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Abstract. We present upper bounds for supx∈R
|P{ZN < x} − Φ(x)|, where Φ(x) is the standard normal distribution

function, for random sums ZN = SN/
√
VSN with variances VSN > 0 (SN = X1 + · · · +XN ) of centered strongly

mixing or uniformly strongly mixing random variablesX1, X2, . . . . Here the number of summands N is a nonnegative
integer-valued random variable independent ofX1, X2, . . . .
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1 Introduction and main results

Let X1,X2, . . . be a sequence of real centered random variables (r.v.s). For a � b, we denote by Fb
a the

σ-algebra of events generated by r.v.s Xa,Xa+1, . . . ,Xb. As usual, R is the real line, N = {1, 2, . . . }, N0 =
{0, 1, 2, . . . }, and 1A is the indicator of an event A.

We consider weak dependence conditions defined between the “past” and “future” in terms of the strong
mixing coefficient α(τ) introduced by Rosenblatt (1956) and by the uniformly strong mixing coefficient ϕ(τ)
introduced by Ibragimov (1959). We say that a sequence of r.v.s X1,X2, . . . satisfies the strong mixing (s.m.)
condition (or X1,X2, . . . are strongly mixing) with the s.m. coefficient α(τ) if

α(τ) = sup
t∈N

sup
A∈Ft

1 , B∈F∞
t+τ

∣
∣P(AB)−P(A)P(B)

∣
∣ −→
τ→∞ 0 (1.1)

(see [12]). We say that a sequence of r.v.s X1,X2, . . . satisfies the uniformly strong mixing (u.s.m.) condition
(or X1,X2, . . . are uniformly strongly mixing) with the u.s.m. coefficient ϕ(τ) if

ϕ(τ) = sup
t∈N

sup
A∈Ft

1,B∈F∞
t+τ

P(A)>0

|P(AB)−P(A)P(B)|
P(A)

−→
τ→∞ 0 (1.2)

(see [4]).
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In what follows, Φ(x) is the standard normal distribution function. By C(·) with an index or without it we
denote a positive finite factor depending only on the quantities indicated in the parentheses (not necessarily the
same at different occurrences).

Recall the two following results for sums with a fixed number n of summands of s.m. and u.s.m. r.v.s.

Theorem A. (See [15, Thm. 10].) Let a sequence of real r.v.s X1,X2, . . . with EXi = 0 and E|Xi|s < ∞,
where 2 < s � 3, for all i = 1, . . . , n, satisfy the s.m. condition (1.1) with the s.m. coefficient α(τ) � Ke−μτ ,
where 0 < K < ∞ and μ > 0 are constants. Denote

Δn = sup
x∈R

∣
∣P{Zn < x} − Φ(x)

∣
∣, Zn =

1

Bn

n∑

i=1

Xi, B2
n = E

(
n∑

i=1

Xi

)2

,

where the varianceB2
n > 0. Then, for all n = 1, 2, . . . ,

Δn � C0(K,μ, s)
nmax1�i�nE|Xi|s

Bs
n

lns−1(1 + n). (1.3)

The following corollary immediately follows from Theorem A.

Corollary A. Let the conditions of Theorem A be satisfied. Suppose, in addition, that the variancesB2
n of the

sums Sn = X1 + · · ·+Xn satisfy the condition

B2
n � c0n, (1.4)

where 0 < c0 < ∞ is a constant. Then, for all n = 1, 2, . . . ,

Δn � C(K,μ, c0, s)
max1�i�nE|Xi|s

n(s−2)/2
lns−1(1 + n). (1.5)

Now, we present a particular result of Theorem 1 by Rio [11].

Theorem B. (See [11].) Let a strictly stationary sequence of real r.v.s X,X1,X2, . . . with EX = 0 and
|Xi| � M < ∞, i = 1, 2, . . . , satisfy the u.s.m. condition (1.2) with the u.s.m. coefficient ϕ(τ) such that

A =

∞∑

τ=1

τϕ(τ) < ∞. (1.6)

Suppose that the variancesB2
n = VSn of the sums Sn = X1 + · · ·+Xn satisfy the condition

lim
n→∞B2

n = ∞. (1.7)

Denote

Δn = sup
x∈R

∣
∣P{Zn < x} − Φ(x)

∣
∣, Zn =

Sn

Bn
, σ2 = lim

n→∞
B2

n

n
.

Then, for all n = 1, 2, . . . ,

Δn � C0(A,M, σ)
1√
n
. (1.8)
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In this paper, we are interested in estimates of the quantity

Δ = sup
x∈R

∣
∣P{ZN < x} − Φ(x)

∣
∣,

where

ZN =
SN√
VSN

, SN =

N∑

i=1

Xi, S0 = 0,

assuming that the variance VSN > 0, the number of summands N is a nonnegative integer-valued r.v. inde-
pendent ofX1,X2, . . . , and the centered summandsX1,X2, . . . are s.m. or u.s.m. r.v.s.

There are not many results on the rate of convergence in the central limit theorem for random sums with
weakly dependent summands. Strictly stationary and uniformly strongly mixing sequences, assuming that
the number of summands and summands are dependent, were considered in [9]. Similar results for strictly
stationary sequences of martingales have been obtained in [8]. A stationary sequence of m-dependent r.v.s,
assuming that the number of summands and summands are independent, was investigated in the recent paper
[10]. Without the rate of convergence, the asymptotic normality of random sums of stationary m-dependent
random variables was investigated in [14], in the recent paper [6], and that of martingales in [13].

However, the author has not found any published results on the upper bounds of the quantityΔ for random
sums with summands satisfying the s.m. condition.

To investigate the asymptotic normality and the rate of convergence for random sums of independent (and
dependent as well) summands, we use, as usual, the additional r.v.s

AN =

N∑

i=1

EXi, B2
N =

N∑

i=1

VXi, lr,N =

N∑

i=1

E|Xi|r.

Now, seemingly for the first time, we introduce the additional r.v.s

κ2N =

N∑

i=1

N∑

j=1

cov(Xi,Xj) = B2
N + 2

∑

1�i<j�N

cov(Xi,Xj),

which are very useful to investigate asymptotic the normality and the rate of convergence for random sums of
dependent (including weakly dependent) summands. Here cov(ξ, η) = Eξη −EξEη is the covariance of real
r.v.s ξ and η. Moreover, we assume that

∑0
i=1(·) = 0.

The main results of this paper are Theorems 1–4.
The following statement is valid in the case where the summands satisfy the s.m. condition.

Theorem 1. Let a sequence of real r.v.s X1,X2, . . . with EXi = 0 and E|Xi|s � ds < ∞, where 2 < s � 3,
i = 1, 2, . . . , satisfy the s.m. condition (1.1) with the s.m. coefficient α(τ) � Ke−μτ , where 0 < K < ∞
and μ > 0 are constants. LetN be a nonnegative integer-valued r.v. independent ofX1,X2, . . . . Then, for all
α ∈ (0, 1),

Δ � C0ds

αs/2

EN lns−1(1 +N)

(Eκ2N )s/2
+max

{
1√

2πeα(1 +
√
α)

,
1

1− α

}
E|κ2N −Eκ2N |

Eκ2N
, (1.9)

where the factor C0 = C0(K,μ, s) is taken from (1.3) of Theorem A.

Note that Theorem A follows from Theorem 1 in the particular case of the fixed number n (N = n) of
summands.

In particular, if the summands are identically distributed with zero mixed moments, then we have the
following result.
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Corollary 1. Let real identically distributed r.v.s X,X1,X2, . . . with EX = 0, 0 < σ2 = EX2, E|X|s �
ds < ∞, where 2 < s � 3, and EXiXj = 0, 1 � i �= j � ∞, satisfy the s.m. condition (1.1) with the
s.m. coefficient α(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants. Let N with 0 < EN < ∞
be a nonnegative integer-valued r.v. independent of X1,X2, . . . . Then ZN = SN/(σ

√
EN), and, for all

α ∈ (0, 1),

Δ � C0ds

αs/2σs

EN lns−1(1 +N)

(EN)s/2
+max

{
1√

2πeα(1 +
√
α)

,
1

1− α

}
E|N −EN |

EN
. (1.10)

To present the results for three concrete random indicesN , we use the definition of the τ -shifted L distribu-
tion (τ -shifted Poisson distribution, τ -shifted binomial distribution, τ -shifted negative binomial distribution,
and so on), first introduced in the paper [16]. For completeness, we recall these definitions. We write ξ ∼ L if
the distribution of a r.v. ξ is L.
DEFINITION 1. We say that a discrete r.v. N is distributed by the τ -shifted L distribution (τ � 0) (for short,
N − τ ∼ L), orN is the τ -shifted r.v., if for any discrete r.v. ξ ∼ L taking values xk with probabilities pk,

P{N = xk + τ} = P{ξ = xk} = pk. (1.11)

In particular, the 0-shifted L distribution coincides with the L distribution.

DEFINITION 2. We say that a r.v.N is distributed by the τ -shifted Poisson distribution with parameters τ ∈ N0

and λ > 0 (for short, N − τ ∼ P(λ)) if

P{N = k + τ} =
λk

k!
e−λ, k = 0, 1, 2, . . . . (1.12)

DEFINITION 3. We say that a r.v. N is distributed by the τ -shifted binomial distribution with parameters
τ ∈ N0, n ∈ N, and 0 < p < 1 (for short, N − τ ∼ B(n, p)) if

P{N = k + τ} =

(
n

k

)

pk(1− p)n−k, k = 0, 1, . . . , n. (1.13)

DEFINITION 4. We say that a r.v. N is distributed by the τ -shifted negative binomial distribution with param-
eters τ ∈ N0, r ∈ N, and 0 < p < 1 (for short, N − τ ∼ NB(r, p) if

P{N = k + τ} =

(
k − 1

r − 1

)

pr(1− p)k−r, k = r, r + 1, . . . . (1.14)

Now, we present the following statement for three presented τ -shifted L distributions.

Theorem 2. Let real identically distributed r.v.s X,X1,X2, . . . with EX = 0, 0 < σ2 = EX2, E|X|s �
ds < ∞, where 2 < s � 3, and EXiXj = 0, 1 � i �= j � ∞, satisfy the s.m. condition (1.1) with the
s.m. coefficient α(τ) � Ke−μτ , where 0 < K < ∞ and μ > 0 are constants. Let N be a nonnegative
integer-valued r.v. independent of X1,X2, . . . . Then ZN = SN/(σ

√
EN), and:

(i) If N − τ ∼ P(λ) with τ ∈ N0 and λ > 0, then

Δ � C1
lns−1(1 + τ + λ)

(τ + λ)(s−2)/2
. (1.15)



On the rate of convergence in the central limit theorem for random sums 223

(ii) If N − τ ∼ B(n, p) with τ ∈ N0, n ∈ N, and 0 < p < 1, then

Δ � C2
lns−1(1 + τ + np)

(τ + np)(s−2)/2
. (1.16)

(iii) If N − τ ∼ NB(r, p) with τ ∈ N0, r ∈ N, and 0 < p < 1, then

Δ � C3
lns−1(1 + τ + r/p)

(τp + r)(s−2)/2
. (1.17)

Here Ci = Ci(K,μ, σ, ds, s), i = 1, 2, 3.

Since the 0-shifted L distribution coincides with the L distribution, substituting τ = 0 into Theorem 2, we
obtain the corresponding estimates of Δ for a Poisson random sum, a binomial random sum, and a negative
binomial random sum.

The estimates in Theorem 1, Corollary 1, and Theorem 2 contain logarithmic factors. The corresponding
estimates contain no logarithmic factors in the case where the summands satisfy the u.s.m. condition. Namely,
the following statement is valid.

Theorem 3. Let a strictly stationary sequence of real r.v.sX,X1,X2, . . . with EX = 0 and |Xi| � M < ∞,
i = 1, 2, . . . , satisfy the u.s.m. condition (1.2) and (1.6), and let the variance V(X1 + · · · +Xn) of the sum
X1 + · · ·+Xn satisfy condition (1.7). LetN be a nonnegative integer-valued r.v. independent ofX1,X2, . . . .
Then

Δ � C0E
1√
N

1{N�1} + 1.04
E|κ2N −Eκ2N |

Eκ2N
, (1.18)

where the factor C0 = C0(A,M, σ) is from (1.8) of Theorem B.

Note that Theorem B follows from Theorem 3 in the particular case of the fixed number n (N = n) of
summands.

In particular, if the summands have zero mixed moments, we have the following result.

Corollary 2. Let a strictly stationary sequence of real r.v.s X,X1,X2, . . . with EX = 0, |Xi| � M < ∞,
i = 1, 2, . . . , 0 < σ2 = EX2, and EXiXj = 0 for 1 � i �= j � ∞, satisfy the u.s.m. condition (1.2)
and (1.6). Let N with 0 < EN < ∞ be a nonnegative integer-valued r.v. independent of X1,X2, . . . . Then
ZN = SN/(σ

√
EN), and

Δ � C0E
1√
N

1{N�1} + 1.04
E|N −EN |

EN
. (1.19)

As in Corollary 1 (where summands satisfy the s.m. condition (1.1)), the corresponding statement is valid
for three presented τ -shifted L distributions when the summands satisfy the u.s.m. condition (1.2) and (1.6).
Namely, we have the following statement.

Theorem 4. Let a strictly stationary sequence of real r.v.s X,X1,X2, . . . with EX = 0, |Xi| � M < ∞,
i = 1, 2, . . . , 0 < σ2 = EX2, and EXiXj = 0 for 1 � i �= j � ∞, satisfy the u.s.m. condition (1.2)
and (1.6). LetN be a nonnegative integer-valued r.v. independent ofX1,X2, . . . . Then ZN = SN/(σ

√
EN),

and:

(i) If N − τ ∼ P(λ) with τ ∈ N0 and λ > 0, then

Δ � (2C0 + 1.04)
1√

τ + λ
. (1.20)
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(ii) If N − τ ∼ B(n, p) with τ ∈ N0, n ∈ N, and 0 < p < 1, then

Δ � (2C0 + 1.04)
1√

τ + np
. (1.21)

(iii) If N − τ ∼ NB(r, p) with τ ∈ N0, r ∈ N, and 0 < p < 1, then

Δ � (C0 + 1.04)
1√

τp+ r
. (1.22)

Here C0 = C0(A,M, σ) is taken from (1.8) of Theorem B.

It remains to repeat the idea for τ = 0: taking τ = 0 in Theorem 4, we obtain the corresponding estimates
ofΔ for Poisson, binomial, and negative binomial random sums.

2 Auxiliary results

The relationships between the first moments of the random sum SN and the corresponding moment character-
istics of the r.v.s AN and κ2N are given in the following lemma.

Lemma 1. Let X1,X2, . . . be arbitrarily dependent, not necessarily identically distributed, r.v.s with
EX2

i < ∞ for all i = 1, 2, . . . , and let N be a nonnegative integer-valued r.v. independent of X1,X2, . . . .
Denote

SN =

N∑

i=1

Xi, AN =

N∑

i=1

EXi,

B2
N =

N∑

i=1

VXi, κ2N =

N∑

i=1

N∑

j=1

cov(Xi,Xj).

Then

ESN = EAN , (2.1)

ES2
N = Eκ2N +EA2

N , (2.2)

VSN = Eκ2N +VAN . (2.3)

If r.v.sX1,X2, . . . are independent, then

ES2
N = EB2

N +EA2
N , (2.4)

VSN = EB2
N +VAN . (2.5)

Proof. Denote pk = P{N = k}, k = 0, 1, 2, . . . . Since N is independent of X1,X2, . . . , Ak = ESk for
k = 1, 2, . . . , and A0 = ES0 = 0, we have

ESN =

∞∑

k=0

ESkpk =

∞∑

k=1

ESkpk =

∞∑

k=1

Akpk =

∞∑

k=0

Akpk = EAN ,

and (2.1) is proved.
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Since κ2k = VSk for k = 1, 2, . . . , κ20 = 0, and A2
0 = 0, (2.2) follows from the relations

ES2
N =

∞∑

k=0

ES2
kpk =

∞∑

k=1

ES2
kpk =

∞∑

k=1

k∑

i=1

k∑

j=1

EXiXjpk

=

∞∑

k=1

κ2kpk +

∞∑

k=1

A2
kpk =

∞∑

k=0

κ2kpk +

∞∑

k=0

A2
kpk

= Eκ2N +EA2
N .

Relation (2.3) follows from (2.2) and (2.1):

VSN = ES2
N − (ESN )2 = Eκ2N +EA2

N − (ESN )2 = Eκ2N +VAN .

Observing that κ2N = B2
N for independent summands, we have that (2.2) and (2.3) reduce to (2.4) and (2.5).

Lemma 1 is proved. �	
To obtain upper estimates of the second moment ES2

N and of the varianceVSN of the random sum SN =
X1 + · · · + XN for weakly dependent summands (satisfying the s.m. or the u.s.m. condition), we need the
corresponding estimates of the sumsSn = X1+· · ·+Xn with a fixed number n of summands. Such inequalities
are well known, and therefore, we give them without proof.

The following estimates are valid for the sum Sn with a fixed number n of summands satisfying the s.m.
condition.

Lemma 2. (See, e.g., [15, formula (14)].) Let a sequence of real r.v.s X1,X2, . . . satisfy the s.m. condi-
tion (1.1). Denote

Sn =

n∑

i=1

Xi, l∗s,n =

n∑

i=1

E2/s|Xi|s,

Cn

(

α(s−2)/s
)

= 1 + 16

n−1∑

τ=1

(

α(τ)
)(s−2)/s

, Cn(α) = 1 + 8

n−1∑

τ=1

α(τ).

Then:

(i) If E|Xi|s < ∞, where 2 < s � 3, for all i = 1, . . . , n, then

VSn � Cn

(

α(s−2)/s
)

l∗s,n. (2.6)

(ii) If P{|Xi| � M} = 1 for all i = 1, . . . , n with a nonrandom constantM > 0, then

VSn � Cn(α)nM
2. (2.7)

Note that to obtain inequality (2.6), it suffices to use the inequality in [3, p. 278, Cor. A.2]; to prove (2.7),
we use inequality (1.4) in [5, p. 364, Lemma 1.2] or the inequality in [3, p. 277, Thm. A.5].

The corresponding estimates are valid for the sum Sn with a fixed number n of summands satisfying the
u.s.m. condition.

Lemma 3. Let a sequence of real r.v.sX1,X2, . . . satisfy the u.s.m. condition (1.2). Denote

Sn =

n∑

i=1

Xi, Cn

(

ϕ1/2
)

= 1 + 4

n−1∑

τ=1

ϕ1/2(τ), Cn(ϕ) = 1 + 4

n−1∑

τ=1

ϕ(τ).

Lith. Math. J., 58(2):219–234, 2018.
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Then:
(i) If EX2

i < ∞ for all i = 1, . . . , n, then

VSn � Cn

(

ϕ1/2
)

n∑

i=1

VXi. (2.8)

(ii) If P{|Xi| � M} = 1 for all i = 1, . . . , n with a nonrandom constantM > 0, then

VSn � Cn(ϕ)nM
2. (2.9)

To obtain inequality (2.8), it suffices to use inequality (1.3) in [5, p. 363, Lemma 1.1] or the inequality
in [3, p. 278, Thm. A.6]; to prove (2.9), we use inequality (20.29) in [2, p. 171, Lemma 2].

Now, in Lemmas 4 and 5, we present upper estimates of the second momentES2
N and of the varianceVSN

of the random sum SN for summands satisfying the s.m. or the u.s.m condition, respectively.

Lemma 4. Let a sequence of real r.v.sX1,X2, . . . satisfy the s.m. condition (1.1), and let N be a nonnegative
integer-valued r.v. independent of X1,X2, . . . . Denote

SN =

N∑

i=1

Xi, AN =

N∑

i=1

EXi, l∗s,N =

N∑

i=1

E2/s|Xi|s.

Then:
(i) If E|Xi|s < ∞, where 2 < s � 3, for all i = 1, 2, . . . , then

ES2
N � C∞

(

α(s−2)/s
)

El∗s,N +EA2
N , (2.10)

VSN � C∞
(

α(s−2)/s
)

El∗s,N +VAN . (2.11)

(ii) If P{|Xi| � M} = 1 for all i = 1, 2, . . . with a nonrandom constantM > 0, then

ES2
N � C∞(α)M2EN +EA2

N , (2.12)

VSN � C∞(α)M2EN +VAN . (2.13)

Here the factors C∞(α(s−2)/s) and C∞(α) are taken from Lemma 2.

Proof. Since Ak = ESk for all k = 1, 2, . . . and A0 = 0, we rewrite ES2
N as follows:

ES2
N =

∞∑

k=0

ES2
kpk =

∞∑

k=0

(

ES2
k − (ESk)

2
)

pk +

∞∑

k=0

(ESk)
2pk =

∞∑

k=1

VSkpk +EA2
N .

In this equality, estimatingVSk according to (2.6) and (2.7), we obtain inequalities (2.10) and (2.12):

ES2
N � C∞

(

α(s−2)/s
)

∞∑

k=1

l∗s,kpk +EA2
N = C∞

(

α(s−2)/s
)

El∗s,N +EA2
N ,

ES2
N � C∞(α)M2

∞∑

k=1

kpk +EA2
N = C∞(α)M2EN +EA2

N ,

and then, since ESN = EAN by (2.1), from (2.10) and (2.12) we obtain (2.11) and (2.13).
Lemma 4 is proved. �	
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Lemma 5. Let a sequence of real r.v.sX1,X2, . . . satisfy the u.s.m. condition (1.2), and letN be a nonnegative
integer-valued r.v. independent of X1,X2, . . . . Denote

SN =

N∑

i=1

Xi, AN =

N∑

i=1

EXi, B2
N =

N∑

i=1

VXi.

Then:

(i) If EX2
i < ∞ for all i = 1, 2, . . . , then

ES2
N � C∞

(

ϕ1/2
)

EB2
N +EA2

N , (2.14)

VSN � C∞
(

ϕ1/2
)

EB2
N +VAN . (2.15)

(ii) If P{|Xi| � M} = 1 for all i = 1, 2, . . . with a nonrandom constantM > 0, then

ES2
N � C∞(ϕ)M2EN +EA2

N , (2.16)

VSN � C∞(ϕ)M2EN +VAN . (2.17)

Here the factors C∞(ϕ1/2) and C∞(ϕ) are taken from Lemma 3.

The proof of Lemma 5 is similar to that of Lemma 4, so we omit the details and indicate only one difference:
while estimating the varianceVSk, instead of inequalities (2.6) and (2.7) in Lemma 4, we use inequalities (2.8)
and (2.9), respectively.

Now, in Lemmas 6, 7, and 8, we present some useful estimates of E(1/
√
1 +N) (or E(1/

√
N)) and

E|N −EN |/EN when the random number N is a τ -shifted Poisson r.v., a τ -shifted binomial r.v., and
a τ -shifted negative binomial r.v.

Lemma 6. If N − τ ∼ P(λ) with τ ∈ N0 and λ > 0, then

1√
1 + τ + λ

� E
1√

1 +N
�

√
2√

1 + τ + λ
, (2.18)

E|N −EN |
EN

� 1√
τ + λ

. (2.19)

Proof. Let pk = P{N = k + τ} = (λk/k!)e−λ, k = 0, 1, 2, . . . . Since

E
1

1 +N
=

∞∑

k=0

1

1 + τ + k
pk � 1

1 + τ
,

E
1

1 +N
= e−λ

∞∑

k=0

1

1 + τ + k

λk

k!
� e−λ

∞∑

k=0

λk

(k + 1)!

=
1

λ

(

1− e−λ
)

<
1

λ
,

and

max{1 + τ, λ} � 1 + τ + λ

2
for τ � 0 and λ > 0,
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we have

E
1

1 +N
� min

{
1

1 + τ
,
1

λ

}

=
1

max{1 + τ, λ} � 2

1 + τ + λ
. (2.20)

The function f(x) = 1/
√
1 + x is convex for x ∈ (−1,∞). Therefore, by Jensen’s inequality, Lyapunov’s

inequality, and (2.20) we get that

1√
1 + τ + λ

=
1√

1 +EN
= f(EN) � Ef(N) = E

1√
1 +N

�
(

E
1

1 +N

)1/2

�
√
2√

1 + τ + λ
,

and (2.18) is proved.
Since EN = τ + λ andVN = λ for a r.v. N − τ ∼ P(λ), we obtain

E|N −EN |
EN

�
√
VN

EN
� 1√

τ + λ
,

so that (2.19) and thus Lemma 6 are proved. �	

Lemma 7. If N − τ ∼ B(n, p) with τ ∈ N0, n ∈ N, and 0 < p < 1, then

1√
1 + τ + np

� E
1√

1 +N
�

√
2√

1 + τ + np
, (2.21)

E|N −EN |
EN

<
1√

τ + np
. (2.22)

Proof. Let pk = P{N = k+ τ} =
(n
k

)

pkqn−k, k = 0, 1, . . . , n, 0 < p < 1, q = 1− p. Then, as in the proof
of Lemma 6 (with f(x) = 1/

√
1 + x), we make sure that (2.21) is valid:

E
1

1 +N
=

n∑

k=0

1

1 + τ + k
pk � 1

1 + τ
,

E
1

1 +N
=

n∑

k=0

1

1 + τ + k
pk �

n∑

k=0

n!

(k + 1)!(n − k)!
pkqn−k

=
1

(n+ 1)p

n+1∑

l=1

(n+ 1)!

l!((n + 1)− l)!
plq(n+1)−l

=
1− qn+1

(n+ 1)p
<

1

np
,

E
1

1 +N
� min

{
1

1 + τ
,
1

np

}

=
1

max{1 + τ, np} � 2

1 + τ + np
,
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1√
1 + τ + np

=
1√

1 +EN
= f(EN) � Ef(N) = E

1√
1 +N

�
(

E
1

1 +N

)1/2

�
√
2√

1 + τ + np
.

Here we used the fact that EN = τ + np for a r.v. N − τ ∼ B(n, p).
Moreover,VN = npq for a r.v. N − τ ∼ B(n, p). Therefore

E|N −EN |
EN

�
√
VN

EN
<

1√
τ + np

.

Lemma 7 is proved. �	

Lemma 8. LetN − τ ∼ NB(r, p) with τ ∈ N0, r ∈ N, and 0 < p < 1. Then

1
√

τ + r/p
� E

1√
N

� 1√
τ + r

, (2.23)

E|N −EN |
EN

<
1√

τp+ r
. (2.24)

Proof. Let pk = P{N = k + τ} =
(k−1
r−1

)

prqk−r, k = r, r + 1, r + 2, . . . , 0 < p < 1, q = 1− p. Then

E
1

N
=

∞∑

k=r

1

τ + k
pk � 1

τ + r
, (2.25)

because
∑∞

k=r pk = 1.
The function f(x) = 1/

√
x is convex for x ∈ (0,∞). Therefore, by Jensen’s inequality, Lyapunov’s

inequality, (2.25), and the equality EN = τ + r/p for a r.v. N − τ ∼ NB(r, p), we get that

1
√

τ + r/p
=

1√
EN

= f(EN) � Ef(N) = E
1√
N

�
(

E
1

N

)1/2

� 1√
τ + r

,

and (2.23) is proved.
Since EN = τ + r/p andVN = r(1− p)/p2 for a r.v. N − τ ∼ NB(r, p), we obtain

E|N −EN |
EN

�
√
VN

EN
<

1√
τp+ r

,

so that (2.24) and thus Lemma 8 are proved. �	
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3 Decomposition of Δ(x) with EXi = 0, i = 1, 2, . . .

In addition, denote

Δ(x) = P{SN < x
√

VSN} − Φ(x), SN =

N∑

i=1

Xi,

ξk =
Sk√
VSk

, ak =

√
VSN√
VSk

, Sk =

k∑

i=1

Xi, k = 1, 2, . . . ,

where X1,X2, . . . are arbitrarily dependent r.v.s,VSN > 0, and S0 = 0. It is clear that if N is a nonnegative
integer-valued r.v. with pk = P{N = k}, k = 0, 1, 2, . . . , independent of X1,X2, . . . , then, for all x ∈ R,

Δ(x) =

∞∑

k=0

[

P{Sk < x
√

VSN} − Φ(x)
]

pk.

LetK(α) = {k ∈ N: |VSk −VSN | � (1−α)VSN} andK(α) = {k ∈ N: |VSk −VSN | > (1−α)VSN}
for α ∈ (0, 1).

First, we observe thatVSk � αVSN > 0 if k ∈ K(α), because α ∈ (0, 1) andVSN > 0.
Since

[

P{S0 < x
√

VSN} − Φ(x)
]

p0 =
[

1{x>0} − Φ(x)
]

p0

and
∞∑

k=1

[

P{Sk < x
√

VSN} − Φ(x)
]

pk

=
∑

k∈K(α)

[

P{ξk < xak} − Φ(xak)
]

pk +
∑

k∈K(α)

[

Φ(xak)− Φ(x)
]

pk

+
∑

k∈K(α)

[

P{Sk < x
√

VSN} − Φ(x)
]

pk,

we can state the following:

Proposition 1. Let X1,X2, . . . be arbitrarily dependent, not necessarily identically distributed, r.v.s with
EXi = 0 for all i = 1, 2, . . . , and let N be a nonnegative integer-valued r.v. with pk = P{N = k},
k = 0, 1, 2, . . . , independent ofX1,X2, . . . . Denote

Δ(x) = P{SN < x
√

VSN} − Φ(x), SN =

N∑

i=1

Xi,

ξk =
Sk√
VSk

, ak =

√
VSN√
VSk

, Sk =

k∑

i=1

Xi, k = 1, 2, . . . ,

where S0 = 0 andVSN > 0. Then, for all x ∈ R,

Δ(x) = Σ1(x) +Σ2(x) +Σ3(x) +Σ4(x), (3.1)
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where

Σ1(x) =
∑

k∈K(α)

[

P{ξk < xak} − Φ(xak)
]

pk,

Σ2(x) =
∑

k∈K(α)

[

Φ(xak)− Φ(x)
]

pk,

Σ3(x) =
[

1{x>0} − Φ(x)
]

p0,

Σ4(x) =
∑

k∈K(α)

[

P{Sk < x
√

VSN} − Φ(x)
]

pk,

whereK(α) = {k ∈ N: |VSk−VSN | � (1−α)VSN} andK(α) = {k ∈ N: |VSk−VSN | > (1−α)VSN}
for α ∈ (0, 1).

4 Proofs of the results for random sums of strongly mixing random variables

Proof of Theorem 1. We estimate the quantities on the right-hand side of Eq. (3.1) under the condition that
a sequence of real r.v.s X1,X2, . . . with EXi = 0 and E|Xi|s � ds < ∞, where 2 < s � 3, for all
i = 1, 2, . . . , satisfies the s.m. condition (1.1).

Estimation of |Σ1(x)|. It is clear that

∣
∣Σ1(x)

∣
∣ �

∑

k∈K(α)

sup
y∈R

∣
∣P{Sk < y

√

VSk} − Φ(y)
∣
∣pk.

Therefore, to estimate the right-hand side of this inequality, we can use estimate (1.3) of Theorem A for the
sum Sk with a fixed number k = 1, 2, . . . of summands. SinceVSk � αVSN for k ∈ K(α), we obtain that

∣
∣Σ1(x)

∣
∣ � C0ds

∑

k∈K(α)

k

(VSk)s/2
lns−1(1 + k)pk

� C0ds
αs/2

1

(VSN )s/2

∑

k∈K(α)

k lns−1(1 + k)pk

� C0ds

αs/2

EN lns−1(1 +N)1{N∈K(α)}
(VSN )s/2

, (4.1)

where C0 = C0(K,μ, s) is taken from (1.3) of Theorem A.

Estimation of |Σ2(x)|. To estimate |Σ2(x)|, we use the following estimate for the standard normal distri-
bution function Φ(x) (see [7, p. 114]):

sup
x∈R

∣
∣Φ(xa)− Φ(x)

∣
∣ � 1√

2πe
·
{

a−1 − 1 if 0 < a < 1,

a− 1 if a � 1.
(4.2)
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SinceVSk � αVSN for k ∈ K(α), we observe that, for all k ∈ K(α),

|ak − 1| = |VSk −VSN |√
VSk(

√
VSk +

√
VSN )

� 1√
α(1 +

√
α)

|VSk −VSN |
VSN

,

∣
∣a−1

k − 1
∣
∣ =

|VSk −VSN |√
VSN (

√
VSk +

√
VSN )

� 1

1 +
√
α

|VSk −VSN |
VSN

.

Therefore, taking a = ak =
√
VSN/

√
VSk in (4.2) and using two last inequalities, we obtain that, for all

k ∈ K(α),

sup
x∈R

∣
∣Φ(xak)− Φ(x)

∣
∣ � 1√

2πeα(1 +
√
α)

|VSk −VSN |
VSN

. (4.3)

Substituting (4.3) into the expression of Σ2(x) and observing that VSk = κ2k for any fixed k = 1, 2, . . . , we
obtain that

∣
∣Σ2(x)

∣
∣ � 1√

2πeα(1 +
√
α)

1

VSN

∑

k∈K(α)

∣
∣κ2k −VSN

∣
∣pk (4.4)

=
1√

2πeα(1 +
√
α)

E|κ2N −VSN |1{N∈K(α)}
VSN

. (4.5)

Estimation of |Σ3(x)|+ |Σ4(x)|. We observe that |VSk−VSN | > (1−α)VSN for k = 0 withVSN > 0
and S0 = 0. Therefore,

∣
∣Σ3(x)

∣
∣+

∣
∣Σ4(x)

∣
∣ � p0 +

∑

k∈K(α)

pk =
∑

k�0: |κ2
k−VSN |>(1−α)VSN

pk

�
E
∣
∣κ2N −VSN

∣
∣1{N∈K(α)∪{0}}

(1− α)VSN
. (4.6)

Substituting (4.1), (4.5), and (4.6) into (3.1) and taking into account that VSN = Eκ2N in the case of
EXi = 0 for all i = 1, 2, . . . (see (2.3) of Lemma 1), we obtain estimate (1.9) of Theorem 1.

Theorem 1 is proved. �	

Proof of Corollary 1. The proof immediately follows from Theorem 1. �	

Proof of Theorem 2. Since Δ � 0.5416 [1, p. 103], we assume, without loss of generality, that EN is
sufficiently large. To estimate the first term in (1.10) of Corollary 1, we use the estimate

EN lns−1(1 +N) �
√
VN E1/2 ln2(s−1)(1 +N) +ENE lns−1(1 +N). (4.7)

Now, observing that the functions f1(x) = ln2(s−1)(e2s−3 + 1 + x) and f2(x) = lns−1(es−2 + 1 + x), where
2 < s � 3, are strictly concave for x ∈ (−1,∞), by Jensen’s inequality we obtain that

E ln2(s−1)(1 +N) < ln2(s−1)
(

e2s−3 + 1 +EN
)

, (4.8)

E lns−1(1 +N) < lns−1
(

es−2 + 1 +EN
)

. (4.9)
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Now, substitute (4.8) and (4.9) into (4.7) and the obtained inequality into the first term in (1.10) of Corol-
lary 1. Then, in the corresponding cases of the number N of summands, we can estimate the second term
in (1.10) by (2.19) of Lemma 6, by (2.22) of Lemma 7, and by (2.24) of Lemma 8, obtaining (1.15), (1.16),
and (1.17), respectively.

Theorem 2 is proved. �	

5 Proofs of the results for random sums of uniformly strongly mixing random variables

Proof of Theorem 3. The proof of Theorem 3 is similar to that of Theorem 1. To estimate Δ, we also use
decomposition (3.1). The difference is only that estimating |Σ1(x)|, we use (1.8) of Theorem B instead of (1.3)
of Theorem A in the proof of Theorem 1. So, we obtain that, under the conditions of Theorem 3,

∣
∣Σ1(x)

∣
∣ � C0E

1√
N

1{N∈K(α)}, (5.1)

where C0 = C0(A,M, σ) is taken from (1.8) of Theorem B.
We observe that the estimates of |Σ2(x)| and of |Σ3(x)| + |Σ4(x)| in (4.5) and (4.6) are valid for any

dependence condition. Therefore, substituting (5.1), (4.5), and (4.6) into (3.1), we obtain (1.18) of Theorem 3.
Theorem 3 is proved. �	

Proof of Corollary 2. The proof immediately follows from Theorem 3. �	
Proof of Theorem 4. Substituting (2.18) and (2.19) of Lemma 6, (2.21) and (2.22) of Lemma 7, and (2.23)
and (2.24) of Lemma 8 into (1.19) of Corollary 2, we obtain the estimates (1.20)–(1.22) of Theorem 4. �	

Theorem 4 is proved. �	
Final remark. More general statements for random sums with strongly mixed and uniformly strongly

mixed summands are considered in Theorems 1 and 3, respectively. In Corollaries 1 and 2 and in Theorems 2
and 4, the estimates of the quantity Δ are given in the simplest case, where, in addition, the summands are
uncorrelated. For correlated summands, the estimation ofΔ in the statements analogous to Corollaries 1 and 2
and to Theorems 2 and 4 require a more detailed analysis of the quantity E|κ2N −Eκ2N |/Eκ2N , which is left to
the future.
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