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Abstract. We apply Jacobi spectral collocation approximation to a two-dimensional nonlinear weakly singular Volterra
integral equation with smooth solutions. Under reasonable assumptions on the nonlinearity, we carry out complete conver-
gence analysis of the numerical approximation in theL∞-norm and weightedL2-norm. The provided numerical examples
show that the proposed spectral method enjoys spectral accuracy.
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1 Introduction

This paper is concerned with the numerical solutions of the following two-dimensional nonlinear Volterra
integral equations with weakly singular kernels:

y(s, t) =

s∫

0

t∫

0

(s − σ)−μ(t− τ)−νK
(
s, t, σ, τ, y(σ, τ)

)
dτ dσ + f(s, t), (s, t) ∈ Λ = [0, T ]2, (1.1)

where 0 < μ, ν < 1, y(s, t) is an unknown function, f(s, t) andK(s, t, σ, τ, y) are given continuous functions
defined on Λ and Θ = D × R (D =: {(s, t, σ, τ): 0 � σ � s � T, 0 � τ � t � T}), respectively.
K(s, t, σ, τ, y) is nonlinear in the variable y with continuous ∂2K/(∂y∂s) and ∂2K/(∂y∂t) onΘ. We consider
the case that Eq. (1.1) has a unique smooth solution.

Two-dimensional integro-differential equations are models of many problems arising in engineering and
mechanics fields (see, e.g., [18, 40]); therefore their numerical simulations have received considerable atten-
tion, and many efficient numerical methods for such equations have been proposed, such as the differential
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transform method [12, 13, 16, 38], the Tau method [36, 37, 39], the Euler-type method [24], the Runge–Kutta
method [3], the expansion and operational matrices method [35], and the collocation methods [14].

As we know, spectral methods provide highly accurate approximations for the solutions of smooth prob-
lems and have been used for the numerical computations of certain partial differential equations; see, for
example, [5, 6, 7, 28, 29]. In the last decade, many one-dimensional Volterra integral or integro-differential
equations were solved by spectral methods. In [4, 41], spectral Galerkin methods were developed to solve
Volterra integral equations with smooth kernels, and in [50], spectral Galerkin methods were investigated
for Volterra integral equations with weakly singular kernels. Xie and Tao [34, 47] considered some spectral
and pseudo-spectral Galerkin approaches for smooth Volterra integral or integro-differential equations. Li,
Tang, and Xu [22] extended the work of [47] to weakly singular Volterra integral equations. The authors
of [2, 19, 33, 43, 45, 46, 48] proposed a Legendre spectral collocation method for Volterra integral or integro-
differential equations with smooth kernels. Meanwhile, they established a vigorous error analysis in the L∞-
and L2-norms and proved that the numerical errors decayed exponentially. In [9, 10, 32, 44], a Jacobi spectral
collocation method was successfully introduced to approximate smooth solutions of weakly singular Volterra
integral or integro-differential equations. Chen and Tang [11] proposed and analyzed a Jacobi spectral collo-
cation approximation for weakly singular Volterra integral equations with nonsmooth solutions, where some
function transformations and variable transformations were employed to transform the equation into a new
Volterra integral equation which better regularity, so that the orthogonal polynomial theory can be directly ap-
plied. The analytical and numerical techniques used in [11] can be extended to weakly singular Volterra inte-
gral equations with pantograph delays [49]. In [21], the Jacobi spectral collocation method was also developed
to solve weakly singular Volterra integral equations with nonsmooth solutions, but in the convergence anal-
ysis of this work, only variable transformations were used. Also, the Chebyshev spectral collocation method
was applied directly to a weakly singular Volterra integral equation with nonsmooth solutions in [17]. All
these achievements relate to one-step spectral methods. Recently, some authors developed multistep spectral
methods for Volterra integral equations [15, 30, 31, 42, 51, 52]

Nevertheless, to the best of our knowledge, there have been no concerns regarding theoretical analysis of
spectral methods for two-dimensional weakly singular integro-differential equations. Our main motivation in
this paper is to construct and analyze a Jacobi spectral collocation approximation for Eq. (1.1).

The rest of this paper is organized as follows. In Section 2, we introduce the Jacobi-collocation method
for two-dimensional nonlinear Volterra integral equations with weakly singular kernels and smooth solutions.
Some preliminaries and useful lemmas for establishing the convergence analysis are provided in Section 3.
The error estimations in the L∞-norm and weighted L2-norm are given in Section 4. In Section 5, we present
numerical experiments to demonstrate the theoretical results obtained in Section 4. The final section is for the
conclusion and future work.

2 Jacobi-collocation method

For an integer N > 0, we set PN = P̃N × P̃N , where P̃N is the space of the single-variable polynomials of
degree up toN . For the weight function ω−μ,−μ(x) = (1−x2)−μ, we denote the collocation points by {xi}Ni=0,
which is the set of (N + 1) Jacobi–Gauss points, and by {wi}Ni=0 the corresponding weights. Similarly, for
the weight function ω−ν,−ν(y) = (1− y2)−ν , we denote the collocation points by {yj}Nj=0, which is the set of
(N +1) Jacobi–Gauss points, and by {ρj}Nj=0 the corresponding weights. Let Ω̄ = [−1, 1]2. For any function
v ∈ C(Ω̄), we can define the Lagrange interpolating polynomial I −μ,−ν

N v ∈ PN satisfying

I −μ,−ν
N v(xi, yj) = v(xi, yj), 0 � i, j � N ;

see, for example, [6, 28]. The Lagrange interpolation polynomial can be written in the form

I −μ,−ν
N v(x, y) =

N∑
i=0

N∑
j=0

v(xi, yj)Fi(x)Fj(y),



Spectral collocation methods for Volterra integral equations 77

where Fi(x) and Fj(y) are the Lagrange interpolation basis functions associated with {xi}Ni=0 and {yj}Nj=0,
respectively.

To naturally apply the spectral collocation method, we make the change of variables

s =
T

2
(1 + x), t =

T

2
(1 + y), σ =

T

2
(1 + ξ), τ =

T

2
(1 + η) (2.1)

and let

u(x, y) = y

(
T

2
(1 + x),

T

2
(1 + y)

)
, g(x, y) = f

(
T

2
(1 + x),

T

2
(1 + y)

)
,

K̃
(
x, y, ξ, η, u(ξ, η)

)
=

(
T

2

)2−μ−ν

K

(
T

2
(1 + x),

T

2
(1 + y),

T

2
(1 + ξ),

T

2
(1 + η), u(ξ, η)

)
,

so that (1.1) can be written as

u(x, y) = g(x, y) +

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−νK̃
(
x, y, ξ, η, u(ξ, η)

)
dη dξ, (x, y) ∈ Ω̄. (2.2)

Assume that Eq. (2.2) holds at the collocation point-pairs (xi, yj) on Ω̄, that is,

u(xi, yj) = g(xi, yj) +

xi∫

−1

yj∫

−1

(xi − ξ)−μ(yj − η)−νK̃
(
xi, yj, ξ, η, u(ξ, η)

)
dη dξ, 0 � i, j � N. (2.3)

We will use the Jacobi–Gauss quadrature formulas to compute the integral term in (2.3). For this purpose, we
make two linear transformations for (2.3):

ξ = ξ(xi, θ) =
1 + xi

2
θ +

xi − 1

2
, η = η(yj , ζ) =

1 + yj
2

ζ +
yj − 1

2
, −1 � θ, ζ � 1. (2.4)

Then the integral term in (2.3) becomes

xi∫

−1

yj∫

−1

(xi − ξ)−μ(yj − η)−νK̃
(
xi, yj , ξ, η, u(ξ, η)

)
dη dξ

=

1∫

−1

1∫

−1

(1− θ)−μ(1− ζ)−νK1

(
xi, yj , ξ(xi, θ), η(yj , ζ), u

(
ξ(xi, θ), η(yj , ζ)

))
dζ dθ,

where

K1

(
xi, yj , ξ(xi, θ), η(yj , ζ), u

(
ξ(xi, θ), η(yj , ζ)

))

=

(
1 + xi

2

)1−μ(1 + yj
2

)1−ν

K̃
(
xi, yj , ξ(xi, θ), η(yj , ζ), u

(
ξ(xi, θ), η(yj , ζ)

))
.
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Next, by the (N + 1)-point Jacobi–Gauss quadrature formulas, we can estimate the new integral as follows:

1∫

−1

1∫

−1

(1− θ)−μ(1− ζ)−νK1

(
xi, yj , ξ(xi, θ), η(yj , ζ), u

(
ξ(xi, θ), η(yj , ζ)

))
dζ dθ

≈
N∑
k=0

N∑
l=0

K1

(
xi, yj , ξ(xi, θ̄k), η(yj , ζ̄l), u

(
ξ(xi, θ̄k), η(yj , ζ̄l)

))
ρ̄lw̄k,

where {θ̄k}Nk=0 and {ζ̄l}Nl=0 are the sets of (N +1) Jacobi–Gauss points corresponding to the weight functions
ω−μ, 0(θ) = (1− θ)−μ and ω−ν, 0(ζ) = (1− ζ)−ν , respectively.

We use uij , 0 � i, j � N , to approximate the function value u(xi, yj), 0 � i, j � N , and use

uN (x, y) =

N∑
m=0

N∑
n=0

umnFm(x)Fn(y) (2.5)

to approximate the function u(x, y), namely, u(xi, yj) ≈ uij , u(x, y) ≈ uN (x, y), and

u
(
ξ(xi, θ̄k), η(yj , ζ̄l)

)
≈

N∑
m=0

N∑
n=0

umnFm

(
ξ(xi, θ̄k)

)
Fn

(
η(yj , ζ̄l)

)
.

Then, the Jacobi collocation method is to seek uN (x, y) such that {uij}Ni,j=0 satisfies the following collocation
equations:

uij =

N∑
k=0

N∑
l=0

K1

(
xi, yj, ξ(xi, θ̄k), η(yj, ζ̄l),

N∑
m=0

N∑
n=0

umnFm

(
ξ(xi, θ̄k)

)
Fn(η(yj , ζ̄l)

))
ρ̄lω̄k

+ g(xi, yj), 0 � i, j � N. (2.6)

3 Some preliminaries and useful lemmas

We first introduce some weighted Sobolev spaces on Ω = (−1, 1)2. Set

ωα,β(x, y) = (1− x)−μ(1− y)−ν(1 + x)α(1 + y)β,

where −1 < α, β < 1. We define the weighted space

L2
ωα,β

(Ω) =
{
v : Ω → R measurable and ‖v‖ωα,β

< ∞
}

equipped with the norm

‖v‖ωα,β
=

∫∫

Ω

∣∣v(x, y)∣∣2ωα,β(x, y) dxdy

and the inner product

(u, v)ωα,β
=

∫∫

Ω

u(x, y)v(x, y)ωα,β(x, y) dxdy, u, v ∈ L2
ωα,β

(Ω).
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For any integerm � 0, the weighted Sobolev space is defined by

Hm
ωα,β

(Ω) =

{
v: v ∈ L2

ωα,β
(Ω),

∂p+qv

∂xp∂yq
∈ L2

ωα,β
(Ω), (p, q) ∈ N

2, p+ q � m

}

with the norm

‖v‖m, ωα,β
=

(
m∑

p+q=0

∥∥∥∥ ∂p+qv

∂xp∂yq

∥∥∥∥
2

ωα,β

)1/2

.

Next, we introduce the discrete inner product:

(φ,ψ)N =

N∑
k=0

N∑
l=0

φ(θ̄k, ζ̄l)ψ(θ̄k, ζ̄l)ρ̄lw̄k, φ, ψ ∈ C(Ω̄).

From [5, 6, 8] we get the following lemma.

Lemma 1. If v ∈ Hm
ω 0,0

(Ω) for some m � 1 and ψ ∈ PN , then there exists a constant C independent of N
such that ∣∣(v, ψ)ω0,0

− (v, ψ)N
∣∣ � CN−m‖v‖m,ω0,0

‖ψ‖ω 0,0
.

From [23] we have the following result on the Lebesgue constant for Lagrange interpolation polynomials
associated with the zeros of Jacobi polynomials.

Lemma 2. Let {Fm(x)}Nm=0 and {Fn(y)}Nn=0 be theN th Lagrange interpolation polynomials associated with
the Jacobi–Gauss points {xi}Ni=0 and {yj}Nj=0, respectively. Then

∥∥I −μ,−ν
N ‖∞ := max

(x,y)∈Ω̄

N∑
m=0

N∑
n=0

∣∣Fm(x)Fn(y)
∣∣ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(log2 N), 1
2 � μ, ν < 1,

O(N1−μ−ν), 0 < μ, ν < 1
2 ,

O(N1/2−ν logN), 1
2 � μ < 1, 0 < ν < 1

2 ,

O(N1/2−μ logN), 0 < μ < 1
2 ,

1
2 � ν < 1.

For the interpolation error, we have the following result.

Lemma 3. For any function v ∈ Hm
ω−μ,−ν

(Ω) (m � 1), we have

∥∥v − I −μ,−ν
N v

∥∥
ω−μ,−ν

� CN−m‖v‖m, ω−μ,−ν
, (3.1)

∥∥v − I −μ,−ν
N v

∥∥
∞ � CN4−m‖v‖m, ω−μ,−ν

. (3.2)

Proof. For (3.1), we can see [5,6,8]. We now prove (3.2). For any integer r,m such that 0 � r � m,m > 1,
we have the following interpolation error estimate (see [5, 6, 8]:

∥∥v − I −μ,−ν
N v

∥∥
r, ω−μ,−ν

� CN2r−m‖v‖m, ω−μ,−ν
, v ∈ Hm

ω−μ,−ν
(Ω). (3.3)

From [1] we know thatH2
ω−μ,−ν

(Ω) is embedded in C(Ω̄), namely,

‖v‖∞ � C‖v‖2, ω−μ,−ν
, v ∈ H2

ω−μ,−ν
(Ω). (3.4)

Then, (3.3) and (3.4) yield inequality (3.2). �	

Lith. Math. J., 58(1):75–94, 2018.
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In our analysis, we will apply the two-dimensional Gronwall lemma. The following result can be found
in [25].

Lemma 4. Suppose that

w(s, t) � a(s, t) + b(s, t)

s∫

0

t∫

0

c(σ, τ)w(σ, τ) dτ dσ, (s, t) ∈ Λ,

where w(s, t), a(s, t), b(s, t), and c(s, t) are nonnegative continuous functions defined on Λ. Then, on Λ, we
have

w(s, t) � a(s, t) + b(s, t)

s∫

0

t∫

0

exp

( s∫

σ

t∫

τ

b(r, w)c(r, w) dw dr

)
a(σ, τ)c(σ, τ) dτ dσ.

By Lemma 4 we can obtain the following result.

Lemma 5. Assume that v(x, y) and h(x, y) are nonnegative continuous function defined on Ω̄ and satisfying

v(x, y) � h(x, y) +M

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−νv(ξ, η) dη dξ, (3.5)

whereM is a positive constant. Then, there is a constant C such that

v(x, y) � h(x, y) + C

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−νh(ξ, η) dη dξ, (x, y) ∈ Ω̄. (3.6)

Proof. By the changes of variables (2.1), we can rewrite (3.5) as follows:

w(s, t) � a(s, t) +M

(
2

T

)2−μ−ν
s∫

0

t∫

0

(s− σ)−μ(t− τ)−νw(σ, τ) dτ dσ,

where (s, t) ∈ Λ, and

w(s, t) = v

(
2

T
s− 1,

2

T
t− 1

)
, a(s, t) = h

(
2

T
s− 1,

2

T
t− 1

)
.

Set

b(s, t) = M

(
2

T

)2−μ−ν

, c(σ, τ) = (s− σ)−μ(t− τ)−ν .

It is obvious that a(s, t), b(s, t), c(s, t), and w(s, t) satisfy the conditions in Lemma 4. Then we have

w(s, t) � a(s, t) + b(s, t)

s∫

0

t∫

0

exp

( s∫

σ

t∫

τ

b(r, w)c(r, w) dw dr

)
a(σ, τ)c(σ, τ) dτ dσ.
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Clearly,
∣∣∣∣∣

s∫

σ

t∫

τ

b(r, w)c(r, w) dw dr

∣∣∣∣∣ = M

(
2

T

)2−μ−ν
∣∣∣∣∣

s∫

σ

t∫

τ

(s− r)−μ(t−w)−ν dw dr

∣∣∣∣∣

=

(
2

T

)2−μ−ν M

(1− μ)(1− ν)
(s− σ)1−μ(t− τ)1−ν � C.

Consequently,

w(s, t) � a(s, t) + C

s∫

0

t∫

0

a(σ, τ)c(σ, τ) dτ dσ

= a(s, t) + C

s∫

0

t∫

0

(s− σ)−μ(t− τ)−νa(σ, τ) dτ dσ. (3.7)

Thus, (3.6) is obtained by applying the changes of variables (2.1) to (3.7). �	

From now on, for m � 0 and κ ∈ [0, 1], Cm,κ(Ω̄) is the space of functions whose mth derivatives are
Hölder continuous with exponent κ, endowed with the norm

‖v‖m,κ = max
0�p+q�m

max
(x,y)∈Ω̄

∣∣∣∣∂
p+qv(x, y)

∂xp∂yq

∣∣∣∣
+ max

0�p+q�m
sup

(x′,y′)�=(x′′,y′′)∈Ω̄

|∂p+qv(x′, y′)/∂xp∂yq − ∂p+qv(x′′, y′′)/∂xp∂yq|
((x′ − x′′)2 + (y′ − y′′)2)κ/2

.

We will need a result of Ragozin [26, 27], which states that, for integerm � 0 and κ ∈ (0, 1), there exists
a constant Cm,κ > 0 such that, for any function v ∈ Cm, κ(Ω̄), there exists a polynomial function GNv ∈ PN

such that

‖v − GNv‖∞ � Cm,κN
−(m+κ)‖v‖m,κ. (3.8)

In fact, as stated in [26] and [27], GN is a linear operator from Cm,κ(Ω̄) into PN .
We will further need the following lemma.

Lemma 6. Let R̄(x, ξ), ∂R̄(x, ξ)/∂x ∈ C(Ω̄), and 0 < κμ < 1−μ. Then for any function z(x) ∈ C([−1, 1]),
there exists a positive constant C such that

|
∫ x′

−1(x
′ − ξ)−μR̄(x′, ξ)z(ξ) dξ −

∫ x′′

−1 (x
′′ − ξ)−μR̄(x′′, ξ)z(ξ) dξ|

|x′ − x′′|κμ
� C‖z‖∞ (3.9)

for any x′, x′′ ∈ [−1, 1] such that x′ 
= x′′.
Similarly, let R̃(y, η), ∂R̃(y, η)/∂y ∈ C(Ω̄), and 0 < κν < 1−ν. Then for any function h(y) ∈ C([−1, 1]),

there exists a positive constant C such that

|
∫ y′

−1(y
′ − η)−νR̃(y′, η)h(η) dη −

∫ y′′

−1(y
′′ − η)−νR̃(y′′, η)h(η) dη|

|y′ − y′′|κν
� C‖h‖∞ (3.10)

for any y′, y′′ ∈ [−1, 1] such that y′ 
= y′′.

Lith. Math. J., 58(1):75–94, 2018.
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Proof. We now prove (3.9). Without loss of generality, we assume that x′ < x′′. Observe that

∣∣∣∣∣
x′∫

−1

(x′ − ξ)−μR̄(x′, ξ)z(ξ) dξ −
x′′∫

−1

(x′′ − ξ)−μR̄(x′′, ξ)z(ξ) dξ

∣∣∣∣∣ � I1 + I2 + I3, (3.11)

where

I1 =

∣∣∣∣∣
x′∫

−1

(x′ − ξ)−μ
(
R̄(x′, ξ)− R̄(x′′, ξ)

)
z(ξ) dξ

∣∣∣∣∣,

I2 =

∣∣∣∣∣
x′∫

−1

(
(x′ − ξ)−μ − (x′′ − ξ)−μ

)
R̄(x′′, ξ)z(ξ) dξ

∣∣∣∣∣,

I3 =

∣∣∣∣∣
x′′∫

x′

(x′′ − ξ)−μR̄(x′′, ξ)z(ξ) dξ

∣∣∣∣∣.

Applying the Lagrange midvalue differential theorem to I1 gives

I1 �
∥∥∥∥∂R̄∂x

∥∥∥∥
∞
(x′′ − x′)

x′∫

−1

(x′ − ξ)−μ
∣∣z(ξ)∣∣ dξ � C(x′′ − x′)‖z‖∞. (3.12)

We now estimate I2. It is clear that

I2 � ‖R̄‖∞‖z‖∞
x′∫

−1

∣∣(x′ − ξ)−μ − (x′′ − ξ)−μ
∣∣ dξ

� C
(
(x′′ − x′)1−μ + (x′ + 1)1−μ − (x′′ + 1)1−μ

)
‖z‖∞

� C(x′′ − x′)1−μ‖z‖∞. (3.13)

Finally, we have

I3 � ‖R̄‖∞‖z‖∞
x′′∫

x′

(x′′ − ξ)−μ dξ � C(x′′ − x′)1−μ‖z‖∞. (3.14)

Consequently, from (3.11)–(3.14) we have

|
∫ x′

−1(x
′ − ξ)−μR̄(x′, ξ)z(ξ) dξ −

∫ x′′

−1 (x
′′ − ξ)−μR̄(x′′, ξ)z(ξ) dξ|

|x′ − x′′|κμ

� C((x′′ − x′)1−κμ + (x′′ − x′)1−μ−κμ)‖z‖∞ � C‖z‖∞

for 0 < κμ < 1− μ. Thus, we have proven (3.9). The proof of (3.10) is similar to that of (3.9). �	
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Let R(x, y, ξ, η), ∂R(x, y, ξ, η)/∂x, ∂R(x, y, ξ, η)/∂y ∈ C(Ω̄ × Ω̄). We further define a linear weakly
singular integral operatorM:

Mv =

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−νR(x, y, ξ, η)v(ξ, η) dη dξ. (3.15)

From Lemma 6 we can show that M is compact as an operator from C(Ω̄) to C0,κ(Ω̄) for any 0 < κ <
min{κμ, κν}; namely, we have the following lemma.

Lemma 7. Let 0 < κ < min{κμ, κν}, and letM be defined by (3.15). Then, for any function v(x, y) ∈ C(Ω̄),
there exists a positive constant C such that

‖Mv‖0,κ � C‖v‖∞. (3.16)

Proof. We only need to prove that M is Hölder continuous, that is,

|Mv(x′, y′)−Mv(x′′, y′′)|
((x′ − x′′)2 + (y′ − y′′)2)κ/2

� C‖v‖∞, (x′, y′), (x′′, y′′) ∈ Ω̄,

for 0 <
√

(x′ − x′′)2 + (y′ − y′′)2 < 1 and 0 < κ < min{κμ, κν}. From (3.15) we have
∣∣Mv(x′, y′)−Mv(x′′, y′′)

∣∣

=

∣∣∣∣∣
x′∫

−1

y′∫

−1

(x′ − ξ)−μ(y′ − η)−νR(x′, y′, ξ, η)v(ξ, η) dη dξ

−
x′′∫

−1

y′′∫

−1

(x′′ − ξ)−μ(y′′ − η)−νR(x′′, y′′, ξ, η)v(ξ, η) dη dξ

∣∣∣∣∣
� E1 + E2, (3.17)

where

E1 =

∣∣∣∣∣
x′∫

−1

y′∫

−1

(x′ − ξ)−μ(y′ − η)−νR(x′, y′, ξ, η)v(ξ, η) dη dξ

−
x′∫

−1

y′′∫

−1

(x′ − ξ)−μ(y′′ − η)−νR(x′, y′′, ξ, η)v(ξ, η) dη dξ

∣∣∣∣∣,

E2 =

∣∣∣∣∣
x′∫

−1

y′′∫

−1

(x′ − ξ)−μ(y′′ − η)−νR(x′, y′′, ξ, η)v(ξ, η) dη dξ

−
x′′∫

−1

y′′∫

−1

(x′′ − ξ)−μ(y′′ − η)−νR(x′′, y′′, ξ, η)v(ξ, η) dη dξ

∣∣∣∣∣.
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We now estimate the two terms. Observe that

E1 �
x′∫

−1

(x′ − ξ)−μ

∣∣∣∣∣
y′∫

−1

(y′ − η)−νR(x′, y′, ξ, η)v(ξ, η) dη

−
y′′∫

−1

(y′′ − η)−νR(x′, y′′, ξ, η)v(ξ, η) dη

∣∣∣∣∣ dξ,

which, together with (3.10), gives

E1 � C|y′ − y′′|κν

x′∫

−1

(x′ − ξ)−μ max
y∈[−1,1]

∣∣v(ξ, y)∣∣ dξ

� C|y′ − y′′|κν‖v‖∞ � C
((
(x′ − x′′)2 + (y′ − y′′)2

)κν/2)‖v‖∞
� C

(
(x′ − x′′)2 + (y′ − y′′)2

)min{κμ,κν}/2‖v‖∞, (3.18)

where we used the condition 0 <
√

(x′ − x′′)2 + (y′ − y′′)2 < 1. Similarly, we have

E2 � C((x′ − x′′)2 + (y′ − y′′)2)min{κμ,κν}/2‖v‖∞. (3.19)

Consequently, it follow from (3.17), (3.18), and (3.19) that

|Mv(x′, y′)−Mv(x′′, y′′)|
((x′ − x′′)2 + (y′ − y′′)2)κ/2

=
(
(x′ − x′′)2 + (y′ − y′′)2

)−κ/2∣∣Mv(x′, y′)−Mv(x′′, y′′)
∣∣

� C
(
(x′ − x′′)2 + (y′ − y′′)2

)min{κμ,κν}−κ/2‖v‖∞ � C‖v‖∞

for 0 < κ < min{κμ, κν}. Thus, we have proven (3.16). �	

To prove the error estimate in the weighted L2-norm, we need the two-dimensional Hardy inequality (see
[20]).

Lemma 8. For any measurable function f � 0, the two-dimensional Hardy inequality:

( b∫

a

d∫

c

∣∣(T f)(x, y)
∣∣qω̌(x)ω̄(y) dy dx

)1/q

� C

( b∫

a

d∫

c

∣∣f(x, y)∣∣P ω̂(x)ω̃(y) dy dx
)1/P

hold if and only if

sup
(x,y)∈(a,b)×(c,d)

( b∫

x

d∫

y

ω̌(s)ω̄(t) dt ds

)1/q( x∫

a

y∫

c

(
ω̂(s)ω̃(t)

)1−p′
dt ds

)1/p′

< ∞,
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where p′ = p/(p − 1), 1 < p � q < ∞. Here T is an operator of the form

(T f)(x, y) =

x∫

a

y∫

c

R(x, y, s, t)f(s, t) dt ds

with a given kernel R(x, y, s, t), ω̌(x)ω̄(y) and ω̂(x)ω̃(y) are weight functions, and −∞ � a < b � ∞,
−∞ � c < d � ∞.

We have the following estimate for the Lagrange interpolation based on the Jacobi collocation point-pairs.

Lemma 9. For every bounded function v(x, y), there exists a constant C independent of v(x, y) such that

sup
N

‖I −μ,−ν
N v‖ω−μ,−ν

� C‖v‖∞. (3.20)

Proof. As the (N +1)-point Jacobi–Gauss quadrature formulas are accurate for the polynomials with degree
not exceeding 2N + 1, that is,

1∫

−1

p1(x)(1− x2)−μ dx =

N∑
i=0

p1(xi)wi, p1 ∈ P̃2N+1, (3.21)

1∫

−1

p2(y)(1− y2)−ν dx =

N∑
j=0

p2(yj)ρj , p2 ∈ P̃2N+1. (3.22)

Then (3.21) and (3.22) yield

1∫

−1

1∫

−1

p(x, y)
(
1− x2

)−μ(
1− y2

)−ν
dy dx =

N∑
i=0

N∑
j=0

p(xi, ρj)ρjwi, p ∈ P2N+1. (3.23)

Let {J−μ,−μ
m (x)}Nm=0 and {J

−ν,−ν
m (y)}Nm=0 be the sets of Jacobi polynomials with respect to the weight func-

tions ω−μ,−μ(x) = (1− x2)−μ, ω−ν,−ν(y) = (1− y2)−ν , respectively. By (3.23) we have

∥∥I −μ,−ν
N v

∥∥2
ω−μ,−ν

=

1∫

−1

1∫

−1

(
I −μ,−ν
N v

)2(
1− x2

)−μ(
1− y2

)−ν
dy dx

=

N∑
i=0

N∑
j=0

v2(xi, yj)ρjwi � ‖v‖2∞
N∑
i=0

wi

N∑
j=0

ρj

= γ̄γ̃‖v‖2∞, (3.24)

where γ̄ =
∫ 1
−1 J

−μ,−μ
0 (x)(1 − x2)−μ dx and γ̃ =

∫ 1
−1 J

−ν,−ν
0 (y)(1 − y2)−ν dy. From (3.24) we obtain the

desired result (3.20). �	
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4 Convergence analysis

In this section, we show that the approximated solution obtained by the Jacobi collocation method (2.6) con-
verges exponentially. Firstly, we will derive the error estimate in L∞-norm.

Theorem 1. Let u(x, y) be the exact solution of Eq. (2.2), and let the approximated solution uN (x, y) of the
form (2.5) be obtained by the collocation equations (2.6). If u(x, y) ∈ Hm

ω−μ,−ν
(Ω) (m � 5) and K̃ satisfies

m times Lipschitz continuous conditions with its fifth argument, that is,

∣∣∣∣∂
p+qK̃(x, y, ξ, η, u1(ξ, η))

∂ξp∂ηq
− ∂p+qK̃(x, y, ξ, η, u2(ξ, η))

∂ξp∂ηq

∣∣∣∣
� Lp+q

∣∣u1(ξ, η) − u2(ξ, η)
∣∣, p+ q = 0, 1, 2, . . . ,m, (4.1)

then

‖u− uN‖∞ �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CN−m(N4‖u‖m,ω−μ,−ν
+ log2 NK∗), 1

2 � μ, ν < 1,

CN−m(N4‖u‖m,ω−μ,−ν
+N1−μ−νK∗), 0 < μ, ν < 1

2 ,

CN−m(N4‖u‖m,ω−μ,−ν
+N1/2−ν logNK∗), 1

2 � μ < 1, 0 < ν < 1
2 ,

CN−m(N4‖u‖m,ω−μ,−ν
+N1/2−μ logNK∗), 0 < μ < 1

2 ,
1
2 � ν < 1,

(4.2)

provided that N is sufficiently large, where C is a constant independent of N , and

K∗ = max
(x,y)∈Ω̄

∥∥K̃(
x, y, ξ, η, u(ξ, η)

)∥∥
m,ω 0,0

. (4.3)

Proof. By (2.4) we can change the numerical scheme (2.6) to

uij =

xi∫

−1

yi∫

−1

(xi − ξ)−μ(yj − η)−νK̃
(
xi, yj , ξ, η, uN (ξ, η)

)
dη dξ + g(xi, yj)− I(xi, yj), (4.4)

where uN is defined by (2.5), and

I(x, y) =

1∫

−1

1∫

−1

(1− θ)−μ(1− ζ)−νK1

(
x, y, ξ(x, θ), η(y, ζ), uN

(
ξ(x, θ), η(y, ζ)

))
dζ dθ

−
N∑
k=0

N∑
l=0

K1

(
x, y, ξ(x, θ̄k), η(y, ζ̄l), uN

(
ξ(x, θ̄k), η(y, ζ̄l)

))
ρ̄lw̄k.

Using the definition of ‖·‖m,ω0,0
and Lemma 1 gives

∣∣I(x, y)∣∣ � CN−m
∥∥K̃(

x, y, ξ(x, ·), η(y, ·), uN
(
ξ(x, ·), η(y, ·)

))∥∥
m,ω0,0

=

(
m∑

p+q=0

∥∥∥∥∂
p+qK̃(x, y, ξ(x, θ), η(y, ζ), uN (ξ(x, θ), η(y, ζ)))

∂θp∂ζq

∥∥∥∥
2

ω0,0

)1/2

.
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Notng that
∣∣∣∣∂

p+qK̃(x, y, ξ(x, θ), η(y, ζ), uN (ξ(x, θ), η(y, ζ)))

∂θp∂ζq

∣∣∣∣
=

∣∣∣∣
(
∂ξ

∂θ

)p(∂η

∂ζ

)q ∂p+qK̃(x, y, ξ, η, uN (ξ, η))

∂ξp∂ηq

∣∣∣∣ �
∣∣∣∣∂

p+qK̃(x, y, ξ, η, uN (ξ, η))

∂ξp∂ηq

∣∣∣∣
�

∣∣∣∣∂
p+qK̃(x, y, ξ, η, u(ξ, η))

∂ξp∂ηq

∣∣∣∣+
∣∣∣∣∂

p+qK̃(x, y, ξ, η, uN (ξ, η))

∂ξp∂ηq
− ∂p+qK̃(x, y, ξ, η, u(ξ, η))

∂ξp∂ηq

∣∣∣∣,
we get

∣∣I(x, y)∣∣ � CN−m
(∥∥K̃(

x, y, ξ, η, u(ξ, η)
)∥∥

m,ω0,0

+
∥∥K̃(

x, y, ξ, η, uN (ξ, η)
)
− K̃

(
x, y, ξ, η, u(ξ, η)

)∥∥
m,ω0,0

)
. (4.5)

Usingm times the Lipschitz continuous conditions (4.1), we have
∥∥K̃(

x, y, ξ, η, uN (ξ, η)
)
− K̃

(
x, y, ξ, η, u(ξ, η)

)∥∥
m,ω0,0

=

(
m∑

p+q=0

∥∥∥∥∂
p+qK̃(x, y, ξ, η, uN (ξ, η))

∂ξp∂ηq
− ∂p+qK̃(x, y, ξ, η, u(ξ, η))

∂ξp∂ηq
‖2ω 0,0

)1/2

�
m∑

p+q=0

∥∥∥∥∂
p+qK̃(x, y, ξ, η, uN (ξ, η))

∂ξp∂ηq
− ∂p+qK̃(x, y, ξ, η, u(ξ, η))

∂ξp∂ηq

∥∥∥∥
ω 0,0

�
m∑

p+q=0

Lp+q

∥∥uN (ξ, η) − u(ξ, η)
∥∥
ω0,0

� C
∥∥uN (ξ, η)− u(ξ, η)

∥∥
ω0,0

.

Consequently, (4.5) becomes
∣∣I(x, y)∣∣ � CN−m

(∥∥K̃(
x, y, ξ, η, u(ξ, η)

)∥∥
m,ω0,0

+ ‖uN (ξ, η) − u(ξ, η)
∥∥
ω 0,0

)
. (4.6)

Subtracting (4.4) from (2.3) yields

u(xi, yj)− uij

=

xi∫

−1

yj∫

−1

(xi − ξ)−μ(yj − η)−ν
(
K̃
(
xi, yj , ξ, η, u(ξ, η)

)
− K̃

(
xi, yj , ξ, η, uN (ξ, η)

))
dη dξ

+ I(xi, yj). (4.7)

Multiplying by Fi(x)Fj(y) both sides of (4.7) and summing up from i = 0 to N and from j = 0 to N give

I −μ,−ν
N u(x, y)− uN (x, y)

= I −μ,−ν
N

( x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν
(
K̃
(
x, y, ξ, η, u(ξ, η)

)
− K̃

(
x, y, ξ, η, uN (ξ, η)

))
dη dξ

)

+ I −μ,−ν
N I(x, y). (4.8)
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Let e(x, y) = u(x, y) − uN (x, y) denote the error functions. From (4.8) we obtain that

e(x, y) = I −μ,−ν
N

( x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν(K̃
(
x, y, ξ, η, u(ξ, η)

)
− K̃

(
x, y, ξ, η, uN (ξ, η)

))
dη dξ

)

+ J1(x, y) + J2(x, y), (4.9)

where

J1(x, y) = I −μ,−ν
N I(x, y), J2(x, y) = u(x, y) − I −μ,−ν

N u(x, y).

Applying the Lagrange midvalue differential theorem to (4.9), we get that there exists a function φ(ξ, η) =
uN (ξ, η) + λe(ξ, η) (0 < λ < 1) such that

e(x, y) = I −μ,−ν
N

( x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν ∂K̃(x, y, ξ, η, φ(ξ, η))

∂u
e(ξ, η) dη dξ

)

+ J1(x, y) + J2(x, y), (4.10)

where ∂K̃/∂u denotes the partial derivative of K̃ with respect to its fifth argument. For simplicity of notation,
we set

Me =

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν ∂K̃(x, y, ξ, η, φ(ξ, η))

∂u
e(ξ, η) dη dξ.

Then we can write (4.10) as

e(x, y) =

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν ∂K̃(x, y, ξ, η, φ(ξ, η))

∂u
e(ξ, η) dη dξ

+ J1(x, y) + J2(x, y) + J3(x, y), (4.11)

where

J3(x, y) = I −μ,−ν
N (Me) −Me.

DenotingΔ := {(x, y, ξ, η): −1 � ξ � x, −1 � η � y, −1 � x, y � 1}, from (4.11) we have

∣∣e(x, y)∣∣ � M

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν
∣∣e(ξ, η)∣∣ dη dξ + ∣∣J1(x, y) + J2(x, y) + J3(x, y)

∣∣, (4.12)

where

M = max
(x,y,ξ,η)∈Δ

∂K̃(x, y, ξ, η, φ(ξ, η))

∂u
.

Applying Lemma 5, we deduce from (4.12) that

∣∣e(x, y)∣∣ � C

x∫

−1

y∫

−1

(x− ξ)−μ(y − η)−ν
∣∣J1(ξ, η) + J2(ξ, η) + J3(ξ, η)

∣∣ dη dξ

+
∣∣J1(x, y) + J2(x, y) + J3(x, y)

∣∣. (4.13)
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Then we have

‖e‖∞ � C
(
‖J1‖∞ + ‖J2‖∞ + ‖J3‖∞

)
. (4.14)

Firstly, it follows from Lemma 2 and from (4.6) that

‖J1‖∞ =
∥∥I −μ,−ν

N I(x, y)
∥∥
∞ � C max

(x,y)∈Ω̄

∣∣I(x, y)∣∣ max
(x,y)∈Ω̄

N∑
m=0

N∑
n=0

∣∣Fm(x)Fn(y)
∣∣

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CN−m log2 N(K∗ + ‖e‖∞), 1
2 � μ, ν < 1,

N1−m−μ−ν(K∗ + ‖e‖∞), 0 < μ, ν < 1
2 ,

N1/2−m−ν logN(K∗ + ‖e‖∞), 1
2 � μ < 1, 0 < ν < 1

2 ,

N1/2−m−μ logN(K∗ + ‖e‖∞), 0 < μ < 1
2 ,

1
2 � ν < 1.

(4.15)

Next, by Lemma 3 we obtain that

‖J2‖∞ =
∥∥u(x, y)− I −μ,−ν

N u(x, y)
∥∥
∞ � CN4−m‖u‖m,ω−μ, −ν

. (4.16)

We now estimate the third term J3. Note that

I −μ,−ν
N p(x, y) = p(x, y), i.e.,

(
I −μ,−ν
N − I

)
p(x, y) = 0, p ∈ PN , (4.17)

where I denotes the identity operator. Using (3.8), Lemma 2, Lemma 7, and (4.17), we have

‖J3‖∞ =
∥∥(I −μ,−ν

N − I)Me
∥∥
∞ =

∥∥(I −μ,−ν
N − I)(Me− GNMe)

∥∥
∞

�
(
1 +

∥∥I −μ,−ν
N

∥∥
∞
)
‖Me− GNMe‖∞ � CN−k

(
1 +

∥∥I −μ,−ν
N

∥∥
∞
)
‖Me‖0,κ

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CN−κ log2N‖e‖∞, 1
2 � μ, ν < 1,

CN1−κ−μ−ν‖e‖∞, 0 < μ, ν < 1
2 ,

CN1/2−κ−ν logN‖e‖∞, 1
2 � μ < 1, 0 < ν < 1

2 ,

CN1/2−κ−μ logN‖e‖∞, 0 < μ < 1
2 ,

1
2 � ν < 1,

(4.18)

where in the last step we have used Lemma 7 under the following assumption:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < κ < min{κμ, κν}, 1
2 � μ, ν < 1,

1− μ− ν < κ < min{κμ, κν}, 0 < μ, ν < 1
2 ,

1
2 − ν < κ < min{κμ, κν}, 1

2 � μ < 1, 0 < ν < 1
2 ,

1
2 − μ < κ < min{κμ, κν}, 0 < μ < 1

2 ,
1
2 � ν < 1.

(4.19)

Thus, we obtain the desired estimate (4.2) by combining (4.14)–(4.16) and (4.18). �	

Next, we provide the error estimate in weighted L2-norm.
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Theorem 2. If the hypotheses given in Theorem 1 hold and κ satisfies condition (4.19), then

‖u− uN‖ω−μ, −ν
�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CN−m
(
N4−κ‖u‖m,ω−μ,−ν

+K∗), 1
2 � μ, ν < 1,

CN−m(N4−κ‖u‖m,ω−μ,−ν
+K∗), 0 < μ, ν < 1

2 ,

CN−m(N4−κ‖u‖m,ω−μ,−ν
+K∗), 1

2 � μ < 1, 0 < ν < 1
2 ,

CN−m(N4−κ‖u‖m,ω−μ,−ν
+K∗), 0 < μ < 1

2 ,
1
2 � ν < 1,

(4.20)

provided that N is sufficiently large, where C is a constant independent of N , andK∗ is defined by (4.3).

Proof. It follows from (4.13), Lemma 5, and Lemma 8 that

‖e‖ω−μ,−ν
� C

(
‖J1‖ω−μ,−ν

+ ‖J2‖ω−μ,−ν
+ ‖J3‖ω−μ,−ν

)
. (4.21)

By Lemma 9 and (4.6) we have

‖J1‖ω−μ,−ν
=

∥∥I −μ,−ν
N I(x, y)

∥∥
ω−μ,−ν

� C max
(x,y)∈Ω̄

∣∣I(x, y)∣∣ � CN−m
(
K∗ + ‖e‖∞

)
. (4.22)

Applying Lemma 3 yields

‖J2‖ω−μ,−ν
=

∥∥u(x, y)− I −μ,−ν
N u(x, y)

∥∥
ω−μ,−ν

� CN−m‖u‖m,ω−μ, −ν
. (4.23)

From (3.8), Lemma 7, and Lemma 9 we obtain that

‖J3‖ω−μ,−ν
=

∥∥(I −μ,−ν
N − I

)
Me

∥∥
ω−μ,−ν

=
∥∥(I −μ,−ν

N − I
)
(Me − GNMe)

∥∥
ω−μ,−ν

�
∥∥I −μ,−ν

N (Me− GNMe)
∥∥
ω−μ,−ν

+ ‖Me− GNMe‖ω−μ,−ν

� C‖Me− GNMe‖∞ � CN−k‖Me‖0,κ � CN−k‖e‖∞.

Then using the convergence result in Theorem 1, we have

‖J3‖ω−μ,−ν
�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CN−m−κ(N4‖u‖m,ω−μ,−ν
+ log2 NK∗), 1

2 � μ, ν < 1,

CN−m−κ(N4‖u‖m,ω−μ,−ν
+N1−μ−νK∗), 0 < μ, ν < 1

2 ,

CN−m−κ(N4‖u‖m,ω−μ,−ν
+N1/2−ν logNK∗), 1

2 � μ < 1, 0 < ν < 1
2 ,

CN−m−κ(N4‖u‖m,ω−μ,−ν
+N1/2−μ logNK∗), 0 < μ < 1

2 ,
1
2 � ν < 1,

(4.24)

for sufficiently largeN and for any κ satisfying (4.19). The desired estimate (4.20) follows from (4.21)–(4.23)
and (4.24). �	

5 Numerical experiments

In this section, we present some numerical results to illustrate the performance of the Jacobi-collocation
method.
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Example 1. Consider the following two-dimensional nonlinear weakly singular Volterra integral equation:

u(x, y) = exy − 2(x+ 1)3/4(y + 1)2/3 sin(x+ y)

+

x∫

−1

y∫

−1

(x− ξ)−1/4(y − η)−1/3 sin(x+ y)e−2ξηu2(ξ, η) dη dξ. (5.1)

This equation has a unique solution u(x, y) = exy.

Table 1. The L∞ and L2
ω−μ,−ν

errors of uN (x, y) (μ = 1/4, ν = 1/3)

N 2 4 6

‖u− uN‖∞ 3.20899e − 1 1.66576e − 3 1.11637e − 5
‖u− uN‖ω−μ,−ν 2.52782e − 1 2.90085e − 4 5.91151e − 7

N 8 10 12

‖u− uN‖∞ 7.35348e − 7 9.41531e−11 7.32126e−12
‖u− uN‖ω−μ,−ν 1.29209e − 7 2.47146e−12 2.22215e−12
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Figure 1. The L∞ and L2
ω−μ,−ν

errors versus N (μ = 1/4, ν = 1/3).

We use the Jacobi-collocation method suggested to resolve (5.1) numerically. Table 1 presents the numeri-
cal errors in the L∞-norm and weightedL2-norm of (5.1). We also plot the numerical errors versus the number
of collocation points in Fig. 1. We observe that the numerical errors decay exponentially asN increases, which
illustrates the theoretical results.

6 Conclusion and future work

In this paper, we proposed a spectral collocation method for the two-dimensional nonlinear weakly singular
Volterra integral equation with smooth solutions. Under reasonable assumptions on the nonlinearity, we estab-
lished the converge analysis in the L∞-norm and weighted L2-norm. The spectral accuracy of the suggested
method was demonstrated by numerical experiments.

In the next work, we will consider the spectral method for the two-dimensional nonlinear weakly singular
Volterra integral equations with nonsmooth solutions.

Lith. Math. J., 58(1):75–94, 2018.
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25. D. Mitrinović, J. Pečarić, and A. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Math.
Appl., East Eur. Ser., Vol. 53, Kluwer, Dordrecht, 1991.

26. D.L. Ragozin, Polynomial approximation on compact manifolds and homogeneous space, Trans. Am. Math. Soc.,
150:41–53, 1970.

27. D.L Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Am. Math. Soc.,
162:157–170, 1971.

28. J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.

29. J. Shen and T. Tang, Spectral Methods: Algorithms, Analyses and Applications, Springer, New York, 2007.

30. C. Sheng, Z. Wang, and B. Guo, A multistep Legendre–Gauss spectral collocation method for nonlinear Volterra
integral equations, SIAM J. Numer. Anal., 52(4):1953–1980, 2014.

31. C. Sheng, Z. Wang, and B. Guo, An hp-spectral collocation method for nonlinear Volterra functional integro-
differential equations with delays, Appl. Numer. Math., 105:1–24, 2016.

32. X. Shi and Y. Chen, Spectral-collocation method for Volterra delay integro-differential equations with weakly sin-
gular kernels, Adv. Appl. Math. Mech., 8(4):648–669, 2016.

33. T. Tang, X. Xu, and J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis,
J. Comput. Math., 26(6):825–837, 2008.

34. X. Tao, Z. Xie, and X. Zhou, Spectral Petrov–Galerkin methods for the second kind Volterra type integro-differential
equations, Numer. Math., Numer. Math., Theory Methods Appl., 4:216–236, 2011.

35. A. Tari, Numerical Solution of Two Dimensional Integral and Integro-Differential Equations with Expansion and
Operational Matrices Method, University of Tabriz, Tabriz, 2008.

36. A. Tari, Numerical Solution of the Two-dimensional Linear and Nonlinear Volterra Integral and Integro-Differential
Equations by the Tau Method, Phd dissertation, Tabriz University, Tabriz, Iran, 2009.

37. A. Tari, M.Y. Rahimi, S. Shahmorad, and F. Talati, Development of the tau method for the numerical solution of
two-dimensional linear Volterra integro-differential equations, Comput. Methods Appl. Math., 9:421–435, 2009.

38. A. Tari, M.Y. Rahimi, S. Shahmorad, and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra
integral equations by the differential transform method, J. Comput. Appl. Math., 228:70–76, 2009.

39. A. Tari and S. Shahmorad, A computational method for solving two-dimensional linear Volterra integral equations
of the first kind, Sci. Iran., 19:829–835, 2012.

40. G. Vainikko, Multidimensional Weakly Singular Integral Equations, Springer, Berlin, Heidelberg, 1993.

41. Z. Wan, Y. Chen, and Y. Huang, Legendre spectral Galerkin method for second-kind Volterra integral equations,
Front. Math. China, 4:181–193, 2009.

42. Z. Wang and C. Sheng, An hp-spectral collocation method for nonlinear Volterra integral equations with vanishing
variable delays, Math. Comput., 85:635–666, 2016.

43. Y. Wei and Y. Chen, Convergence analysis of the Legendre spectral collocations methods for second order Volterra
integro-differential equations, Numer. Math., Theory Methods Appl., 43(3):419–438, 2011.

Lith. Math. J., 58(1):75–94, 2018.



94 X. Shi and Y. Wei

44. Y. Wei and Y. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential
equations with smooth solutions, Adv. Appl. Math. Mech., 4(1):1–20, 2012.

45. Y. Wei and Y. Chen, Legendre spectral collocation methods for pantograph Volterra delay integro-differential equa-
tions, J. Sci. Comput., 53:672–688, 2012.

46. Y. Wei and Y. Chen, Legendre spectral collocation method for neutral and high-order Volterra integro-differential
equation, Appl. Numer. Math., 81:15–29, 2014.

47. Z. Xie, X. Li, and T. Tang, Convergence analysis of spectral Galerkin methods for Volterra type integral equations,
J. Sci. Comput., 53:414–434, 2012.

48. Y. Yang, Y. Chen, Y. Huang, and W. Yang, Convergence analysis of Legendre-collocation methods for nonlinear
Volterra type integro equations, Adv. Appl. Math. Mech., 7:74–88, 2015.

49. R. Zhang, B. Zhu, and H. Xie, Spectral methods for weakly singular Volterra integral equations with pantograph
delays, Front. Math. China., 8(2):281–299, 2013.

50. X. Zhang, Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular kernel,
Appl. Math. Modelling, 39:4421–4431, 2015.

51. X. Zhang, A multistep Legendre pseudo-spectral method for Volterra integral equations, Appl. Math. Comput.,
274:480–494, 2016.

52. J. Zhao, Y. Cao, and Y. Xu, Legendre spectral collocation methods for Volterra delay-integro-differential equations,
J. Sci. Comput., 67:1110–1133, 2016.


	Introduction
	Jacobi-collocation method
	Some preliminaries and useful lemmas
	Convergence analysis
	Numerical experiments
	Conclusion and future work
	References

