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Abstract. We propose two methods to approximate the distribution function of a Studentized linear combination of
order statistics for a simple random sample drawn without replacement from a finite population. Using auxiliary data
available for the population units, the first method modifies a nonparametric bootstrap approximation, and the second one
corrects an empirical saddlepoint approximation based on the bootstrap. We conclude from simulations that, on the tails
of distribution of interest, both approximations improve their initial versions and alternative Edgeworth approximations.
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1 Introduction

Consider a study variable x with real values X = {x1, . . . , xN} in the population U = {1, . . . , N}. Let
X = {X1, . . . ,Xn} be the measurements of the simple random sample units {1, . . . , n}, n < N , drawn
without replacement from U . The L-statistic

L = Ln(X) =
1

n

n∑

j=1

cj,nXj:n (1.1)

is a linear combination of the order statisticsX1:n � · · · � Xn:n of X with real coefficients

cj,n = J

(
j

n+ 1

)
, J : (0, 1) → R,

called weights. The sample mean, Gini’s mean difference, and trimmed means are particular cases of (1.1).
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We aim to estimate the distribution function

FS(y) = P
{
σ̂−1
J (L− EL) � y

}
(1.2)

of the Studentized L-statistic, where

σ̂2
J = σ̂2

J(X) =

(
1− n

N

)
n− 1

n

n∑

k=1

(
L(k) − L

)2
, L =

1

n

n∑

k=1

L(k), (1.3)

is the jackknife estimator of the variance σ2 = VarL. Here L(k) = Ln−1(X \ {Xk}), 1 � k � n, are
L-statistics with weights cj,n−1 = J(j/n), 1 � j � n−1. The knowledge of (1.2) allows us to test hypotheses
and construct confidence intervals for the parameter EL. In practice, the standard normal approximation Φ is
commonly applied to (1.2) for large sample sizes, but for small to moderate n, this approximation is quite
inaccurate. Typically, it should have the absolute error O(n−1/2) according to the Berry–Esseen theorems.

An improvement over the normal approximation is provided by the one-term Edgeworth expansion con-
structed by [4] for Studentized symmetric finite population statistics (including L-statistics). The jackknife
estimators of unknown parameters of the Edgeworth expansion proposed by [3] lead to the empirical Edge-
worth expansion (EEE), which approximates the distribution function of the Studentized statistic up to the
error o(n−1/2) in probability. For the particular case of L-statistics, variants of EEEs were considered in [12],
and, assuming that values of an auxiliary variable are available for all units of the population, the calibra-
tion technique [16] was applied to estimate the parameters of Edgeworth expansion by [14, 28]. In particular,
well-correlated auxiliary information, often accessible for finite populations, improves EEEs based on the sam-
ple X only. In the case of independent and identically distributed (i.i.d.) observations, EEEs of Studentized
L-statistics were derived by [19, 26, 29].

We focus ourselves on alternative methods to approximate the distribution function (1.2). We present two
new approximations in Section 2. These methods complement the recent works of the authors on the use of the
auxiliary information, which is specified as follows: denote by z the auxiliary variable with known real values
Z = {z1, . . . , zN} in the population U . Let Z = {Z1, . . . , Zn} be the corresponding values of the sample
units, and Z1:n � · · · � Zn:n let be order statistics of Z. [14] introduced the approximation

FSz(y) = P
{
σ̂−1
J (Z)

(
Ln(Z)− ELn(Z)

)
� y

}
(1.4)

to (1.2). We call it synthetic because it is based on the auxiliary data only. The numerical study of [14] showed
that (1.4) is very efficient if the shapes of distributions of the variables x and z are similar. However, this naive
approximation yields misleading results in practical situations.

The errors of nonparametric bootstrap approximations to distribution functions of statistics are of similar
order as for EEEs. For samples drawn without replacement, this fact is known at least for statistics that are
smooth functions of multivariate sample means [8] and U -statistics [5]. The latter class of estimators includes
the Gini mean difference statistic, and in this case the error of the bootstrap approximation is o(n−1/2) in
probability. The simulation study of [12] also suggests that the accuracy of the nonparametric bootstrap ap-
proximation to (1.2) is similar to that of EEEs. For i.i.d. observations, the quality of nonparametric bootstrap
approximations of U -statistics was investigated by [23], and distributions of trimmed means were approxi-
mated by [20, 21]. In Section 2.1, we use an auxiliary information and employ synthetic approximation (1.4)
to construct a new calibrated nonparametric approximation to (1.2) based on the finite population bootstrap
variant proposed by [8]. This calibration appears to be related to the empirical likelihood estimation for finite
populations by [9]. The use of auxiliary information in the construction of bootstrap estimators is not widely
studied in the literature, but, for instance, the paper of [2] presents several algorithms that incorporate the
auxiliary data into bootstrap procedures. In the i.i.d. setting, a bootstrapping with auxiliary information was
proposed by [31], which is similar to the conditional bootstrap methods introduced by [25].

Saddlepoint approximations to distribution functions of statistics are known as very accurate for small
sample sizes and, in particular, on the tails of distributions. In Section 2.2, we present empirical saddlepoint
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approximations to (1.2) applied to the distribution function of a suitably Studentized linear part of the L-sta-
tistic. More specifically, the linear part of (1.1) is taken from Hoeffding’s decomposition results of [6, 11],
and then the “true” saddlepoint approximation, constructed for the distribution function of the Studentized
sample mean by [15], is applied directly. This methodology is similar to that outlined by [17] and applied
by [7] for standardizedL-statistics in the case of i.i.d. observations. Next, we derive two empirical saddlepoint
approximations based on the bootstrap, without and with the auxiliary information. In the traditional statistics,
[24] applied saddlepoint approximations to the distributions of Studentized trimmed means.

The accuracy of approximations to the distribution functions of the Studentized L-statistics is investigated
by simulation experiments in Section 3. The conclusions, stated in Section 4, are based on these numerical
comparisons.

2 Approximations to the distribution

2.1 Calibrated nonparametric bootstrap

We use the finite population bootstrap scheme from [8]. Write N = mn + l, where 0 � l < n. Given the
sample X, the empirical set (bootstrap population) X̃ of sizeN is formed by takingm copies of X and, in case
l > 0, adding the remaining l values, which are the simple random sample Y = {Y1, . . . , Yl} drawn without
replacement from the setX. Next, the simple random sample X̃ = {X̃1, . . . , X̃n} is drawn without replacement
from X̃ , and Ln(X̃) and σ̂2

J(X̃) are the bootstrap estimators of statistics (1.1) and (1.3), respectively. The
nonparametric bootstrap approximation to (1.2) is

FSB(y) = P
{
σ̂−1
J (X̃)

(
Ln(X̃)− E

(
Ln(X̃)

∣∣ X,Y
))

� y
∣∣ X

}
, (2.1)

which averages over (nl ) possible bootstrap populations. Here the quantity μ(X̃ ) = E(Ln(X̃) |X,Y) is the
expectation of Ln(X̃) under the fixed empirical population X̃ . For the original set X , assuming that x1 �
· · · � xN without any loss of generality, it is expressed as follows [10, Appendix A]:

μ(X ) = ELn(X) = E
(
Ln(X)

∣∣ X )
=

1

N

N∑

i=1

n∑

j=1

cj,nHN−1,n−1,i−1(j − 1)xi

with the hypergeometric probabilities

HN,n,i(j) =

(
i

j

)(
N − i

n− j

)/(
N

n

)

having the support max{0, n + i − N} � j � min{n, i}. To evaluate (2.1), we apply the following Monte
Carlo approximation. First, we construct independently B bootstrap populations X̃ (b), 1 � b � B. Second,
for each b, we draw independently R simple random samples X̃(b,r) = {X̃(b,r)

1 , . . . , X̃
(b,r)
n }, 1 � r � R,

without replacement from X̃ (b). Then, as proposed by [8],

F̃SB(y) =
1

BR

B∑

b=1

R∑

r=1

I
{
σ̂−1
J

(
X̃
(b,r)

)(
Ln

(
X̃
(b,r)

)− μ
(X̃ (b)

))
� y

}
(2.2)

is the formula to calculate (2.1) in practice. Here I{·} is the indicator function.
Using representation (2.2), we define the calibrated nonparametric bootstrap approximation

FSBw(y) =
1

BR

B∑

b=1

R∑

r=1

wbrI
{
σ̂−1
J

(
X̃
(b,r)

)(
Ln

(
X̃
(b,r)

)− μ
(X̃ (b)

))
� y

}
(2.3)

Lith. Math. J., 59(3):305–316, 2019.
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to (1.2), where the weightsW = (wbr) ∈ R
B×R minimize the function

d(W) =
1

BR

B∑

b=1

R∑

r=1

(wbr − 1)2 (2.4)

and satisfy the calibration equations

1

BR

B∑

b=1

R∑

r=1

wbrI
{
Zb,r � yi

}
= FSz(yi), 1 � i � T, (2.5)

where

Zb,r = σ̂−1
J

(
Z̃
(b,r)

)(
Ln

(
Z̃
(b,r)

)− μ
(Z̃(b)

))
, 1 � b � B, 1 � r � R. (2.6)

Here the sets Z̃(b) and Z̃
(b,r), constructed from Z, represent exactly the same sample units as the sets X̃ (b)

and X̃
(b,r) selected from the given X. The auxiliary function (1.4) is evaluated by drawing a large number of

independent samples from Z . The arbitrarily chosen points y1 < · · · < yT−1 are, for example, uniformly
spaced quantiles of the distribution function of values (2.6), and the choice of the point

yT = max
{

max
1�b�B, 1�r�R

Zb,r, max
s∈[0,1]

F−1
Sz (s)

}

means that the last equation in (2.5) is the requirement that the average of the calibrated weights is equal
to 1. For simplicity, we can set yT = 103. Explicit expressions of the weights are presented in the following
proposition.

Proposition 1. Let y1 < · · · < yT . Assume that m1 > 0 and mi > mi−1 for 2 � i � T , where mi is the
number of values in the set (2.6) that are smaller than or equal to the value yi. Then the weightsW minimizing
function (2.4) and satisfying calibration equations (2.5) are unique and expressed by

wbr = 1 +
1

2

T∑

j=1

λjI
{
Zb,r � yj

}
, 1 � b � B, 1 � r � R, (2.7)

where λ = (λ1, . . . , λT )
ᵀ = A−1b with A = (aij) ∈ R

T×T and b = (b1, . . . , bT )
ᵀ given by

aij =
1

2BR

B∑

b=1

R∑

r=1

I{Zb,r � yi}I{Zb,r � yj} and bi = FSz(yi)− 1

BR

B∑

b=1

R∑

r=1

I{Zb,r � yi},

respectively.

Proof. Consider the Lagrange function

L = L(W,λ) = d(W) −
T∑

j=1

λj

(
1

BR

B∑

b=1

R∑

r=1

wbrI
{
Zb,r � yj

}− FSz(yj)

)
.

Equating the partial derivatives ∂L/∂wbr , 1 � b � B, 1 � r � R, to zero, we derive expressions (2.7). Next,
insert these expressions into calibration equations (2.5) and obtain the system of linear equations Aλ = b.
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Write the matrix A as

A =
1

2BR

⎛

⎜⎜⎝

m1 m1 · · · m1

m1 m2 · · · m2
...

...
...

...
m1 m2 · · · mT

⎞

⎟⎟⎠ .

By the properties of determinants,

det(A) =
1

(2BR)T
det

⎛

⎜⎜⎝

m1 m1 · · · m1

0 m2 −m1 · · · m2 −m1
...

...
...

...
0 0 · · · mT −mT−1

⎞

⎟⎟⎠

=
1

(2BR)T
m1(m2 −m1) · · · (mT −mT−1) > 0.

Therefore the solution λ of the system of equations is unique, which leads to the complete knowledge of
calibrated weights (2.7). ��

Remark 1. Our experiments show that the number T of points needs not be large to get an optimal cal-
ibrated bootstrap approximation. In the simulation study of Section 3, for the uniformly spaced quantiles
y1 < · · · < yT−1 of the distribution of (2.6), the choice T = 102 is better than T = 10, but T = 103 gives
no significant further improvement of (2.3). Moreover, if T is large, then some of the quantiles can coincide.
Then det(A) = 0, and there is no unique solution (2.7).

Remark 2. If we replace the minimization of distance (2.4) by the maximization of function

g(W) =

B∑

b=1

R∑

r=1

log(wbr),

then the calibrated estimation becomes a finite population version of the empirical likelihood (EL) method
of [27]. In the case of i.i.d. observations, see also the review by [22]. For the simple random sampling without
replacement, an EL estimation that uses auxiliary information is discussed by [9]. Indeed, our version of
EL is an extension of the latter methodology to the estimation of multivariate means (proportions). There are
evidences that similar calibration procedures and EL estimators are asymptotically equivalent as the sample
size tends to infinity [30]. In our situation, the “sample size” BR is large, and the numerical tests show that
both resulting approximations to (1.2) are almost identical. The disadvantage of the EL method is that there is
no explicit expression of the Lagrange multipliers that define the weights and are the solution of the system of
T nonlinear equations.

2.2 Saddlepoint approximations

To employ saddlepoint techniques to approximate the distribution function (1.2), the idea of [18], later noted
by [17], is linearization of complex statistic (1.1), and then applying the saddlepoint approximation to the
distribution function of the linear part. For the simple random samples drawn without replacement, the general
symmetric statistics are linearized using Hoeffding’s decomposition by [6],

L− EL = H +R, whereH = Hn(X) =
1

n

n∑

j=1

h(Xj) (2.8)

Lith. Math. J., 59(3):305–316, 2019.
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is a linear statistic with influence function h, and R = Rn(X) is a remainder term. Here the random variables
h(X1), . . . , h(Xn) are identically distributed with P{h(X1) = h(xk)} = N−1, 1 � k � N , where, letting
x1 � · · · � xN , the explicit expressions

h(xk) = h(k;X ) = −
N−1∑

i=1

(
I{i � k} − i

N

)
di(xi+1 − xi) (2.9)

with

di = di,N,n =

n∑

j=1

cj,nHN−2,n−1,i−1(j − 1)

are available for the particular case of L-statistics [11]. In decomposition (2.8), the componentsH and R are
centered and uncorrelated. Furthermore, R = O(n−1/2) in probability for many commonly used statistics [6]
and for L-statistics with sufficiently smooth weight functions J ; see [13].

The jackknife estimator of the variance σ2
H = VarH of the linear statistic reduces from (1.3) to

σ̂2
HJ = σ̂2

HJ(X) =

(
1− n

N

)
S2

n
, where S2 =

1

n− 1

n∑

j=1

(
h(Xj)−H

)2

is the variance of the transformed sample. Thus, we approximate distribution function (1.2) by

F̃S(y) = P
{
σ̂−1
HJH � y

}
(2.10)

and we next apply the saddlepoint approximation results of [15] to the latter distribution function. To this
aim, introduce the random variables Aj = h(Xj)/σ1, 1 � j � n, where σ2

1 = N−1
∑N

k=1 h
2(xk). Then

A = {A1, . . . , An} is the simple random sample without replacement from the set A = {a1, . . . , aN} with
ak = h(xk)/σ1, 1 � k � N . The random variable σ̂−1

HJH in (2.10) coincides with the Studentized mean of
the sample A considered by [15], and their assumptions

∑N
k=1 ak = 0 andN−1

∑N
k=1 a

2
k = 1 hold as well.

Write shortly p = n/N and q = 1−p, and let t = (t0, t1, t2)
ᵀ ∈ R

3 and u = (u0, u1, u2)
ᵀ ∈ R

3. Consider
the function

K(t) = −p(t0 + t2) +
1

N

N∑

k=1

log
(
q + p exp

(
t0 + t1ak + t2a

2
k

))
(2.11)

and define t(u) as the solution of the equation system

K ′(t) = u, (2.12)

which is solved numerically in practice. Then we introduce the functions

Λ(u) = tᵀ(u)u−K
(
t(u)

)
and Δ(u) = det

(
K ′′(t(u)

))
.

For the fixed point y ∈ R, we define u0 = 0 and

u1 = u1(y, u2) = y

(
u2 + p

c2n + y2/p

)1/2

with cn =

(
n− 1

pq

)1/2

. (2.13)

Then we solve the equation

∂Λ(0, u1(y, u2), u2)

∂u2
= 0, (2.14)
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that is, find numerically the number u2(y) minimizing the function Λ(0, u1(y, u2), u2), and then we denote
u1(y) = u1(y, u2(y)) according to (2.13). The calculation of the minimizers u2(ỹ) at the points ỹ close to y is
fast because the solutions of (2.14) and (2.12) vary slowly. Next, we evaluate the functions

G(y) =
(pq)1/2(∂2Λ(0, u1(y, u2), u2)/∂u

2
2|(u1(y),u2(y)))

−1/2

|∂v(u1, u2)/∂u1|(u1(y),u2(y))|Δ1/2(0, u1(y), u2(y))
,

where v(u1, u2) = cnu1/(u2 + p− u21/p)
1/2 and

D(y) = Λ
(
0, u1(y), u2(y)

)
.

Then the saddlepoint approximation to distribution function (2.10) of the Studentized linear part of (1.1) is [15]

F̃SS(y) = Φ

(
N1/2

(
w(y)−N−1 log(w(y)G(y)/D′(y))

w(y)

))
, (2.15)

where w(y) = sgn(y)(2D(y))1/2. Assuming that the variance of the remainder R in (2.8) is negligible, we
use approximation (2.15) to distribution (1.2) of interest as well.

However, the “true” saddlepoint approximation (2.15) is useless in practice because function (2.11) de-
pends on the setA of unknown characteristics. We apply the bootstrap of [8] to estimate these ak, 1 � k � N .
A similar application of the same bootstrap to saddlepoint approximations is done in [1]. The explicit estima-
tors of (2.9) for 1 � k � N are [12]

ĥB(k;X) = −
n−1∑

j=1

mj+l∑

i=mj

(
I
{
i � k

}− i

N

)
diHn,l,j(i−mj)(Xj+1:n −Xj:n). (2.16)

Then the bootstrap estimators âB(k) = ĥB(k;X)/σ̂1B, 1 � k � N , where σ̂2
1B = N−1

∑N
k=1 ĥ

2
B(k;X), are

plugged into (2.11), and the empirical saddlepoint approximation FSSB(y) to (1.2) is obtained following the
formulas used to calculate (2.15).

If a well-correlated auxiliary information Z is available, then the calibration of bootstrap estimators (2.16)
by [28] can lead to more efficient estimators of the characteristics ak, 1 � k � N . The calibrated bootstrap
estimators of (2.9) for 1 � k � N are

h̃Bw(k;X,Z) = −
n−1∑

j=1

wj(k)

mj+l∑

i=mj

(
I
{
i � k

}− i

N

)
diHn,l,j(i−mj)(Xj+1:n −Xj:n),

where the calibration weights are

wj(k) = 1 +
(
h(k;Z) − ĥB(k;Z)

)
(

n−1∑

t=1

r2t (k)

)−1

rj(k), 1 � j � n− 1,

with

rj(k) = −
mj+l∑

i=mj

(
I{i � k} − i

N

)
diHn,l,j(i−mj)(Zj+1:n − Zj:n).

Lith. Math. J., 59(3):305–316, 2019.
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We define the calibrated estimators of ak by âBw(k) = ĥBw(k;X,Z)/σ̂1Bw , 1 � k � N , where

ĥBw(k;X,Z) = h̃Bw(k;X,Z) − 1

N

N∑

k=1

h̃Bw(k;X,Z) and σ̂2
1Bw =

1

N

N∑

k=1

ĥ2Bw(k;X,Z),

and so we get another empirical saddlepoint approximation to (1.2), which we denote by FSSBw(y).

3 Simulation study

We compare the calibrated nonparametric bootstrap FSBw and saddlepoint FSSBw approximations to the dis-
tribution FS with approximations FSB and FSSB based on the data X only. The comparison also includes
the normal approximation Φ, the synthetic approximation FSz , the “true” saddlepoint approximation F̃SS of
a theoretical interest, and the empirical Edgeworth expansionGSBw with calibrated bootstrap estimators of pa-
rameters by [28], which appears to be the most robust approximation in the cases simulated by [14]. Moreover,
we use the populations U1, U2, and U3 of size N = 120 and the L-statistics taken from the latter simulation
study, where various empirical Edgeworth approximations were compared.

The values of the auxiliary variable z of the first population U1 are generated from the Fisher distribution
F(5, 4), and then the values of the study variable x are obtained by the relationship xi = 2 + zi + 0.7

√
ziεi,

where independent errors εi are from the normal distribution N (0, 1). The Pearson correlation coefficient
between the fixed sets Z and X is equal approximately to 0.92. For the second population U2, the values of
the variables z and x are simulated, respectively, according to the marginal distributions N (600, 150) and
F(5, 4) and by applying the bivariate Student’s t copula. The resulting coefficient of linear correlation is close
to 0.83. The elements of the third population U3 are business enterprises. The variable z denotes an annual
turnover derived from administrative Value Added Tax data, and the variable x is an annual survey turnover.
The correlation coefficient is 0.81. Figure 1 presents the distributions of both variables and their relationship.

Six different scenarios for the simulation study are obtained by combining these populations with two
L-statistics. The first one is the Gini mean difference defined using the weights

cj,n =
n+ 1

n− 1
J

(
j

n+ 1

)
, 1 � j � n,

0 500 1000 1500 2000
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Survey turnover x
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0 500 1000 1500 2000
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Survey turnover x

Figure 1. The annual survey turnover variable x and the annual administrative turnover variable z in the population U3 of business
enterprises.
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with smooth function J(s) = 4s − 2. Given the fixed numbers 0 � a < b � 1, the trimmed mean

Mn;a;b(X) =
1

[bn]− [an]

[bn]∑

j=[an]+1

Xj:n, (3.1)

where [·] is the greatest integer function, is represented asymptotically by the nonsmooth function J(s) =
(b − a)−1

I{a < s < b}. The second statistic is the trimmed mean (3.1) with values a = 0 and b = 0.95 of
trimming proportions. The samples are of size n = 40 in all cases.

We compare all the approximations to the distribution FS of interest by taking their s-quantiles with s =
0.01, 0.05, 0.10, 0.90, 0.95, 0.99. For each empirical quantile of the sample-based approximations, we evaluate
its expectation (denoted by the operator Em) and the root mean square error (Rm) using 103 samples, drawn
independently from a particular population. For the quantiles of the population-based approximations Φ, FSz ,
and F̃SS, we also calculate the characteristics Rm, but these constitute of the bias component only. Tables 1–6
present the results.

Almost all approximations improve the normal approximation Φ. The synthetic approximation FSz is the
best one under the population U1, but its accuracy is similar to that of Φ in the population U2. Moreover, in
the population U3, the results of FSz are perfect for the Gini mean difference statistic, but they are bad for the
trimmed mean. The calibrated bootstrap approximation FSBw improves the bootstrap FSB, and this improve-
ment is significant in the population U1. The calibrated saddlepoint approximationFSSBw is better compared to
the saddlepoint FSSB based on the bootstrap, and the root mean square errors of FSSBw are much closer to that
of the “true” saddlepoint approximation F̃SS. Comparing the calibrated nonparametric approximations FSBw

and FSSBw with the calibrated (parametric) Edgeworth expansion GSBw, the main difference between them
is that the latter approximation tends to have smaller variances but larger biases. In many cases, the biases of
GSBw are particularly large for quantiles 0.01 and 0.99, where the root mean square errors of FSBw and FSSBw

are thus much smaller. In turn, for far quantiles of FS, the approximation FSBw appears to be more accurate
than or similar to FSSBw. We conclude that the calibrated bootstrap FSBw is the best approximation among
the sample-based approximations FSB, FSSBw, FSSB, and GSBw, and it is robust compared to the synthetic
approximation FSz .

Table 1. Approximations to F−1
S (s) of the Gini mean differ-

ence under the population U1

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −6.454 −4.401 −3.457 0.982 1.181 1.494

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −7.258 −5.048 −3.822 1.004 1.218 1.580
˜F−1
SS −8.092 −5.384 −4.200 0.953 1.145 1.447

EmF−1
SBw −6.601 −4.422 −3.344 1.020 1.252 1.664

EmF−1
SB −6.551 −4.191 −2.709 1.095 1.352 1.839

EmF−1
SSBw −8.512 −5.494 −4.150 0.992 1.207 1.552

EmF−1
SSB −8.005 −4.647 −3.342 1.038 1.278 1.680

EmG−1
SBw −3.053 −2.288 −1.821 0.967 1.151 1.355

RmΦ−1 4.127 2.756 2.175 0.299 0.464 0.832
RmF−1

Sz 0.805 0.647 0.365 0.021 0.036 0.086

Rm
˜F−1
SS 1.638 0.983 0.744 0.030 0.036 0.047

RmF−1
SBw 1.998 1.412 1.151 0.057 0.106 0.218

RmF−1
SB 3.026 2.222 1.604 0.146 0.226 0.417

RmF−1
SSBw 3.177 2.091 1.692 0.031 0.052 0.100

RmF−1
SSB 3.991 2.286 1.998 0.079 0.128 0.238

RmG−1
SBw 3.402 2.115 1.638 0.050 0.073 0.175

Table 2. Approximations to F−1
S (s) of the trimmed mean

under the population U1

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −3.270 −2.100 −1.558 1.155 1.451 2.004

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −3.206 −2.103 −1.599 1.104 1.388 1.900
˜F−1
SS −2.964 −1.928 −1.448 1.192 1.511 2.095

EmF−1
SBw −3.211 −2.098 −1.577 1.117 1.411 1.942

EmF−1
SB −3.395 −2.231 −1.682 1.101 1.391 1.924

EmF−1
SSBw −2.996 −1.943 −1.457 1.189 1.507 2.087

EmF−1
SSB −3.151 −2.001 −1.489 1.180 1.492 2.062

EmG−1
SBw −2.782 −1.988 −1.540 1.078 1.338 1.706

RmΦ−1 0.944 0.455 0.277 0.127 0.194 0.322
RmF−1

Sz 0.064 0.003 0.041 0.051 0.063 0.104

Rm
˜F−1
SS 0.306 0.172 0.111 0.037 0.060 0.091

RmF−1
SBw 0.255 0.131 0.090 0.050 0.060 0.104

RmF−1
SB 0.495 0.337 0.269 0.095 0.121 0.184

RmF−1
SSBw 0.301 0.166 0.106 0.037 0.060 0.093

RmF−1
SSB 0.435 0.189 0.114 0.042 0.067 0.113

RmG−1
SBw 0.493 0.138 0.078 0.092 0.135 0.324
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Table 3. Approximations to F−1
S (s) of the Gini mean differ-

ence under the population U2

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −4.304 −2.366 −1.621 1.164 1.461 2.016

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −2.654 −1.742 −1.317 1.259 1.610 2.272
˜F−1
SS −5.347 −2.686 −1.836 1.079 1.342 1.792

EmF−1
SBw −4.238 −2.385 −1.632 1.180 1.486 2.058

EmF−1
SB −4.244 −2.393 −1.634 1.185 1.492 2.066

EmF−1
SSBw −5.146 −2.663 −1.827 1.085 1.349 1.805

EmF−1
SSB −5.267 −2.741 −1.868 1.085 1.349 1.804

EmG−1
SBw −2.735 −1.917 −1.456 1.157 1.427 1.829

RmΦ−1 1.977 0.721 0.340 0.118 0.184 0.310
RmF−1

Sz 1.650 0.624 0.304 0.095 0.149 0.256

Rm
˜F−1
SS 1.043 0.320 0.214 0.084 0.119 0.224

RmF−1
SBw 1.005 0.546 0.237 0.053 0.082 0.158

RmF−1
SB 1.074 0.592 0.259 0.062 0.092 0.171

RmF−1
SSBw 1.212 0.416 0.250 0.081 0.116 0.218

RmF−1
SSB 1.634 0.671 0.394 0.084 0.120 0.225

RmG−1
SBw 1.571 0.455 0.176 0.039 0.067 0.219

Table 4. Approximations to F−1
S (s) of the trimmed mean

under the population U2

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −3.453 −2.186 −1.637 1.122 1.412 1.945

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −2.488 −1.716 −1.321 1.288 1.668 2.411
˜F−1
SS −3.078 −1.973 −1.474 1.178 1.490 2.057

EmF−1
SBw −3.443 −2.212 −1.642 1.135 1.436 1.978

EmF−1
SB −3.447 −2.211 −1.640 1.136 1.436 1.978

EmF−1
SSBw −3.079 −1.971 −1.471 1.179 1.493 2.063

EmF−1
SSB −3.072 −1.968 −1.469 1.181 1.495 2.068

EmG−1
SBw −2.770 −1.973 −1.524 1.091 1.354 1.730

RmΦ−1 1.127 0.541 0.356 0.160 0.233 0.381
RmF−1

Sz 0.965 0.469 0.316 0.166 0.256 0.465

Rm
˜F−1
SS 0.376 0.212 0.164 0.056 0.078 0.112

RmF−1
SBw 0.343 0.202 0.137 0.036 0.052 0.083

RmF−1
SB 0.385 0.222 0.149 0.039 0.056 0.090

RmF−1
SSBw 0.409 0.225 0.170 0.060 0.085 0.128

RmF−1
SSB 0.429 0.232 0.174 0.062 0.089 0.136

RmG−1
SBw 0.686 0.222 0.127 0.049 0.080 0.238

Table 5. Approximations to F−1
S (s) of the Gini mean differ-

ence under the population U3

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −4.243 −2.853 −2.231 1.012 1.202 1.514

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −4.726 −3.099 −2.381 1.039 1.276 1.668
˜F−1
SS −5.627 −3.542 −2.758 0.952 1.143 1.454

EmF−1
SBw −4.524 −3.008 −2.303 1.121 1.396 1.918

EmF−1
SB −4.361 −2.833 −2.123 1.181 1.480 2.060

EmF−1
SSBw −5.826 −3.716 −2.872 1.037 1.275 1.674

EmF−1
SSB −5.668 −3.472 −2.675 1.073 1.330 1.771

EmG−1
SBw −2.904 −2.126 −1.665 1.053 1.275 1.571

RmΦ−1 1.917 1.208 0.949 0.269 0.443 0.812
RmF−1

Sz 0.483 0.246 0.150 0.027 0.074 0.154

Rm
˜F−1
SS 1.384 0.689 0.527 0.060 0.059 0.060

RmF−1
SBw 1.567 1.234 1.054 0.159 0.260 0.498

RmF−1
SB 1.861 1.409 1.092 0.208 0.338 0.637

RmF−1
SSBw 2.325 1.556 1.353 0.065 0.118 0.230

RmF−1
SSB 2.857 1.851 1.623 0.085 0.158 0.305

RmG−1
SBw 1.358 0.764 0.605 0.126 0.189 0.320

Table 6. Approximations to F−1
S (s) of the trimmed mean

under the population U3.

s 0.01 0.05 0.10 0.90 0.95 0.99
F−1
S −3.197 −2.012 −1.495 1.172 1.483 2.058

Φ−1 −2.326 −1.645 −1.282 1.282 1.645 2.326
F−1
Sz −3.953 −2.241 −1.624 1.131 1.422 1.956
˜F−1
SS −2.901 −1.896 −1.428 1.198 1.519 2.117

EmF−1
SBw −3.162 −1.999 −1.483 1.176 1.488 2.063

EmF−1
SB −3.220 −2.059 −1.536 1.153 1.461 2.030

EmF−1
SSBw −2.928 −1.907 −1.434 1.195 1.518 2.111

EmF−1
SSB −2.946 −1.916 −1.440 1.194 1.515 2.106

EmG−1
SBw −2.691 −1.895 −1.459 1.136 1.420 1.858

RmΦ−1 0.871 0.367 0.213 0.110 0.162 0.269
RmF−1

Sz 0.755 0.229 0.129 0.041 0.062 0.102

Rm
˜F−1
SS 0.297 0.116 0.067 0.026 0.035 0.059

RmF−1
SBw 0.261 0.145 0.107 0.040 0.051 0.075

RmF−1
SB 0.313 0.162 0.108 0.048 0.065 0.098

RmF−1
SSBw 0.297 0.117 0.068 0.028 0.042 0.070

RmF−1
SSB 0.299 0.119 0.069 0.029 0.044 0.075

RmG−1
SBw 0.509 0.126 0.053 0.045 0.076 0.216

4 Conclusions

Our simulations suggest that the constructed calibrated bootstrap and saddlepoint approximations to the distri-
bution function of the Studentized L-statistic improve the respective approximations based only on the sample
data if the study and auxiliary variables are well correlated. There are also numerical evidences that the new
approximations adapt better to estimate extreme quantiles of the distribution of interest than the empirical
Edgeworth expansion with calibrated parameters. Moreover, the latter approximation exhibits larger biases.
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The calibrated bootstrap approximation can be interpreted as a nonlinear combination of the bootstrap
and synthetic approximations, which adapts to the quality of auxiliary information; that is, for significantly
different distributions of the study and auxiliary variables, as in the second population of the simulations, the
efficiency of the combination is smaller, but it is still greater than that of the bootstrap approximation, whereas
the synthetic approximation fails. The latter approximation is not reliable in the third population, where the
real data contain outliers.

The calibrated saddlepoint method evaluates the “true” saddlepoint approximation quite well. However, all
presented saddlepoint approximations do not take into account the nonlinear part of theL-statistic, whereas the
other competitive approximations do. More accurate saddlepoint approximations can be constructed by using
higher-order terms of the Hoeffding decomposition, similarly as in [17]. This is a question for future research.
According to the simulations, the calibrated saddlepoint approximation is slightly worse than the calibrated
bootstrap approximation.
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