16)–(3.18) too.

Example 1. We consider the first test problem

εu′′(x) + 2u′(x) = (ε− 2)e−x, 0 < x < 1,

u′(0) =
1

ε
, u(0) +

1

3
u

(
1

4

)

+ u(1) = 1.

Its exact solution is

u(x) = d1 + d2e
−2x/ε + e−x,

where

d1 = −3

7

[

e−1 +
1

3
e−1/4 +

(

1 + e−2/ε +
1

3
e−1/(2ε)

)

d2

]

, d2 = −1 + ε

2
.

Example 2. We consider the second test problem

εu′′(x) + 2u′(x) = (ε− 2)e−x, 0 < x < 1,

u′(0) =
1

ε
, u(0) +

2

3
u

(
3

4

)

+ u(1) = 1.

Its exact solution is

u(x) = d1 + d2e
−2x/ε + e−x,

where

d1 = −3

8

[

e−1 +
2

3
e−3/4 +

(

1 + e−2/ε +
2

3
e−3/(2ε)

)

d2

]

, d2 = −1 + ε

2
.
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Table 1. Exact errors, computed ε-uniform errors, and convergence rates for Example 1

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2−4 0.0032535 0.0008514 0.0002154 0.0000540 0.0000135 0.0000034
1.93 1.98 1.99 2.00 1.99

2−8 0.0097452 0.0045248 0.0019363 0.0006924 0.0002017 0.0000528
1.11 1.22 1.48 1.78 1.93

2−12 0.0103662 0.0051362 0.0025413 0.0012488 0.0006039 0.0002817
1.01 1.02 1.03 1.05 1.10

2−16 0.0104051 0.0051745 0.0025793 0.0012867 0.0006417 0.0003195
1.01 1.00 1.00 1.00 1.01

2−20 0.0104075 0.0051769 0.0025816 0.0012891 0.0006440 0.0003218
1.01 1.00 1.00 1.00 1.00

2−24 0.0104076 0.0051770 0.0025818 0.0012892 0.0006442 0.0003220
1.01 1.00 1.00 1.00 1.00

eN 0.0104076 0.0051770 0.0025818 0.0012892 0.0006442 0.0003220
pN 1.01 1.00 1.00 1.00 1.00

Table 2. Exact errors, computed ε-uniform errors, and convergence rates for Example 2

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2−4 0.0036800 0.0009640 0.0002440 0.0000612 0.0000153 0.0000038
1.93 1.98 2.00 2.00 2.01

2−8 0.0109089 0.0050654 0.0021680 0.0007754 0.0002259 0.0000592
1.11 1.22 1.48 1.78 1.93

2−12 0.0116034 0.0057492 0.0028446 0.0013979 0.0006760 0.0003154
1.01 1.02 1.02 1.05 1.10

2−16 0.0116470 0.0057921 0.0028871 0.0014403 0.0007183 0.0003576
1.01 1.00 1.00 1.00 1.01

2−20 0.0116497 0.0057948 0.0028898 0.0014429 0.0007209 0.0003602
1.01 1.00 1.00 1.00 1.00

2−24 0.0116499 0.0057949 0.0028900 0.0014431 0.0007211 0.0003604
1.01 1.00 1.00 1.00 1.00

eN 0.0116499 0.0057949 0.0028900 0.0014431 0.0007211 0.0003604
pN 1.01 1.00 1.00 1.00 1.00

We define the exact error eNε and the computed parameter-uniformmaximum pointwise error eN as follows:

eNε = ‖y − u‖∞, ω̄, eN = max
ε

eNε .

where y is the numerical approximation to u for various values of N and ε. We also define the computed
parameter-uniform convergence rate

pN = log2
eN

e2N
.

The values of ε for which we solve the test problems are ε = 2−4i, i = 1, 2, . . . , 6. The resulting errors and
convergence rates are listed in Tables 1–2.

6 Conclusion

We have described a finite difference method on the uniform mesh for the solution of singularly perturbed
three-point boundary value problems. The method was constructed by the integral identities with use of appro-
priate quadrature rules with the remainder terms in integral form.We have analyzed the ε-uniform convergence.
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For two examples, we have computed the maximum absolute errors and convergence rates as predicted by the
theory. In Tables 1 and 2, we give the results for different values of ε and N . The obtained theoretical re-
sults are confirmed by numerical experiments. The ideas presented here can be easily applied to solving more
complicated boundary value problems for singularly perturbed equations with nonlocal boundary conditions.

References

1. N. Adzic, Spectral approximation and nonlocal boundary value problems, Novi Sad J. Math., 30(3):1–10, 2000.

2. G.M. Amiraliyev and M. Cakir, Numerical solution of the singularly perturbed problem with nonlocal condition,
Appl. Math. Mech., 23(7):755–764, 2002.

3. G.M. Amiraliyev and Ya.D. Mamedov, Difference schemes on the uniform mesh for singularly perturbed pseudo-
parabolic equations, Turk. J. Math., 19(3):207–222, 1995.

4. M. Benchohra and S.K. Ntouyas, Existence of solutions of nonlinear differential equations with nonlocal conditions,
J. Math. Anal. Appl., 252(1):477–483, 2000.

5. A.V. Bitsadze and A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems,
Dokl. Akad. Nauk SSSR, 185(4):739–740, 1969.

6. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy
problem, J. Math. Anal. Appl., 162(2):494–501, 1991.

7. M. Cakir, A numerical study on the difference solution of singularly perturbed semilinear problem with integral
boundary condition, Math. Model. Anal., 21(5):644–658, 2016.

8. M. Cakir and G.M. Amiraliyev, A finite difference method for the singularly perturbed problem with nonlocal
boundary condition, Appl. Math. Comput., 160(2):539–549, 2005.

9. R. Ciegis, The numerical solution of singularly perturbed nonlocal problem, Liet. Mat. Rink., 28(1):144–152, 1988
(in Russian).
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