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Abstract. In this paper, we study the existence of subharmonic solutions for ordinary p-Laplacian systems under a new
growth condition. An existence theorem is obtained by using the generalized mountain pass theorem, which generalizes
and improves some recent results in the literature.
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1 Introduction and main results

We consider the existence of subharmonic solutions for the following ordinary p-Laplacian system:
(| &) [P () + VF(t,u(t) =0 (1.1)

fora.e. t € R, where p > 1,7 > 0,and F : [0,T] x RN — R is T-periodic in ¢ for all z € R" and satisfies
the following assumption:

(A) F(t,x) is measurable in ¢ for each # € R and continuously differentiable in z for a.e. t € [0, T, and
there exista € C(RT,R*) and b € L'(0,T;R") such that

|F(t, )| < a(lz])b(t), |VF(t,z)| <a(|z])b(t)

for all z € RY and a.e. t € [0, 7], where VF (¢, z) denotes the gradient of F(¢, ) in x.
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In 1978, Rabinowitz [22] published his pioneer paper on the existence of periodic solutions for the follow-
ing second-order Hamiltonian system:

{u”(t) + VE(t,u(t))
u(0) —u(T) = u/(0) —

0,
/ (1.2)
u

(T) =0

under the Ambrosetti-Rabinowitz superquadratic condition: there exist 4 > 2 and L* > 0 such that, for all
|x| > L*,

0 < pF(t,z) < (VF(t,z), ) (1.3)

for a.e. t € [0, T]. From then on, various conditions have been applied to study the existence and multiplicity
of periodic solutions for Hamiltonian systems by using the critical point theory; see [2,5,6,7,8,9, 10, 14, 16,
20,21,23,24,25,26,27] and references therein.

Over the last few decades, many researchers try to replace the Ambrosetti—-Rabinowitz superquadratic con-
dition (1.3) by other superquadratic conditions. Some new superquadratic conditions are discovered. Espe-
cially, Fei [6] studied the existence of periodic solutions for problem (1.2) under a kind of new superquadratic
condition. Afterward, under the more general superquadratic condition that there is 1; > 0 such that

|x|—00 |x\“1
uniformly for a.e. ¢ € [0, 7], Tao and Tang [27] investigated the existence of periodic and subharmonic solu-
tions of problem (1.2). They generalized the corresponding results of [6].

Recently, the existence and multiplicity of solutions for p-Laplacian systems (1.1) have been studied by
many authors; see [4,11,12,13,15,17,18, 19, 28, 29, 30] and references therein. Mawhin [19] generalized
the Hartman—Knobloch results to perturbations of a vector p-Laplacian ordinary operator. Using the saddle
point theorem, Xu and Tang [29] obtained some existence theorems for periodic solutions of problem (1.1).
Zhang and Ma [30] investigated the existence of periodic and subharmonic solutions for systems (1.1), which
extended the results of [10,29]. With the perturbation technique and the dual least action principle, Lian et
al. [15] proved some existence results for periodic and subharmonic solutions for systems (1.1). Li et al. [11]
studied the existence of periodic solutions for systems (1.1) and proved the following result.

Theorem 1. (See [11, Thm. 1.4].) Suppose that F(t,x) satisfies the following conditions:
(HO) F(t,z) > 0 forall (t,x) € [0,T] x RY;
(H1) lim 0 F'(t, ) /|z|P = O uniformly for a.e. t € [0,T7;
(H2) There exist constants i > p and Lo > 0 and a function W € L*(0, T;R) such that, for all z € RN

with |z| > Ly,
poF (t,z) — (VF(t,z),z) < W(t)|z[P forae. te[0,T]
and
F(t —(VF(t
lim sup neF(t, ) |a;(\z (t,2),) < 0 uniformly for a.e. t € [0,T];
|z|—o0

(H3) There exists £2 C [0, T] with meas 2 > 0 such that

lim inf F(t, )

in P > 0 uniformly for a.e. t € (2.
T|—00

Then system (1.1) possesses a nonconstant T-periodic solution.
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By using the generalized mountain pass theorem, Ma and Zhang [17] extended the results of [27] to sys-
tems (1.1) and obtained the following theorem.

Theorem 2. (See [17, Thm. 1].) Assume that F' satisfies (A), (HO), (H1), and the following conditions:

(H4) lim inf ;o F'(t,2)/]x[P > 0 uniformly for a.e. t € [0,T];

(HS) lim sup|) o0 F'(t, ) /[2|" < M < +00 uniformly for some M > 0 and a.e. t € [0,T];

(H6) lim inf ;o (VF(t,2),2) — pF(t,2))/|z|* = 0 > 0 uniformly for some ¢ > 0 and a.e. t € [0,T),
where r > p and \ > r — p. Then problem (1.1) has a sequence of distinct periodic solutions with period k; T
satisfying k; € N and k; — oo as i — oo.

In this paper, motivated by the works [17,26,27], we consider the existence of subharmonic solutions for
problem (1.1) under a new growth condition. The main result is the following theorem.

Theorem 3. Suppose that F(t, x) satisfies (HO), (H1), and the following conditions:

(H7) F(t,z)/|x|P — +o0 as |x| — oo uniformly for a.e. t € [0,T];
(H8) There exist constants ag and L > 0 such that

ao
(VF(t,z),z) — pF(t,z) > F(t,x)

" falp

forall x € RN with |x| > L and a.e. t € [0,T)].

Then system (1.1) has a sequence of distinct periodic solutions with period k;'T' satisfying k; € N and k; — oo
as it — oo.

Remark 1. For second-order Hamiltonian system, the corresponding condition (H8) belongs to Tang and Wu
[26]. Clearly, condition (H8) is weaker than (H6). There are functions F’ satisfying our assumptions of Theo-
rem 3 and not satisfying the conditions of Theorem 2. For example, set

F(t,z) = |[z[PIn(1 + [z|’) + sin|z[’ — In(1 + |z[P)
forall z € R and a.e. t € [0, T]. Then we have

liminf (VF(t,l‘),i‘) _pF(tv"L‘)

| 00 |z

=0

for any A\ > 0. Hence, F' does not satisfy the conditions of Theorem 2 but satisfies Theorem 3 with ag = 1.

Remark 2. Set F' as in Remark 1; it does not satisfy the conditions of Theorem 1. Especially, F' does not satisfy
condition (H2). So, Theorem 3 is a new result on the existence of periodic solutions for system (1.1).

If £2 = [0, T in (H3), then the conditions of Theorem 3 are much weaker than the conditions of Theorem 1,
and if meas([0, 7] \ £2) > 0, the conditions of Theorem 3 and the conditions of Theorem 1 cannot imply each
other. There are functions F' satisfying the assumptions of Theorem 1 and not satisfying the conditions of
Theorem 3. For example, let

F(t,x) = ()|
for all (¢,z) € [0,T] x RY, where

Y=, te[T/2,T).

{sin(Zwt/T), te[0,7/2],
Take {2 = [T'/6,T/4] and ua = p + 1. A straightforward computation implies that F’ satisfies the conditions
of Theorem 1 but does not satisfy condition (H7).

Moreover, if meas([0,77] \ 2) > 0, then we do not know whether system (1.1) has subharmonic solutions
under the conditions of Theorem 1.

Lith. Math. J., 58(2):157-166, 2018.
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2 Proof of the main results

Let us consider the functional ¢, on W,iff’ given by
kT kT
1
- /|u’|pdt—/F(t,u) i @1
p
0 0

W = {u: [0,kT] — RY | uis absolutely continuous, u(0) = u(kT),and u' € LP(0,kT;R")}

1
for each u € W, ¥, where

is a reflexive Banach space with the norm

kT kT 1/p
llul| = (/ ‘u(t)!pdt—i—/‘u/(t)!pdt) foru € W
0 0

1p
Foru € W, let

and
ki?:{uEWk | u=0}.

Then we have
Wit =Wk oRY

and

llullLr < Clle/||L»  (Wirtinger’s inequality),

<
[ufloo <

Ci|lv/||»  (Sobolev inequality)
for all u € Wkl:,‘? , where (7, is a positive constant.

It follows from assumption (A) that the functional ¢}, is continuously differentiable on Wlep . Moreover,
we have

kT kT
(¢ (u),v) :/|u'\p_2(u',v’)dt—/(VF(t,u),v) dt
0 0

for all u,v € Wkljf’ . It is well known that the problem of finding k7T -periodic solutions of problem (1.1) is
equal to that of seeking the critical points of .

As shown in [1], a deformation lemma can be proved with the weaker condition (C) of Cerami [3] replacing
the usual Palais—Smale condition, and it turns out that the generalized mountain pass theorem [24, Thm. 5.3]
holds under condition (C).

Theorem 4. (See [24, Generalized Mountain Pass Theorem].) Let E be a real Banach space with E = X @V,
where V is finite dimensional. Suppose that I € C'(E,R) satisfies condition (C) and

(i) there are constants p,c > 0 such that 1| B,NX = &, and
(ii) there are e € 0By N X andr > p such that if Q = (B, NV) @ {se | 0 < s < r}, then I|pq < 0.
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Then I possesses a critical value ¢ > o, which can be characterized as

Now, we can prove our result.

Proof of Theorem 3. First of all, we will prove that ¢, satisfies condition (C), that is, for every sequence

{u,} C W,ii‘?, {un} has a convergent subsequence if {¢(uy,)} is bounded and (1 + [Juy, ||)[|¢}, (wn)|| — O as
n — 0.
Then there exists a positive constant M such that

|or(un)| < Mo, (1 [funll) [0k (un)|| < Mo 2.2)

for all n € N. By a standard argument we only need to prove that {u, } is a bounded sequence in W,ij‘?
Otherwise, we can assume that ||u,,| — 400 as n — oco. Let v, = uy,/||uy||, and then ||v, || = 1. Taking if
necessary a subsequence, we can suppose that, as n — oo,

v, = v weakly in Wkl:,?
vy — v strongly in C(O, KT, RN). 2.3)

From (2.1), (2.2), and (2.3) we obtain

kT

F(t,un) .
O/ at

|90k un / 0 kT
< vp [P dt < + U |Zs - 24
funl ol p lonli

[[un [P up P

If v # 0, then letting 2F = {t € [0,kT]: |v(t)| > 0}, we have [22F| > 0. Since ||u,| — +oo, we get
|ty — 400 asn — oo for a.e. t € 2F. By (H7) we have

F(t
lim (¢, un) = 400
n——4o0o ‘un‘p

a.e. on 2F. Then we deduce from the Fatou lemma that

kT

Pt Pt
1iminf/ (hun) g > liminf/ (bun)y 0 at = oo
n—00 ||unHP n—00 |un|l’
k
which contradicts to (2.4). So, ||uy || is bounded.
If v = 0, then by (2.4) we have
kT
F(t 1
i [Flun) g 1 2.5)
n—oo /  lup|[P p
0
Assumption (A) yields
‘F(tvl‘)‘ < alb(t)> ‘VF(tv"L‘)‘ < alb(t) (2.6)

for all z € RN with |x| < L and a.e. t € [0, T], where a; = maxo<s<r, a(s).

Lith. Math. J., 58(2):157-166, 2018.
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By (H1) there exists a constant L; < L such that
|F(t,2)| < |z’ 2.7
for all z € RY with |z| < Ly and a.e. t € [0, 7). It follows from (HS), (2.6), and (2.7) that

‘ZTpF(t, ) < (VF(t,z),7) — pF(t, ) + ag + Lyayb(t)
forall z € RY and ae. t € [0, 7], where Ly = agL;” + L + p. So, we get

kT

F(t,uy) _
‘ Y <ay /((VF(t,un),un) —pF(t,un)) dt + kT + a, 1L2‘11”b”L}cT

‘un‘p
= aEl (pSOk(un) - <(,0;€(un), un>) + kT + aalL2a1”b”L}€T
< (p + 1)&61MO + kT + ‘IEILWIHZ’HLiT-

Then we obtain

F t,up)
Huan

|Ftun

|t |P

/Ftu" ol dt| <

< anll&((p +1)ag ' Mo + kT + a61L2a1|!b|!L1 ) =0

[[onlE

as n — oo, which is a contradiction to (2.5). So, ||u,|| is bounded.
Now, by the generalized mountain pass theorem with condition (C) we only need to show that

(G1) infyes, ¢r(u) > 0;
(G2) sup,eq, ¢r(u) < +00, sup,eag, wr(u) <0,
where S), = ’M\}klj’?ﬂaBp, Qr ={z+se|zcRYNB,,sc0,r]lrm>0p<r,ec W,iﬁ?, and
By ={uec Wt |lu| <r}.
It follows from (H1) that there exist two positive constants ¢ and § with e < 1/(pC%) and § < C}, such that
F(t,z) < elzfP (2.8)

forall |z| < 0 and a.e. t € [0, kT.
For u € WM’? with ||u|| < 0/Cf, we have ||u||lo < 6. We obtain from (2.8) and Wirtinger’s inequality that

kT kT kT kT
1 1
o (1) = /|u'|pdt—/F(t,u) dt > p/|u’|pdt—s/|u|pdt
p
0 0 0 0

1 1
> <p - ka> /|5, > <p - ka>(1 + Cr) P

Choose pi, € (0,9/C},) to obtain

f >0
ulenSk SOk( ) ’

where S, = W,iz‘? N dB,,. So, condition (G1) holds.
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Let
17
Wir = RY @ span{e;},

. —~ . . 1,
where ¢, = (sin(k~lwt),0,...,0) € Wquf’ and w = 2r/T. Since dim(W ;") < oo, all the norms are
equivalent. For any u € WT’p , there exists a positive constant M; such that

lullLe = My||ull gz - (2.9)

By (H7), for My = (2wPT/(pM?))(2/T)P/?, there exists a positive constant Mz > M; (T /2)'/>T~1/? such
that

F(t,z) = My|al?

for all |z| > M3 and a.e. t € [0,T]. So, we have
F(t,x) > My|aP — MyM? (2.10)

for all z € RY and a.e. t € [0, T]. Now, we get from (2.9) and (2.10) that

or(z + sey) /|sek\pdt—/ F(t,z + sey)dt

1 p
< <:> \s\p/ | cos(k‘lwt)|p dt — M, / |z + seg|P dt + Mo MYKET
p ; /
1/w)\? ’
< <k:> |8|pk:T—/-cM2/|x—|—sel|pdt+M2M§kT
P 0
1/w)\? p/2
< » <k:> |s|PET — /-cM2Mf</ |z + seq|? dt) + My MEKT
1/w\P z p/2
= <k> |s|PkT — /-cM2M{’</ (lzf* + [se1]?) dt) + My MYET
P 0
w\? 1 /2
= <k> |s|PET — k:]%g]%{7 <T\m|2 + 5 T82> + MQM?{’kT,

Since My = (2wPT/(pM?))(2/T)P/?, we have

1/w p 1 p/2
(T + sex) < <k> |s|PET — k:Mng<2 Ts2> + My MEYET
p

1
< — WP|s]PRT + MyMEPRT (2.11)
p

Lith. Math. J., 58(2):157-166, 2018.



164 C. Li, R.P. Agarwal, and Z.-Q. Ou

and
op(x + sey) < ]1) <L]:>p|s|pk:T - kMng(T\mP)p/z + Moy MEKT
< FT (o — 1492 + appager
< kz;“p(\s\p 20al?) + MyMIRT, 2.12)
Let

M5
rE="Tro=71= 21/p (pMQ)l/p

so that r > 1. For z + rej, € 0Qy, we get from (2.11) that
1
op(z +reg) < — WPrPET + MoMUET < 0, (2.13)
p

and, for = + sep € 0Qy with |z| = r, we obtain from (2.12) that

kT wP »
oz + sep) < ) (|s]P = 2|z[P) + Mo MEET < 0. (2.14)
If s = 0, by (HO) we get
kT
on(z) = — / Pt 2)dt <0 2.15)

for all z € RV, By (2.13), (2.14), and (2.15) condition (G2) holds.
Moreover, we have

ok (z + sex) /|sek|pdt—/ (t,z + sep)dt

1 p
< <w> |3|p/‘cos(k_1wt)‘pdt
p\ k
0
1/ w\? »
< |s|PET < 2M35 MoT
p\ k
for all = + sej € Q. Hence, oy, has a critical point uy, for every k € N, and
cpk(uk) < 2M§M2T.
Here it is easy to see that there is k1 € N such that ug # u; for all £ > k. Otherwise, we see that

or(ug) = kp(up) — o0

as k — oo, which contradicts to the boundedness of o (uy).
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Reapplying what we have just shown, there is ko > ki such that uy, , # uy, for all k1k > ka. Otherwise,

we obtain

as

Ork (U, k) = ke, (ug,) — 00

k — oo, which contradicts to the boundedness of ¢y, i (ug, k)-
Now, it follows by the preceding that we have a sequence {uy,} of distinct nonzero solutions of sys-

tem (1.1), and the proof is complete. O
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