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Abstract. We study the distribution of the discriminant D(P ) of polynomials P from the class Pn(Q) of all integer
polynomials of degree n and height at most Q. We evaluate the asymptotic number of polynomials P ∈ Pn(Q) having
all real roots and satisfying the inequality |D(P )| � X as Q → ∞ andX/Q2n−2 → 0.
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1 Introduction and main results

1.1 Basic definitions

The number

D(P ) = a2n−2
n

∏

1�i<j�n

(αi − αj)
2 (1.1)

is called the discriminant of the polynomial P (x) =
∑n

k=0 akx
k = an

∏n
j=1(x− αj)

As a function of the polynomial coefficients, the discriminant can be written as a (2n − 1) × (2n − 1)
determinant:

D(P ) = (−1)n(n−1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 an−1 · · · a2 a1 a0
an an−1 · · · a2 a1 a0

. . . . . . . . . . . . . . . . . .
an an−1 · · · a2 a1 a0

n · · · 3a3 2a2 a1
nan · · · 3a3 2a2 a1

. . . . . . . . . . . . . . .
nan · · · 3a3 2a2 a1

nan · · · 3a3 2a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where the empty entries are filled with zeros. The discriminant of P coincides with the resultant of P and P ′
up to the factor (−1)n(n−1)/2a−1

n .
Let h(P ) denote the height of the polynomial P . Our proof applies to the cases where h(P ) is defined to

be the naive height H(P ) = max0�k�n |ak|, or the Mahler measure M(P ) = an
∏n

j=1max(1, |αj |), or the
length L(P ) =

∑n
k=0 |ak| of the polynomial P . In fact, in our proof, we use some properties shared by these

height functions rather than an explicit form of h(P ). These essential properties of the height functions are
summarized in Section 3.1. So, we will not further specify which particular height function h is involved in
the definitions.

We define the signature of P as the number of pairs of complex (nonreal) roots of P (each root is counted
with its multiplicity).

Everywhere in the paper the degree n � 4 of polynomials is fixed; the parameter Q bounding heights
of polynomials from above grows to infinity. We identify real polynomials of degree n with their vectors of
coefficients in R

n+1 and treat sets of real polynomials as subsets of Rn+1.
For n ∈ N andQ > 1, denote byPn(Q) the set of all integer polynomials of degreen and height h(P ) � Q.
ForX � 0 and 0 � s � n/2, define the counting functions

Nn(Q,X) := #
{
P ∈ Pn(Q):

∣∣D(P )
∣∣ � X

}
, (1.2)

Nn,s(Q,X) := #
{
P ∈ Pn(Q): signature(P ) = s,

∣∣D(P )
∣∣ � X

}
. (1.3)

Evidently,

Nn(Q,X) =
∑

0�s�n/2

Nn,s(Q,X).

1.2 Notation

Here we explain the asymptotic notation we use. The expression “f(x) ∼ g(x) as x → x0” is equivalent
to limx→x0

f(x)/g(x) = 1. The statement “f(x) �n g(x) as x → x0” means the existence of a positive
constant cn (depending on n only) such that |f(x)| � cn|g(x)| for all x in a neighborhood of x0. Note that
f(x) � g(x) is tantamount to f(x) = O(g(x)). The notation f(x) �n g(x) means the two-sided asymptotic
inequality g(x) �n f(x) �n g(x).

For a finite set S, we denote its cardinality by#S. For a set S ⊂ R
m, themesd S denotes its d-dimensional

Lebesgue measure (d � m).
To simplify the notation of quantities used in the paper, for some of them, we do not indicate explicitly

their dependence on n, since everywhere the degree n is fixed.

1.3 Background

The discriminant of a polynomial characterizes at large the distances between the roots of the polynomial
[7, 10]. So the discriminant and its properties can be of big help in various problems, especially in the theory
of Diophantine approximations. See [26] as an example of such an application to the cubic case of the Mahler
conjecture [23, 25]; the proof in [26] is built upon Davenport’s estimate [9] of the number of integer cubic
polynomials having small discriminant. This state of things raises a great interest in the distribution of the
values of the polynomial discriminant.

There are a number of effective results aimed at problems related to algorithmic solution of Diophantine
equations. In this approach, usually the effective bounds on the extreme values of some quantities are of
interest. In the 1970s, Győry established a series of such effective estimates [14, 15, 16, 17] concerning the
distribution of the discriminants of integer polynomials; several of these results are improved in [19]. A lot
of further references and details on this topic can be found in the survey [19] by Győry and the book [11] by
Evertse and Győry.



On the distribution of polynomial discriminants: Totally real case 69

Another approach is concerned about the asymptotic statistics of polynomials with small discriminants.
In this paper, we are mostly interested in problems from this second area. Now, we shortly tell about results
directly related to the subject of the paper.

A possible way to state the problem about the distribution of polynomial discriminants is to ask to find
lower and upper bounds, as close as possible, of the form

Qf∗(v) �n Nn

(
Q,Q2n−2−2v

) �n Qf∗(v), (1.4)

where f∗(v) and f∗(v) are decreasing functions of v such that 0 � v � n − 1. The reason why the bound
Q2n−2−2v on the discriminant is convenient is the following: if a polynomial P ∈ Pn(Q) has the leading
coefficient |an| 	 Q and the discriminant |D(P )| < Q2n−2−2v, then according to (1.1) its roots αj satisfy∏

1�j<k�n |αj − αk| � Q−v.
In 2008, Bernik, Götze, and Kukso [5] proved that, for 0 < v < 1/2,

Nn

(
Q,Q2n−2−2v

) 	n Qn+1−2v.

For degrees n = 2 and n = 3, the reader can find upper bounds in [12, 20, 21] and [3]. According to [12],
the function N2(Q,X) can be estimated as

N2(Q,X) = κ2 QX +O
(
X3/2 lnQ+ (Q lnQ)3/2

)
.

In [20], the asymptotics of N3(Q,X) was obtained:

N3(Q,X) = κ3 Q
2/3X5/6 +O

(
X lnQ+Q3

)
.

Here κ2 = 4(ln 2+1) = 6.77 . . . and κ3 = 26.95 . . . are explicit constants (for the exact value of κ3, see [20,
(1.6)]); the implicit big-O-constants are absolute. The asymptotic formulae forN2(Q,X) andN3(Q,X) imply
that

N2

(
Q,Q2−2v

) ∼ κ2 Q
3−2v for 0 < v <

3

4
,

N3

(
Q,Q4−2v

) ∼ κ3 Q
4−(5/3)v for 0 < v <

3

5
.

Also, there are papers concerning the problem of establishing estimates like (1.4) in similar settings with
p-adic norm (instead of the usual absolute value) used to bound discriminant values in (1.2) and (1.3) (see
[4, 6, 18]). See also the survey [2].

For general n, the best up-to-date result regarding bounds on Nn(Q,Q2n−2−2v) is that by Beresnevich,
Bernik, Götze [1], who proved that

Nn

(
Q,Q2n−2−2v

) 	n Qn+1−((n+2)/n)v for 0 < v < n− 1. (1.5)

In addition, using probabilistic methods, Götze and Zaporozhets [13] proved the existence of a continuous
function φn such that

sup
−∞�a<b�∞

∣∣∣∣∣P
{
a � D(P )

Q2n−2
� b

}
−

b∫

a

φn(x) dx

∣∣∣∣∣ �n
1

logQ
, (1.6)

where P{A} denotes the probability of an event A, and the polynomial P is picked at random uniformly
from Pn(Q).
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Here we prove that the difference in the left-hand side of (1.6) can be estimated by Cn/Q instead of
Cn/ logQ. Moreover, we get such results for every particular signature s.

Our main result is the exact asymptotics of #P(0)
n (Q, v) as Q → ∞. In the present paper, we extend the

ideas from [22], where the lower bound (1.5) was proved for 0 < v < n/(n + 2). Another essential ingredient
of our proof is the Selberg integral [24]. We are going to prove that

Nn,0

(
Q,Q2n−2−2v

) �n Qn+1−((n+2)/n)v for 0 < v <
n

n+ 2
.

1.4 Main results

According to the following theorem, for every s and sufficiently large Q, the overall shape of the function
Nn,s(Q,X) can be asymptotically described by a continuous function fn,s.

Theorem 1. Let n � 3 be an integer. For every s � 0, there exists a positive continuous function fn,s : R → R

such that, for any realX,
∣∣∣∣Nn,s(Q,X) −Qn+1fn,s

(
X

Q2n−2

)∣∣∣∣ �n Qn,

where the implicit constant depend on n only.
The function fn,s(δ) is increasing as δ grows, and limδ→0 fn,s(δ) = 0.

In Theorem 1, the parameterX may be a function of Q; the statement still holds.
Obviously, if a polynomial P is picked at random uniformly from Pn(Q), then for δ � 0,

P

{ |D(P )|
Q2n−2

� δ

}
=

1

#Pn(Q)

∑

0�s�n/2

Nn,s

(
Q, δQ2n−2

)
.

Moreover, since#Pn(Q) = 2Q(2Q+ 1)n, for the function φn in (1.6), we have

δ∫

−δ

φn(x) dx = 2−n−1
∑

0�s�n/2

fn,s(δ).

Thus Theorem 1 shows that the difference in (1.6) can be estimated as CnQ
−1, where the constantCn depends

on n only.
In the case s = 0, that is, when all the roots are real, we prove the following theorem.

Theorem 2. Let n � 2 be an integer. In the totally real case (that is, for s = 0), we have

fn,0(δ) ∼ λn,0 δ
(n+2)/(2n) as δ → 0.

The constant λn,0 can be computed explicitly and depends only on n and the height function h.

Remark. The corresponding results (with naive height as h(P )) for n = 2 and n = 3 are obtained in [12]
and [20].

Regarding the problem of obtaining estimates of the form (1.4), we get the following corollary.

Corollary 1. Let ε ∈ (0, n/(2n + 2)) be a fixed small number. For all v ∈ [ε, (1 − ε)n/(n+ 2)], we have

Nn,0

(
Q,Q2n−2−2v

) ∼ λn,0 Q
n+1−((n+2)/n)v as Q → ∞,

where λn,0 is the same as in Theorem 2.



On the distribution of polynomial discriminants: Totally real case 71

Proof. According to Theorem 1,

Nn,0

(
Q,Q2n−2−2v

)
= Qn+1fn,0

(
Q−2v

)
+O

(
Qn

)
,

where the big-O-constant depends only on n. Dividing both sides of the latter inequality byQn+1−((n+2)/n)v =
Qn+1(Q−2v)(n+2)/(2n), we obtain:

Nn,0(Q,Q2n−2−2v)

Qn+1−((n+2)/n)v
=

fn,0(Q
−2v)

(Q−2v)(n+2)/(2n)
+O

(
Q((n+2)/n)v−1

)
.

The big-O-constant here remains the same.
Obviously, if v is bounded from below by arbitrary fixed ε1 > 0, then from Theorem 2 we have

lim
Q→∞

fn,0(Q
−2v)

(Q−2v)(n+2)/(2n)
= λn,0,

where the rate of convergence depends on ε1.
On the other hand, we need the remainder term O(Q((n+2)/n)v−1) to vanish. This happens if for arbitrary

but fixed ε2 > 0, v � (1 − ε2)n/(n + 2) when we have O(Q((n+2)/n)v−1) = O(Q−ε2). Taking ε1 = ε2 = ε
for simplicity, we get the statement of the corollary. In addition, we require ε < n/(2n + 2) so that the range
of v would be nonempty. Note that the rate of convergence depends on ε. 
�

Outline of the paper

Section 2 includes auxiliary propositions necessary to prove the main results; the reader can skip this section
in the first reading. In Section 3, we express the distribution function of the discriminant via the volumes of
specific regions. In Section 4, we study the asymptotic behavior of the corresponding volume for small values
of the discriminant of polynomials having all the roots real.

2 Auxiliary statements

Lemma 1. (See Davenport [8].) Let D ⊂ R
d be a bounded region formed by points (x1, . . . , xd) satisfying

a finite collection of algebraic inequalities

Fi(x1, . . . , xd) � 0, 1 � i � k,

where Fi is a polynomial of degree degFi � m with real coefficients. Let

Λ(D) = D ∩ Z
d.

Then ∣∣#Λ(D)−mesd D
∣∣ � Cmax(V̄ , 1),

where the constant C depends only on d, k, m; the quantity V̄ is the maximum of all r-dimensional measures
of projections of D onto all the coordinate subspaces obtained by making d − r coordinates of points in D
equal to zero, r taking all values from 1 to d− 1, that is,

V̄ (D) := max
1�r<d

{
V̄r(D)

}
, V̄r(D) := max

J⊂{1,...,d}
#J=r

{
mesr ProjJ D}

,

where ProjJ D is the orthogonal projection of D onto the coordinate subspace formed by coordinates with
indices in J .

Lith. Math. J., 59(1):67–80, 2019.
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Lemma 2. Let n � 2 be an integer. Consider the change between the real variables

(a0, a1, . . . , an) and (b, z1, . . . , zn)

given by the relation
n∑

k=1

akx
k = b

n∏

j=1

(x− zj). (2.1)

Then the Jacobian of this change equals
(2.2)∣∣∣∣

∂(a0, a1, . . . , an)

∂(b; z1, . . . , zn)

∣∣∣∣ = bn
∏

1�i<j�n

|zi − zj |.

Proof. In this proof, the notation for the elementary symmetric polynomials differs from (4.3) used in Sec-
tion 4. For a finite set A ⊂ N, let us denote

σk[A] :=
∑

1�j1<···<jk

zj1 . . . zjk , where zj := 0 if j /∈ A.

Take by definition σ0[A] := 1 for any A ⊂ N (including A = ∅).
For any j ∈ N and k � 1, we have

σk[A] = zjσk−1

[A \ {j}] + σk
[A \ {j}]. (2.3)

Equality (2.1) is equivalent to

ak = (−1)n−kbσn−k[A] with A = {1, 2, . . . , n}.
With the help of (2.3) we can express the determinant J0 of the Jacobi matrix as follows:

J0 :=

∣∣∣∣∣∣∣

∂an

∂b
∂an

∂z1
. . . ∂an

∂zn
...

... · · · ...
∂a0

∂b
∂a0

∂z1
. . . ∂a0

∂zn

∣∣∣∣∣∣∣
= (−1)n(n+1)/2 bnJ [A],

where

J [A] =

∣∣∣∣∣∣∣∣

σ0[A \ {1}] σ0[A \ {2}] . . . σ0[A \ {n}]
σ1[A \ {1}] σ1[A \ {2}] . . . σ1[A \ {n}]

...
...

. . .
...

σn−1[A \ {1}] σn−1[A \ {2}] . . . σn−1[A \ {n}]

∣∣∣∣∣∣∣∣
.

Subtracting the first column from the others and using (2.3), we can easily check that

J [A] = J [A−1]

n∏

j=2

(z1 − zj), where A−1 := A \ {1}.

Repeating this reduction procedure, we finally obtain the last nontrivial determinant forA−(n−2) := {n− 1, n}:

J [A−(n−2)] =

∣∣∣∣
σ0[A−(n−2) \ {n− 1}] σ0[A−(n−2) \ {n}]
σ1[A−(n−2) \ {n− 1}] σ1[A−(n−2) \ {n}]

∣∣∣∣ =
∣∣∣∣
1 1
zn zn−1

∣∣∣∣ .
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Hence we have

J0 = (−1)n(n+1)/2 bn
∏

1�j<k�n

(zj − zk).

Taking the absolute value in the latter equation finishes the proof. 
�

3 Counting integer polynomials

In this section, we reduce counting integer polynomials to evaluating volumes of some regions.
To simplify the notation in this and the next sections, we do not indicate explicitly the dependence of some

quantities on n, since everywhere the degree n is fixed.

3.1 Height functions

There are a number of height functions defined on real polynomials, for example, the naive height, Mahler
measure, length, and so on. Our result for each of them can be obtained in the same way. So, we summarize
their essential properties in a general notion of a height function and prove our theorem in a general form.

A continuous function h : Rn+1 → [0,+∞) is called a height function if for all v = (vn, . . . , v1, v0) ∈
R
n+1, it satisfies the following properties:

(i) h(tv) = |t|h(v) for all real t;
(ii) h(v) = 0 if and only if v = 0;
(iii) h(v0, v1, . . . , vn) = h(vn, . . . , v1, v0);
(iv) h(v0,−v1, . . . , (−1)kvk, . . . , (−1)nvn) = h(v0, v1, . . . , vk, . . . , vn).

Note that, in terms of polynomials, property (iii) is equivalent to h(xnP (x−1)) = h(P (x)). Property (iv) is
equivalent to h(P (−x)) = h(P (x)).

We use the same notation for the height of a vector and of a polynomial.

Lemma 3. For any v ∈ R
n+1 \ (−1, 1)n+1, we have h(v) � h0, where h0 is a positive constant depending

only on the height function h and parameter n.

Proof. The set S0 := {v ∈ R
n+1: ‖v‖∞ = 1} is compact. From the extreme value theorem we have that

there exists a value h0 such that h(v) � h0 for all v ∈ S0.
Now, noticing that h(v) = ‖v‖∞h(v0), where v0 := ‖v‖−1∞ v ∈ S0 and ‖v‖∞ � 1 for all v ∈ R

n+1 \
(−1, 1)n+1, we have the lemma. 
�

3.2 Counting integer points via volume

We represent real polynomials of degree n by their vectors of coefficients in R
n+1. Thus Nn,s(Q,X) equals

the number of integral points in the set

Ds :=

{
a ∈ R

n+1: signature

(
n∑

i=0

ajx
j

)
= s, an �= 0, h(a) � Q,

∣∣D(a)
∣∣ � X

}
,

where D(a) is the discriminant as a function of the coefficients a of the polynomial
∑n

i=0 ajx
j . Note that

D(a0, . . . , an) is a homogeneous polynomial of degree 2n− 2 in variables a0, . . . , an.
From Lemma 1 we have

∣∣∣∣#
(Ds ∩ Z

n+1
)−Qn+1mesn+1 D̃s

(
X

Q2n−2

)∣∣∣∣ � cQn,

Lith. Math. J., 59(1):67–80, 2019.
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where c is a constant depending on n only, and

D̃s(δ) :=

{
a ∈ R

n+1: signature

(
n∑

i=0

ajx
j

)
= s, an �= 0, h(a) � 1,

∣∣D(a)
∣∣ � δ

}
.

Obviously, the function fn,s(δ) in Theorem 1 must equalmesn+1 D̃s(δ):

fn,s(δ) := mesn+1 D̃s(δ).

Lemma 4. For each 0�s�n/2, the function fn,s(δ) is continuous and increasing (as δ grows). In particular,

lim
δ→0

fn,s(δ) = 0.

Proof. The monotonicity of fn,s is obvious. Note that fn,s(δ) = 0 for negative δ because mesn+1 ∅ = 0.
Evidently, fn,s(δ + 0) = limε→+0 fn,s(δ + ε) = fn,s(δ). Now note that, for all δ,

fn,s(δ)− fn,s(δ − 0) � mesn+1

{
a ∈ R

n+1: h(a) � 1, D(a) = δ
}
= 0

because D(a) is a nonconstant polynomial in the variables a. Thus fn,s(δ) is a continuous function, and
f(0) = limδ→0 f(δ) = 0. 
�

4 Proof of Theorem 2

In this section, we find the asymptotics of fn,0(δ) = mesn+1 D̃0(δ) as δ → +0.
By definition

fn,0(δ) =

∫

˜D0(δ)

da0 da1 · · · dan.

Changing the variables (a0, . . . , an) in this integral to (b;α1, α2, . . . , αn), where b = an, and αi are the roots
of

∑n
j=0 ajx

j (the corresponding Jacobian equals bn
√

Δ(α); see Lemma 2), we obtain

fn,0(δ) =
1

n!

∫

Bδ

bn
√

Δ(α) dbdα, Δ(α) =
∏

1�i<j�n

(αi − αj)
2,

where α = (α1, . . . , αn) ∈ R
n, and the region Bδ ⊂ R

n+1 is defined by

Bδ :=
{
(b;α) ∈ R

n+1: |b|h(pα) � 1, b2n−2Δ(α) � δ
}
, pα(x) =

n∏

i=1

(x− αi). (4.1)

The factor (n!)−1 arises because of the symmetry of the roots α1, . . . , αn.
Denote

K(α) :=
1

h(pα)
=

1

h(σ0(α),−σ1(α), . . . , (−1)nσn(α))
, (4.2)

where σk(α) are the elementary symmetric polynomials of the variables α1, . . . , αn:

σk(α) :=

{
1, k = 0,
∑

1�j1<j2<···<jk�n αj1αj2 · · ·αjk , 1 � k � n.
(4.3)
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The two restrictions on b in (4.1) can be joined in the single inequality |b| � Ψ(α), where

Ψ(α) = min

{(
δ

Δ(α)

)1/(2n−2)

, K(α)

}
.

Integrating over b from −Ψ(α) to Ψ(α), we get

fn,0(δ) =
2

(n+ 1)!

∫

Rn

√
Δ(α)Ψ(α)n+1 dα.

Note that both these integrals converge sincemesn+1 D̃0(δ) � mesn+1{a ∈ R
n+1: h(a) � 1}.

To ensure the correctness of the transformations below, we restrict the range of one of the roots αi.

Lemma 5.

fn,0(δ) =
4

(n+ 1)!

∫

Rn−1×[−1,1]

√
Δ(α)Ψ(α)n+1 dα.

Proof. Let us make the change of variables αi = β−1
i in the integral. For this change, the Jacobian equals

∣∣∣∣det
(
∂αi

∂βj

)n

i,j=1

∣∣∣∣ =
(

n∏

k=1

βk

)−2

.

We have

Δ(α) =
∏

1�i<j�n

(
1

βi
− 1

βj

)2

=

(
n∏

k=1

βk

)−(2n−2)

Δ(β),

σk(α) =

(
n∏

k=1

βk

)−1

σn−k(β).

So, from the properties of the height function we haveK(α) = K(β)|∏n
k=1 βk|, and thus

Ψ(α) = Ψ(β)

∣∣∣∣∣

n∏

k=1

βk

∣∣∣∣∣.

Now we have
∫

Rn−1×[−1,1]

√
Δ(α)Ψ(α)n+1 dα1 · · · dαn =

∫

Rn−1×(R\[−1,1])

√
Δ(β)Ψ(β)n+1 dβ1 · · · dβn.

The lemma is proved. 
�

Now, let us make one more change of variables with parameter ρ:

αj = τ + ρ θj, 1 � j � n− 1, αn = τ.
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The Jacobian of this change equals ρn−1. The parameter ρ will be specified later. To shorten the notation,
denote

θ = (θ1, . . . , θn−1, 0) ∈ R
n, τ = (τ, . . . , τ, τ) ∈ R

n.

Then the functions under the integral take the form

Δ(τ + ρθ) = ρn(n−1)Δ̃(θ), Δ̃(θ) :=

n−1∏

k=1

θ2k
∏

1�i<j�n−1

(θi − θj)
2,

Ψ(τ + ρθ) = min

{(
δ

ρn(n−1)

)1/(2n−2)

Δ̃(θ)−1/(2n−2), K(τ + ρθ)

}
.

The latter equality suggests the choice of ρ according to

ρn(n−1) = δ.

To avoid complicated exponents in expressions, we keep using ρ, but from now it is a function of δ. Thus, after
transformations, we obtain

fn,0(δ) =
4

(n+ 1)!
ρ(n−1)(n+2)/2

1∫

−1

J̃(ρ, τ) dτ, (4.4)

where

J̃(ρ, τ) :=

∫

Rn−1

√
Δ̃(θ) Ψ̃(ρ; τ,θ)n+1 dθ1 · · · dθn−1 (4.5)

with

Ψ̃(ρ; τ,θ) := min
{
Δ̃(θ)−1/(2n−2), K(τ + ρθ)

}
.

Now the problem is to find out whether limρ→0 J̃(ρ, τ) exists, and if it does, then which value it has. As we
will see, this limit is a close relative to the function

G(χ) :=

∫

Rn−1

√
Δ̃(θ)min

{
Δ̃(θ)−1/(2n−2), χ

}n+1
dθ1 · · · dθn−1. (4.6)

Lemma 6. The integral G(χ) converges and equals

G(χ) =
2n(n+ 1)

(n+ 2)
χ2/n

∫

[−1,1]n−2

(
n−2∏

i=1

|ξi| (1 − ξi)
∏

1�i<j�n−2

|ξi − ξj|
)−2/n

dξ1 · · · dξn−2.

Proof. First, note that Δ̃(θ) is a symmetric function of θ1, . . . , θn−1 and that Δ̃(−θ) = Δ̃(θ). Hence we can
write

G(χ) = 2(n− 1)

∫

|θj |�θn−1

√
Δ̃(θ)min

{
χ, Δ̃(θ)−1/(2n−2)

}n+1
dθ1 · · · dθn−1.
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Next, we use the fact that Δ̃(θ) is a homogeneous polynomial of total degree deg Δ̃(θ) = n(n − 1). In the
latter integral, we change variables

θn−1 = r, θj = rξj, 1 � j � n− 2,

and obtain

G(χ)

2(n− 1)
=

∫

[−1,1]n−2

[ ∞∫

0

rn(n−1)/2+n−2
√

Δ̃(ξ, 1)min
{
χ, r−n/2Δ̃(ξ, 1)−1/(2n−2)

}n+1
dr

]
dξ, (4.7)

where ξ = (ξ1, . . . , ξn−2) ∈ R
n−2 and dξ = dξ1 · · · dξn−2.

We have

min
{
χ, r−n/2Δ̃(ξ, 1)−1/(2n−2)

}
=

{
χ, r � R,

r−n/2Δ̃(ξ, 1)−1/(2n−2), r > R,

where

R = R(χ, ξ) := χ−2/n Δ̃(ξ, 1)−1/(n(n−1)) .

Hence we split the inner integral (over the variable r) into two integrals:

G(χ)

2(n− 1)
=

∫

[−1,1]n−2

[ R∫

0

+

∞∫

R

]
dξ.

For the first inner integral, we get

R∫

0

=

√
Δ̃(ξ, 1)χn+1

R∫

0

r(n
2+n)/2−2 dr =

2

n2 + n− 2
R(n+2)(n−1)/2

√
Δ̃(ξ, 1)χn+1

=
2

n2 + n− 2
χ2/nΔ̃(ξ, 1)−1/n.

The second one amounts to

∞∫

R

= Δ̃(ξ, 1)1/2−(n+1)/(2(n−1))

∞∫

R

r−2 dr = Δ̃(ξ, 1)−1/(n−1)R−1 = χ2/nΔ̃(ξ, 1)−1/n.

Thus we obtain

G(χ) =
2n(n+ 1)

n+ 2
χ2/n

∫

[−1,1]n−2

Δ̃(ξ, 1)−1/n dξ. (4.8)

All we need now is to prove that the integral in (4.8) converges. In its expanded form, this integral (denote
it by G̃) can be written as

G̃ =

∫

[−1,1]n−2

n−2∏

i=1

|ξi|−2/n(1− ξi)
−2/n

∏

1�i<j�n−2

|ξi − ξj |−2/n dξ1 · · · dξn−2. (4.9)
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Here the Selberg integral [24] will help us. This special integral is defined as

Sm(α, β, γ) :=

1∫

0

· · ·
1∫

0

m∏

i=1

tα−1
i (1− ti)

β−1
∏

1�i<j�m

|ti − tj|2γ dt1 · · · dtm.

For any integerm � 1, the Selberg integral converges for

Re(α) > 0, Re(β) > 0, Re(γ) > −min

{
1

m
,
Re(α)

m− 1
,
Re(β)

m− 1

}
. (4.10)

Taking a look at the integral (4.9), we see that

G̃ � 2n−2Sn−2

(
n− 2

n
,
n− 2

n
, − 1

n

)
.

Obviously, the convergence conditions (4.10) are satisfied:

− 1

n
> −min

{
1

n− 2
,

n− 2

n(n− 3)

}
.

Hence Sn−2((n − 2)/n, (n− 2)/n, −1/n) converges, and so does G̃. Thus G(χ) converges too. 
�

Recall that K(α) is the reciprocal of the height of the monic polynomial pα (cf. (4.2)). Thus, for any ρ, τ
and θ, we haveK(τ + ρθ) � χ0, where χ0 := supα∈Rn K(α) is finite (see Lemma 3). Hence the integrand
in J̃(ρ, τ) (see (4.5)) does not exceed the integrand in G(χ0) (cf. (4.6)), and we can apply the Weierstrass
M-test (for the uniform convergence of improper integrals), which tells us that, for all τ ∈ [−1, 1], the follow-
ing convergence is uniform:

lim
ρ→0

J̃(ρ, τ) = J̃(0, τ) = G
(
K̃(τ)

)
,

where K̃(τ) := K(τ ). Therefore from (4.4) we get

λn,0 = lim
δ→0

(
δ−(n+2)(2n)fn,0(δ)

)
=

4

(n + 1)!

1∫

−1

G
(
K̃(τ)

)
dτ

=
8n(n+ 1)

(n+ 2)!

1∫

−1

K̃(τ)2/n dτ

∫

[−1,1]n−2

Δ̃(ξ1, . . . , ξn−2, 1)
−1/n dξ1 · · · dξn−2.

Theorem 2 is proved.
Note that the dependence of λn,0 on the height function h is absorbed solely in the factor

∫ 1
−1 K̃(τ)2/n dτ .
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11. J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, New Math. Monogr.,
Vol. 32, Cambridge Univ. Press, Cambridge, 2017, available from: https://doi.org/10.1017/
CBO9781316160763.

12. F. Götze, D. Kaliada, and M. Korolev, On the number of integral quadratic polynomials with bounded heights and
discriminants, preprint, 2013 (in Russian), arXiv:1308.2091.

13. F. Götze and D. Zaporozhets, Discriminant and root separation of integral polynomials, Zap. Nauchn. Sem. POMI,
441:144–153, 2015, available from: http://mi.mathnet.ru/znsl6230.
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