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Abstract. In this paper, we study the existence of subharmonic solutions for ordinary p-Laplacian systems under a new
growth condition. An existence theorem is obtained by using the generalized mountain pass theorem, which generalizes
and improves some recent results in the literature.
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1 Introduction and main results

We consider the existence of subharmonic solutions for the following ordinary p-Laplacian system:

(∣∣u′(t)
∣
∣p−2

u′(t)
)′
+∇F

(
t, u(t)

)
= 0 (1.1)

for a.e. t ∈ R, where p > 1, T > 0, and F : [0, T ] × R
N → R is T -periodic in t for all x ∈ R

N and satisfies
the following assumption:

(A) F (t, x) is measurable in t for each x ∈ R
N and continuously differentiable in x for a.e. t ∈ [0, T ], and

there exist a ∈ C(R+,R+) and b ∈ L1(0, T ;R+) such that

∣
∣F (t, x)

∣
∣ � a

(|x|)b(t), ∣
∣∇F (t, x)

∣
∣ � a

(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ], where∇F (t, x) denotes the gradient of F (t, x) in x.
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In 1978, Rabinowitz [22] published his pioneer paper on the existence of periodic solutions for the follow-
ing second-order Hamiltonian system:

{
u′′(t) +∇F

(
t, u(t)

)
= 0,

u(0) − u(T ) = u′(0) − u′(T ) = 0
(1.2)

under the Ambrosetti–Rabinowitz superquadratic condition: there exist μ > 2 and L∗ > 0 such that, for all
|x| � L∗,

0 < μF (t, x) �
(∇F (t, x), x

)
(1.3)

for a.e. t ∈ [0, T ]. From then on, various conditions have been applied to study the existence and multiplicity
of periodic solutions for Hamiltonian systems by using the critical point theory; see [2, 5, 6, 7, 8, 9, 10, 14, 16,
20, 21, 23, 24, 25, 26, 27] and references therein.

Over the last few decades, many researchers try to replace the Ambrosetti–Rabinowitz superquadratic con-
dition (1.3) by other superquadratic conditions. Some new superquadratic conditions are discovered. Espe-
cially, Fei [6] studied the existence of periodic solutions for problem (1.2) under a kind of new superquadratic
condition. Afterward, under the more general superquadratic condition that there is μ1 > 0 such that

lim inf
|x|→∞

(∇F (t, x), x) − 2F (t, x)

|x|μ1
> 0

uniformly for a.e. t ∈ [0, T ], Tao and Tang [27] investigated the existence of periodic and subharmonic solu-
tions of problem (1.2). They generalized the corresponding results of [6].

Recently, the existence and multiplicity of solutions for p-Laplacian systems (1.1) have been studied by
many authors; see [4, 11, 12, 13, 15, 17, 18, 19, 28, 29, 30] and references therein. Mawhin [19] generalized
the Hartman–Knobloch results to perturbations of a vector p-Laplacian ordinary operator. Using the saddle
point theorem, Xu and Tang [29] obtained some existence theorems for periodic solutions of problem (1.1).
Zhang and Ma [30] investigated the existence of periodic and subharmonic solutions for systems (1.1), which
extended the results of [10, 29]. With the perturbation technique and the dual least action principle, Lian et
al. [15] proved some existence results for periodic and subharmonic solutions for systems (1.1). Li et al. [11]
studied the existence of periodic solutions for systems (1.1) and proved the following result.

Theorem 1. (See [11, Thm. 1.4].) Suppose that F (t, x) satisfies the following conditions:

(H0) F (t, x) � 0 for all (t, x) ∈ [0, T ] × R
N ;

(H1) lim|x|→0 F (t, x)/|x|p = 0 uniformly for a.e. t ∈ [0, T ];
(H2) There exist constants μ2 > p and L0 > 0 and a function W ∈ L1(0, T ;R) such that, for all x ∈ R

N

with |x| � L0,

μ2F (t, x) − (∇F (t, x), x
)
� W (t)|x|p for a.e. t ∈ [0, T ]

and

lim sup
|x|→∞

μ2F (t, x) − (∇F (t, x), x)

|x|p � 0 uniformly for a.e. t ∈ [0, T ];

(H3) There exists Ω ⊂ [0, T ] with measΩ > 0 such that

lim inf
|x|→∞

F (t, x)

|x|p > 0 uniformly for a.e. t ∈ Ω.

Then system (1.1) possesses a nonconstant T -periodic solution.
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By using the generalized mountain pass theorem, Ma and Zhang [17] extended the results of [27] to sys-
tems (1.1) and obtained the following theorem.
Theorem 2. (See [17, Thm. 1].) Assume that F satisfies (A), (H0), (H1), and the following conditions:

(H4) lim inf |x|→∞F (t, x)/|x|p > 0 uniformly for a.e. t ∈ [0, T ];
(H5) lim sup|x|→∞ F (t, x)/|x|r � M < +∞ uniformly for someM > 0 and a.e. t ∈ [0, T ];
(H6) lim inf |x|→∞((∇F (t, x), x) − pF (t, x))/|x|λ � � > 0 uniformly for some � > 0 and a.e. t ∈ [0, T ],

where r > p and λ > r − p. Then problem (1.1) has a sequence of distinct periodic solutions with period kiT
satisfying ki ∈ N and ki → ∞ as i → ∞.

In this paper, motivated by the works [17, 26, 27], we consider the existence of subharmonic solutions for
problem (1.1) under a new growth condition. The main result is the following theorem.
Theorem 3. Suppose that F (t, x) satisfies (H0), (H1), and the following conditions:

(H7) F (t, x)/|x|p → +∞ as |x| → ∞ uniformly for a.e. t ∈ [0, T ];
(H8) There exist constants a0 and L > 0 such that

(∇F (t, x), x
)− pF (t, x) � a0

|x|pF (t, x)

for all x ∈ R
N with |x| � L and a.e. t ∈ [0, T ].

Then system (1.1) has a sequence of distinct periodic solutions with period kiT satisfying ki ∈ N and ki → ∞
as i → ∞.
Remark 1. For second-order Hamiltonian system, the corresponding condition (H8) belongs to Tang and Wu
[26]. Clearly, condition (H8) is weaker than (H6). There are functions F satisfying our assumptions of Theo-
rem 3 and not satisfying the conditions of Theorem 2. For example, set

F (t, x) = |x|p ln(1 + |x|p)+ sin |x|p − ln
(
1 + |x|p)

for all x ∈ R
N and a.e. t ∈ [0, T ]. Then we have

lim inf
|x|→∞

(∇F (t, x), x) − pF (t, x)

|x|λ = 0

for any λ > 0. Hence, F does not satisfy the conditions of Theorem 2 but satisfies Theorem 3 with a0 = 1.
Remark 2. Set F as in Remark 1; it does not satisfy the conditions of Theorem 1. Especially, F does not satisfy
condition (H2). So, Theorem 3 is a new result on the existence of periodic solutions for system (1.1).

IfΩ = [0, T ] in (H3), then the conditions of Theorem 3 are much weaker than the conditions of Theorem 1,
and ifmeas([0, T ] \Ω) > 0, the conditions of Theorem 3 and the conditions of Theorem 1 cannot imply each
other. There are functions F satisfying the assumptions of Theorem 1 and not satisfying the conditions of
Theorem 3. For example, let

F (t, x) = ψ(t)|x|p+1

for all (t, x) ∈ [0, T ]× R
N , where

ψ(t) =

{
sin(2πt/T ), t ∈ [0, T/2],

0, t ∈ [T/2, T ].

Take Ω = [T/6, T/4] and μ2 = p + 1. A straightforward computation implies that F satisfies the conditions
of Theorem 1 but does not satisfy condition (H7).

Moreover, if meas([0, T ] \Ω) > 0, then we do not know whether system (1.1) has subharmonic solutions
under the conditions of Theorem 1.

Lith. Math. J., 58(2):157–166, 2018.



160 C. Li, R.P. Agarwal, and Z.-Q. Ou

2 Proof of the main results

Let us consider the functional ϕk onW 1,p
kT given by

ϕk(u) =
1

p

kT∫

0

|u′|p dt−
kT∫

0

F (t, u) dt (2.1)

for each u ∈ W 1,p
kT , where

W 1,p
kT =

{
u: [0, kT ] → R

N
∣
∣ u is absolutely continuous, u(0) = u(kT ), and u′ ∈ Lp

(
0, kT ;RN

)}

is a reflexive Banach space with the norm

‖u‖ =

( kT∫

0

∣∣u(t)
∣∣p dt+

kT∫

0

∣∣u′(t)
∣∣p dt

)1/p

for u ∈ W 1,p
kT .

For u ∈ W 1,p
kT , let

u =
1

kT

kT∫

0

u(t) dt, ũ = u(t)− u,

and

W̃ 1,p
kT =

{
u ∈ W 1,p

kT

∣
∣ u = 0

}
.

Then we have

W 1,p
kT = W̃ 1,p

kT ⊕ R
N

and

‖u‖Lp � Ck‖u′‖Lp (Wirtinger’s inequality),

‖u‖∞ � Ck‖u′‖Lp (Sobolev inequality)

for all u ∈ W̃ 1,p
kT , where Ck is a positive constant.

It follows from assumption (A) that the functional ϕk is continuously differentiable on W 1,p
kT . Moreover,

we have

〈
ϕ′
k(u), v

〉
=

kT∫

0

|u′|p−2(u′, v′) dt−
kT∫

0

(∇F (t, u), v
)
dt

for all u, v ∈ W 1,p
kT . It is well known that the problem of finding kT -periodic solutions of problem (1.1) is

equal to that of seeking the critical points of ϕk .
As shown in [1], a deformation lemma can be proved with the weaker condition (C) of Cerami [3] replacing

the usual Palais–Smale condition, and it turns out that the generalized mountain pass theorem [24, Thm. 5.3]
holds under condition (C).

Theorem 4. (See [24,Generalized Mountain Pass Theorem].) LetE be a real Banach space with E = X⊕V ,
where V is finite dimensional. Suppose that I ∈ C1(E,R) satisfies condition (C) and

(i) there are constants ρ, α > 0 such that I|∂Bρ∩X � α, and
(ii) there are e ∈ ∂B1 ∩X and r > ρ such that if Q = (B̄r ∩ V )⊕ {se | 0 < s < r}, then I|∂Q � 0.
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Then I possesses a critical value c � α, which can be characterized as

c = inf
h∈Γ

max
u∈Q

I
(
h(u)

)
,

where Γ = {h ∈ C(Q̄, E) | h = id on ∂Q}.
Now, we can prove our result.

Proof of Theorem 3. First of all, we will prove that ϕk satisfies condition (C), that is, for every sequence
{un} ⊂ W 1,p

kT , {un} has a convergent subsequence if {ϕk(un)} is bounded and (1 + ‖un‖)‖ϕ′
k(un)‖ → 0 as

n → ∞.
Then there exists a positive constantM0 such that

∣
∣ϕk(un)

∣
∣ � M0,

(
1 + ‖un‖

)∥∥ϕ′
k(un)

∥
∥ � M0 (2.2)

for all n ∈ N. By a standard argument we only need to prove that {un} is a bounded sequence in W 1,p
kT .

Otherwise, we can assume that ‖un‖ → +∞ as n → ∞. Let vn = un/‖un‖, and then ‖vn‖ = 1. Taking if
necessary a subsequence, we can suppose that, as n → ∞,

vn ⇀ v weakly in W 1,p
kT ,

vn → v strongly in C
(
0, kT ;RN

)
. (2.3)

From (2.1), (2.2), and (2.3) we obtain

∣
∣
∣∣
∣

kT∫

0

F (t, un)

‖un‖p dt− 1

p

∣
∣
∣∣
∣
� |ϕk(un)|

‖un‖p +
1

p

kT∫

0

|vn|p dt � M0

‖un‖p +
kT

p
‖vn‖p∞. (2.4)

If v �≡ 0, then letting Ωk
1 = {t ∈ [0, kT ]: |v(t)| > 0}, we have |Ωk

1 | > 0. Since ‖un‖ → +∞, we get
|un| → +∞ as n → ∞ for a.e. t ∈ Ωk

1 . By (H7) we have

lim
n→+∞

F (t, un)

|un|p = +∞

a.e. on Ωk
1 . Then we deduce from the Fatou lemma that

lim inf
n→∞

kT∫

0

F (t, un)

‖un‖p dt � lim inf
n→∞

∫

Ωk
1

F (t, un)

|un|p |vn|p dt = +∞,

which contradicts to (2.4). So, ‖un‖ is bounded.
If v ≡ 0, then by (2.4) we have

lim
n→∞

kT∫

0

F (t, un)

‖un‖p dt =
1

p
. (2.5)

Assumption (A) yields
∣
∣F (t, x)

∣
∣ � a1b(t),

∣
∣∇F (t, x)

∣
∣ � a1b(t) (2.6)

for all x ∈ R
N with |x| � L and a.e. t ∈ [0, T ], where a1 = max0�s�L a(s).

Lith. Math. J., 58(2):157–166, 2018.
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By (H1) there exists a constant L1 < L such that
∣
∣F (t, x)

∣
∣ � |x|p (2.7)

for all x ∈ R
N with |x| � L1 and a.e. t ∈ [0, T ]. It follows from (H8), (2.6), and (2.7) that

a0
|x|pF (t, x) �

(∇F (t, x), x
)− pF (t, x) + a0 + L2a1b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ], where L2 = a0L

−p
1 + L+ p. So, we get

kT∫

0

|F (t, un)|
|un|p dt � a−1

0

kT∫

0

((∇F (t, un), un
)− pF (t, un)

)
dt+ kT + a−1

0 L2a1‖b‖L1
kT

= a−1
0

(
pϕk(un)−

〈
ϕ′
k(un), un

〉)
+ kT + a−1

0 L2a1‖b‖L1
kT

� (p+ 1)a−1
0 M0 + kT + a−1

0 L2a1‖b‖L1
kT
.

Then we obtain
∣
∣
∣
∣∣

kT∫

0

F (t, un)

‖un‖p dt

∣
∣
∣
∣∣
=

∣
∣
∣
∣∣

kT∫

0

F (t, un)

|un|p |vn|p dt
∣
∣
∣
∣∣
� ‖vn‖p∞

kT∫

0

|F (t, un)|
|un|p dt

� ‖vn‖p∞
(
(p+ 1)a−1

0 M0 + kT + a−1
0 L2a1‖b‖L1

kT

) → 0

as n → ∞, which is a contradiction to (2.5). So, ‖un‖ is bounded.
Now, by the generalized mountain pass theorem with condition (C) we only need to show that

(G1) infu∈Sk
ϕk(u) > 0;

(G2) supu∈Qk
ϕk(u) < +∞, supu∈∂Qk

ϕk(u) � 0,

where Sk = W̃ 1,p
kT ∩ ∂Bρ, Qk = {x + se | x ∈ R

N ∩ Br2 , s ∈ [0, r1]}, r2 > 0, ρ < r1, e ∈ W̃ 1,p
kT , and

Br = {u ∈ W 1,p
kT : ‖u‖ � r}.

It follows from (H1) that there exist two positive constants ε and δ with ε < 1/(pCk) and δ < Ck such that

F (t, x) � ε|x|p (2.8)

for all |x| � δ and a.e. t ∈ [0, kT ].
For u ∈ W̃ 1,p

kT with ‖u‖ � δ/Ck , we have ‖u‖∞ � δ. We obtain from (2.8) and Wirtinger’s inequality that

ϕk(u) =
1

p

kT∫

0

|u′|p dt−
kT∫

0

F (t, u) dt � 1

p

kT∫

0

|u′|p dt− ε

kT∫

0

|u|p dt

�
(
1

p
− εCk

)
‖u′‖pLp �

(
1

p
− εCk

)
(1 + Ck)

−1‖u‖p.

Choose ρk ∈ (0, δ/Ck) to obtain

inf
u∈Sk

ϕk(u) > 0,

where Sk = W̃ 1,p
kT ∩ ∂Bρk

. So, condition (G1) holds.
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Let

W
1,p
kT = R

N ⊕ span{ek},

where ek = (sin(k−1ωt), 0, . . . , 0) ∈ W̃ 1,p
kT and ω = 2π/T . Since dim(W

1,p
T ) < ∞, all the norms are

equivalent. For any u ∈ W
1,p
T , there exists a positive constantM1 such that

‖u‖Lp
T
� M1‖u‖L2

T
. (2.9)

By (H7), for M2 = (2ωpT/(pMp
1 ))(2/T )

p/2, there exists a positive constant M3 > M1(T/2)
1/2T−1/p such

that

F (t, x) � M2|x|p

for all |x| � M3 and a.e. t ∈ [0, T ]. So, we have

F (t, x) � M2|x|p −M2M
p
3 (2.10)

for all x ∈ R
N and a.e. t ∈ [0, T ]. Now, we get from (2.9) and (2.10) that

ϕk(x+ sek) =
1

p

kT∫

0

|se′k|p dt−
kT∫

0

F (t, x+ sek) dt

� 1

p

(
ω

k

)p

|s|p
kT∫

0

∣
∣ cos

(
k−1ωt

)∣∣p dt−M2

kT∫

0

|x+ sek|p dt+M2M
p
3 kT

� 1

p

(
ω

k

)p

|s|pkT − kM2

T∫

0

|x+ se1|p dt+M2M
p
3 kT

� 1

p

(
ω

k

)p

|s|pkT − kM2M
p
1

( T∫

0

|x+ se1|2 dt
)p/2

+M2M
p
3 kT

=
1

p

(
ω

k

)p

|s|pkT − kM2M
p
1

( T∫

0

(|x|2 + |se1|2
)
dt

)p/2

+M2M
p
3 kT

=
1

p

(
ω

k

)p

|s|pkT − kM2M
p
1

(
T |x|2 + 1

2
Ts2

)p/2

+M2M
p
3 kT.

SinceM2 = (2ωpT/(pMp
1 ))(2/T )

p/2, we have

ϕk(x+ sek) �
1

p

(
ω

k

)p

|s|pkT − kM2M
p
1

(
1

2
Ts2

)p/2

+M2M
p
3 kT

� −1

p
ωp|s|pkT +M2M

p
3kT (2.11)

Lith. Math. J., 58(2):157–166, 2018.
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and

ϕk(x+ sek) �
1

p

(
ω

k

)p

|s|pkT − kM2M
p
1

(
T |x|2)p/2 +M2M

p
3 kT

� kTωp

p

(|s|p − 21+p/2|x|p)+M2M
p
3 kT

� kTωp

p

(|s|p − 2|x|p)+M2M
p
3 kT. (2.12)

Let

r1 = r2 = r = 21/p
M3

ω
(pM2)

1/p,

so that r � 1. For x+ rek ∈ ∂Qk, we get from (2.11) that

ϕk(x+ rek) � −1

p
ωprpkT +M2M

p
3 kT < 0, (2.13)

and, for x+ sek ∈ ∂Qk with |x| = r, we obtain from (2.12) that

ϕk(x+ sek) �
kTωp

p

(|s|p − 2|x|p)+M2M
p
3 kT < 0. (2.14)

If s = 0, by (H0) we get

ϕk(x) = −
kT∫

0

F (t, x) dt � 0 (2.15)

for all x ∈ R
N . By (2.13), (2.14), and (2.15) condition (G2) holds.

Moreover, we have

ϕk(x+ sek) =
1

p

kT∫

0

|se′k|p dt−
kT∫

0

F (t, x+ sek) dt

� 1

p

(
ω

k

)p

|s|p
kT∫

0

∣
∣ cos

(
k−1ωt

)∣∣p dt

� 1

p

(
ω

k

)p

|s|pkT � 2Mp
3M2T

for all x+ sek ∈ Qk. Hence, ϕk has a critical point uk for every k ∈ N, and

ϕk(uk) � 2Mp
3M2T.

Here it is easy to see that there is k1 ∈ N such that uk �= u1 for all k � k1. Otherwise, we see that

ϕk(uk) = kϕ(u1) → ∞

as k → ∞, which contradicts to the boundedness of ϕk(uk).
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Reapplying what we have just shown, there is k2 > k1 such that uk1k �= uk1
for all k1k � k2. Otherwise,

we obtain

ϕk1k(uk1k) = kϕk1
(uk1

) → ∞
as k → ∞, which contradicts to the boundedness of ϕk1k(uk1k).

Now, it follows by the preceding that we have a sequence {ukj
} of distinct nonzero solutions of sys-

tem (1.1), and the proof is complete. �
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