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On the rate of convergence in the global central limit theorem
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Abstract. We present upper bounds of the integral [~ _|z|'|P{Zy < x} — &(x)|dx for 0 < | < 1+ 6, where
0 < § < 1, P(x) is a standard normal distribution function, and Zx = Sy /+/V Sy is the normalized random sum with
variance VSy > 0 (Sy = X7 + --- + Xy) of centered independent random variables X7, X5, ... . The number of
summands N is a nonnegative integer-valued random variable independent of X, X5, ... .
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1 Introduction and main results

Let X1, Xs,... be a sequence of independent, not necessarily identically distributed, real random variables
(r.v.s) with EX; = 0 and E|XZ'|2+‘S < oo, where 0 < § < 1, forall¢ = 1,2,..., and IV be a nonnegative
integer-valued r.v. independent of X, Xo, ... . Let ®(z) and ¢(x) be the standard normal distribution function
and density. In what follows, R is the real line, N = {1,2, ... }, and Ny = NU{0}.
Write
Sy Y
IN= R W= ;X So=0,

assuming that the variance V.Sy > 0.
In this paper, we are interested in estimates of the quantity

7, = / |z [P{Zy < 2} — &(z)|da

for some [ > 0.
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The upper bounds of Zy for random sums of independent r.v.s were obtained in [13]. However, the author
has not found any published results on the upper bounds of the quantity Z; for [ > 0. In this paper, we fill this
vacancy and present the upper bounds of Z; for all 0 </ < 1+ §, where 0 < § < 1, for centered independent,
not necessarily identically distributed, random variables.

For a fixed (nonrandom) number n of summands (N = n), we use the corresponding notation

_ S, —ES, o~ R '
Z"_ivsn , Sn_;XZ, VSn_Bn_;VXZ,

o
1 n
Lin = / |$|I‘P{Zn <az}-— 45(33” da, Lotsn = B2 ZE|XZ - EXZ’|2+5
e noo=1
with variance B2 > 0.

By C'(-) with an index or without it, we denote a positive finite factor depending only on the quantities
indicated in the parentheses (not necessarily the same at different places).

The estimates of the quantity 7, ,, for a fixed number of random summands are considered, for example,
in [2], for stationary sequences satisfying projective criteria in the style of Gordin or weak dependence con-
ditions with [ = 0; in [4], for m-dependent r.v.s with [ = 0; in [5], for independent r.v.s with [ = 0; in [6],
for L, bounds (1 < p < oo) for the remainder in a combinatorial central limit theorem for independent r.v.s;
in [9] and [12], for m-dependent r.v.s with [ > 0; and in the book [1], for the normal approximation with
Lipschitz functions and with the Kolmogorov distance for random sums of independent identically distributed
(i.i.d.) r.v.s with nonrandom centering by Stein’s method. We would like to mention here the book [7] devoted
to general limit theorems for random sums.

Note that in the recent paper [3], new and general Berry—Esseen and Wasserstein bounds in the CLT for
nonrandomly centered random sums are given, which are of the correct order in the case of some random
indexes.

The main results of this paper are Theorems 1, 2, and 3. To formulate the results, we introduce the additional
V.8

N N
By =) VX, bv=>Y EIX;[", r=11+12+3.
i=1 i=1
First of all, we recall that the variance V.S = EB]2V under the condition that r.v.s N, X1, Xy, ... are inde-

pendentand EX; =0Oforall:i =1,2,... .
The following statement is valid.

Theorem 1. Let X, Xo,... be independent, not necessarily identically distributed, r.v.s with EX; = 0,
E|X;|*™° < oo, where 0 < 6 < 1, foralli = 1,2,..., and VS, = VX; = EX}? > 0. Let N be
a nonnegative integer-valued r.v. independent of X1, Xa, ... . Then

Ely s n C(Z)E‘B%V - EBR|

< s S

Il X< C(l>5) (EBJQV)(Q_H;)/Q EB]2V (11)

for0 <1< 1, and

Elj 1N Ely 5N E|B{!' — (EB%)HD/2|

L <O)=m=—775+C,0) =757+ CU 1.2
t ( )(EB%V)(H-l)D + ( )(EB]?V)(2+6)/2 + ( ) (EB]2V)(H—1)/2 (1.2)

for1 <I<1+6.
In the case of identically distributed summands X1, X, ..., from Theorem 1 we derive the following result.

Lith. Math. J., 57(2):244-258, 2017.



246 J.K. Sunklodas

Corollary 1. Let X, X, Xo, ... be i.id. rvs with EX = 0,0 < 02 = VX, and 545 = E|X|>T? < o,
where 0 < § < 1. Let N be a nonnegative integer-valued r.v. with 0 < EN < oo independent of X1, Xo, . .. .
Then Zy = Sy /(o VEN),

Pogs 1 E|N —EN|
Izéc(lﬁ)mW*‘C(l)T (1.3)
for0 <1< 1, and
(I+1)/2 _ (I+1)/2
7, < C(l)ﬁl“ ! =+ C(l,é)@; + C(l)E|N (EN) | (1.4)

oL (EN)@=D/ o2t (EN /2 (EN)(+D/2

for1 <l <1+6.

Denote
A = |E|Zy|' - E|Y]|.

(I hope that there will not be any confusion between the absolute value of the difference between the absolute
moments \; and the Poisson parameter \.)

The estimates of differences \; between the absolute moments of the random sum Zx and the standard
normal r.v. Y follow from estimates of Z; of Theorem 1.
Namely, the following result is valid.

Theorem 2. Let the conditions of Theorem 1 hold, and let Y be a standard normal r.v. Then

N <O, 5)%% + 0(1)%@;%| (15)
for1 <1< 2 and
M< OBy o5 Elen o BBy — (BB (1.6)
(EB2)1/? (EBZ,)2+0)/2 (EB2,)1/?
for2 <1 <2+6.
In the case of identically distributed summands X7, Xo, ..., from Theorem 2 we obtain the following

result.

Corollary 2. Let X, X1, Xo,... be i.id. rvs with EX = 0,0 < 02 = VX, and By 5 = E|X|*° < o,
where 0 < § < 1. Let N be a nonnegative integer-valued r.v. with 0 < EN < oo independent of X1, Xo, ... .
Then ZN = SN/(O'\/EN),

Bors 1 E|N — EN|
)\[ < C(l,(S)UQ_HSW +C(Z)T (17)
for1 <1< 2 and
B 1 Bors 1 E|N'2 — (EN)"/?|

for2 <1 <2+6.
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Now, we present the results following from inequalities (1.3) of Corollary 1 and (1.7) of Corollary 2 for
three concrete random indices N, the definitions of which are as follows. First, introduce a new definition of
the 7-shifted £ distributions (7-shifted Poisson distribution, 7-shifted binomial distribution, 7-shifted negative
binomial distribution, and so on).

In the sequel, we write £ ~ L if ar.v. £ is distributed by the £ distribution.

DEFINITION 1. We say that a discrete r.v. N is distributed by the 7-shifted £ distribution (7 > 0) (for short,
N — 7 ~ L), or N is the 7-shifted r.v., if for any discrete r.v. £ ~ L taking values {x} },
P{N =z + 7} =P{{ = a1} = px. (1.9)

In the particular case, the O-shifted £ distribution coincides with the £ distribution.

DEFINITION 2. We say thatar.v. N is distributed by the 7-shifted Poisson distribution (7 > 0) with parameter
A > 0 (for short, N — 7 ~ P()\)) if

P{N:k+7}:P{§:k}:ﬁe‘A, k=0,1,2,.... (1.10)
DEFINITION 3. We say that ar.v. NV is distributed by the 7-shifted binomial distribution (7 > 0) with parame-
tersn € Nand 0 < p < 1 (for short, N — 7 ~ B(n,p)) if

P{N=k+7}=P{e=k}=Crp*1-p"* k=0,1,...,n. (1.11)

DEFINITION 4. We say that ar.v. N is distributed by the 7-shifted negative binomial distribution (7 > 0) with
the parameters r € N and 0 < p < 1 (for short, N — 7 ~ N'B(r, p) if

P{N=k+7}=P{{=k}= <f:i>pT(1—p)k_T, kE=r,r+1,.... (1.12)

Now, we present the following statement for three presented 7-shifted £ distributions.

Theorem 3. Let X, X1, Xo, ... beiid. rv.swithEX = 0,0 < 02 = VX, and 53,5 = E|X|**° < oo, where
0 < § < 1. Let N be a nonnegative integer-valued r.v. independent of X1, Xo, ... . Then Zy = Sy /(0vVEN),
and:

@) IfN — 7 ~ P(\) withT € Ngand \ > 0, then

I < C’lm (1.13)
for0<1<1, and

A < CQW (1.14)
forl <1<2.

() If N — 7 ~ B(n,p)withT € Ng, n € N, and 0 < p < 1, then
1

I < CgW (1.15)
for0<1<1, and

A < 1 (1.16)

forl <1 <2
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i) If N — 7 ~NB(r,p) witht € Nop, r € N, and 0 < p < 1, then

1

I < 05W7 (1.17)
for0<1<1, and
1
A< CGW, (1.18)

forl <1<2.
Here, Cz = Cl(l,é, g, ,82+5), 1= 1,2,3,4,5,6.

Since the O-shifted £ distribution coincides with the £ distribution, substituting 7 = 0 in Theorem 3, we
obtain the corresponding estimates of Z; and A; for a Poisson random sum, for a binomial random sum, and
for a negative binomial random sum.

2 Auxiliary results

To prove Theorem 1, we use a particular case (Theorem 5) of the following result for the sum with a fixed
number n of m-dependent summands X1, ..., X,, (Theorem 4).

Let X1,...,X,, be real m-dependent r.v.s (see, e.g., [4]) with E|X;|® < oo for some x > 2 and all
1=1,...,n.

Denote

X; — EX; _ -
Zy = ZAi, Ai= —F—— Ai = Ailga <0 Ai = Ailga >

i=1 V V(Z?:l Xl) ’

Lr,n — ZE|AZ|T7 Zr,n(t) — ZE|ZZ|T7 fr,n(t) — ZE|jZ|T7
=1 =1 =1
Tin = / =" |P{Z, < z} — ®(2)| dz,

where the truncation level ¢ > 0, the variance V(}_;" | X;) > 0, and 14 is the indicator of an event A.

Theorem 4. (See [12].) Let X1, ..., X,, be real m-dependent r.v.s with E|X;|" < oo for some k > 2 and all
i =1,...,n. Then, for the truncation level ty = (m + 1)~ and any fixedn = 1,2, ..., we have

Tin < C()((m + 1) Lanlto) + (m+ 1)Ly u(t0)) 2.1)

for0 <l < landif (m+ 1)L, < Cy, then

Tin < O, C)((m + 1) Tiy1n(to) + (m+1)%Ta 0 (to)) 22)

forl <l<k—1

Theorem 4 in [12] is presented with the additional condition EX; = 0,7 = 1,...,n, but its proof demon-
strates that this restriction is unnecessary.

We recall that to prove Theorem 4, we use a powerful and general direct Stein’s method introduced in [11]
for estimating the rate of convergence of sums of weakly dependent r.v.s to the normal distribution.
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In what follows, for independent (m = 0) summands X,...,X,,, we use the same notation as for
m-dependent r.v.s but with the truncation level ¢ = ¢ty = 1. Furthermore, we introduce some additional
notation for centered r.v.s:

Ai = Ailga <y A" — 4, - EA, A; = Ai1{|A4\>1}a 4, =4, - EA;,

X K

D DE L zA

The following statement follows from Theorem 4.

Theorem 5. Let X1, ..., X, be real independent r.v.s with E|X¢|2+5 < oo, where 0 < 6 < 1, foralli =
1,...,n. Then, forall 0 <1 <1+ 6 and any fixedn = 1,2, ...,

Co(l)
(>0 VX;

Tin < T > E[X; - EX,[*T. (2.3)
=1

Proof.  Since Lo, = 1 for independent r.v.s X1,..., X, in Theorem 4, we take m = 0, {y = 1, and the
evident relations with 1 <1 <1+ 6

Lon(1) + L3n(1) € Lotsn(1) + Logsn(l) = Lossn,  Ligin(1) < Lojsn(l). O

Note that in the case [ = 0 and 6 = 1, in the paper [5], it was proved that C((0) = 1, that s, if in Theorem 5,
E|X;]?> < coforalli =1,...,n, then, for any fixedn = 1,2, ...,

! iE\XZ- —EX;.

I07n < n
(Zj:l VXJ)3/2 i=1

To transfer estimate (2.3) for random sums, we need Lemmas 2 and 3. To prove Lemma 2, we use the
following statement.

Lemma 1. Let & and 1 be real r.v.s with E|¢|1 < 0o and B|n|'*! < oo for some | > 0, respectively. Then

7 El¢lH L B +1
/|x|l\P{g<a;}—P{n<x}\dx< <l 111 ™" (2.4)
In a particular case, if n =Y is a standard normal r.v. with distribution function ¢(x), then, for 1 > 0,
o i (BlgHt + 22002 - >,
/ |z [P{¢ < 2} — O(z)| dz < { 7 (BlE[F +1) ifo<i<1, (2.5)
- i (Bl + 22) if1<1<2.
Moreover, ifE{2 =1, then, forall 0 <1 < 1,
/ 2! IP{¢ <z} — ®(z)|da < i (2.6)
l+1
HereT'(a) = [;° a* te " dx < oo with a > 0.

Lith. Math. J., 57(2):244-258, 2017.



250 J.K. Sunklodas
Proof.  First, we observe that, for any u,v,z € Rand! > 0

/|a:|lda:

< |u— o[ max{ful’; [0}, 2.7)

/ |x|l|1{u<:p} - 1{v<m}| dz <

and therefore

/ 2l [P{€ < 2} — Py < 2}|de < / B[ gery — Lpyen|da

< EJ¢ — nlmax{[¢|;|n|'}. (2.8)

Thus, (2.4) with [ = 0 follows from (2.8).
Let now [ > 0. Since, for I > 0 (see [10, p. 208, Cor. 2] or [8, p. 61, Lemma 2.4]),

[e.e]

El¢)' = z/xl—lp{m > r}da, (2.9)
0
we have that, for [ > 0,
/ 2l [P{€ < 2} — P{y < 2}|da </ 2P{le] > x}dx+/ #P{n] > 2} de
—00 0 0
<+ 1D)7HEET +ElpT. (2.10)

Thus, (2.4) is proved for all > 0
To prove (2.5), we substitute the well-known expression of the absolute moment E|Y |+ of the standard
normal r.v. n = Y into (2.4) (see, e.g., [10, p. 245, Prob. 7]): for p > 0,

2r/2 1
Byp=_r(21), 2.11)
v\ 2o
where I'(t) = [;* '~ 'e” dx is the gamma function, and we observe that E[Y "' < 1for0 <1 < 1, and

E[Y|H! = ( (1) /2/\F) (1+2)/2) <2v2//mforl <1<
Estimate (2.6) follows from (2.5).
Lemma 1 is proved. 0O

Lemma 2. Let X1, ..., X, be real independent r.v.s with E|X;|" < co for some k > 2 andalli = 1,....n
Then, forall 0 <1 < k — 1 and any fixedn =1,2,...,

BZV[" <o, BZ,|" < C0Tin 2.12)
1 - 3|1
Tin < C*(l)<1+ NEALRE ;E|Xi| 15> Wﬂ}) (2.13)

where §A: & — EE.
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Proof.  Since E(ZnO 2=>", E(A(0 <>, EA = Lo, by the Lyapunov inequality we have that, for

0<iKl1
E!Z(O ‘l+1 (E(Z(O))2)(l+1)/2 < ZSH)/Q < Lgl+1)/2 -1

Letnow 1 < | < x — 1. Then E|ZZ(-0 |1 < 2HE|A4; " and L4y < Ly < Ly = 1. Therefore, by the
Rosenthal inequality (see [8, p. 59, Thm. 2.9])

n n (I+1)/2
B[z < cq) max{z B[AY), (Z E(z§0>)2> } < o).
1=1

i=1

The first inequality of (2.12) is proved.

= 0 =
Since E|A§ )|“rl < 2HTE|4;|'T1, we have by the Bahr and Esseen (1965) inequality (see [8, p. 82]) that,
for0 <1 <1,

E\Z ‘H-l < <2 B %) ZE|j§0)|l+l < 21+2fl+1'
=1

Letnow 1 <! < k — 1. Then E|A |lJrl < 2LE| 4|+ and Ty < Lyy1. Since Ly < Ly = 1, we have by
the Rosenthal inequality that

—o0) n —0) n —0) (I+1)/2
EZ, | < C(l)max{ZE!Zi V“,(ZE@. )2> }

_(l+1

< C(l maX{Ll+1, } C max{flﬂ,fg} < C(l)fl_,_l.

The second inequality of (2.12) is also proved.
— 0
To prove (2.13), observing that Z,, = 70 Z( :

n n

ties (2.12), we obtain that, forall 0 <1 < k — 1,

and using the so-called c,-inequality and inequali-

E|Z,|"! < 2I(E‘7£LO)|Z+1 E‘Z |l+1) < C(l)(l—i—flﬂ).

It only remains to take £ = Z,, in inequality (2.5) and use the last inequality.
Lemma 2 is proved. O

Lemma 3. Forany a > 0 and all | > 0,

i (1+2)/2
/|x|l|q5(:m)—q5(ﬂc)|dx: 20 1:/((_”2 /2) |a—1|/ W 2.14)
20+2)21((1 + 2)/2) 1
S el el =

where y(t) = [1 + t(a — 1)]* > 0.
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Proof. By Taylor’s theorem with the remainder term of the integral form

1
a—lx/e (1/2)z*~()
0

1
&(xa) — D(x) = (va—z /gox+tma—x))dt:
0

Therefore, for all { > 0,

00 1 oo
2
/ 2! [#(a) — B(x)| de = ——la 1] / / e 1/2590) g gy,
V2
— T 0 0

Observing that, for all [ > 0 and any b > 0,

o0

a2 I'((1+2)/2)
41 _—bx _

/a: e de = TR
0

we get (2.14).
Estimate (2.15) follows from (2.14) and the evident equality

1
J e e )

Lemma 3 is proved. 0O

To prove Theorem 3, we need three lemmas.
The following statement is valid for the any 7-shifted r.v. N.

Lemma 4. Let N — 7 ~ L with 7 > 0. Then the moment-generating function (m.g.f.) My (t) =
T-shifted rv. N

MN(t) = eTtMg(t),
and
EN=7+E(, EN?=(r+E&?4+VE, VN =V

Moreover, if EN > 0, then

EIN - N| _ VVE
EN T+ E¢

Proof.  First, we observe that the m.g.f. of the 7-shifted r.v. N is as follows:

=Y P {E =y} = ™Y e rpy = 7 M (t).
k k

(2.16)

2.17)

(2.18)

(2.19)

Ee'N of the
(2.20)

2.21)

(2.22)

Equalities (2.21) of EN, EN?2, and VN follow directly using their definitions or using the well-known equal-

ities EN* = (dk/dtk)MN( )|t_0, k=1,2.

The inequality of Lemma 4 follows from the estimate E|N — EN| < VN and the equality of EN

presented above.
Lemma 4 is proved. 0O
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The following statement is valid for a 7-shifted Poisson r.v. N.

Lemma 5. Let N — 7 ~ P(\) with T > 0 and A > 0. Then

EN=7+)  EN’=(r+3)?+)  VN=A\ (2.23)

Moreover,

E[N-EN| _ 1
EN S VTN

Proof.  The lemma follows from Lemma 4 and the fact that E¢ = V¢ = A forthe r.v. £ ~ P(A). O

(2.24)

Analogously, it is easy to see that the corresponding statements are valid for 7-shifted binomial and
7-shifted negative binomial r.v.s NV, the proofs of which we omit, but we recall that E = np, V€ = np(1 —p)
forarv. £ ~ B(n,p) and E¢ = r/p, VE = r(1 — p)/p? forar.v. £ ~ NB(r,p).

Lemma 6. Let N — 7 ~ B(n,p) with >0, n € N, and 0 < p < 1. Then

EN =7 + np, EN? = (1 +np)? + np(1 — p), VN =np(l —p). (2.25)
Moreover,
E|N — EN| 1
< . 2.26
EN T+ np ( )
Lemma 7. Let N — 7 ~ NB(r,p) witht > 0,7 € N, and 0 < p < 1. Then
EN=r1+_, VN:r(lgp), (2.27)
p p
and
E|N - EN 1
| | < (2.28)

EN JTp T

3 Proof of Theorem 1
In addition, denote

S, . _ VS
VS, VS

=2

A(:L‘) = P{SN < l‘\/VSN} - @(m), & =
Zu= [ lof|Ple <} - 0(@)| do,  po=P(N =k}

where for independent r.v.s X1,..., X, V.S = Zle VX, = B,% > (O forall k = 1,2,... (it suffices to
require VS; = VX, = EXl2 > 0). It is clear that, for all z € R,

[e.e]

Az) = ;;) [P{\/\b;k—SN < x} - @(:L‘):|pk.

Lith. Math. J., 57(2):244-258, 2017.
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Let K(a) = {k € N: [VS}, = VSy| < (1 — a)VSy}, the complement K (a) = {k € N: [VS — VSy| >
(1 -a)VSy}of K(a), Ko = {k =0: [VSp — VSy| > (1 — )V Sy}, and let a be an arbitrary number
from the interval (0, 1). Since

5ot <o} ol

k=1

= Z [P{&. < zar} — D(xa)|pr + Z [®(zag) — D(x)]pr

kEK (o) keK (c)

+ Y [P{& < war} — ()] i

k€K (o)

we have the following decomposition of A(x): for all z € R,

Az) = Z [P{&, < zay} — P(zar)]px

keK (a)
+ 3 [Pa) —o@)]p+ Y. [P{& < zar} - (x)]p
keK (o) keR ()UKo
=Y (z) + Xa(z) + Zu(z). (3.1)

First, we observe that the variance V.S, > aVSy > 0if k € K(a) because « € (0,1) and V.Sy > 0.
Substituting (3.1) into the expression of

7, = / 2l |P{Sy < 2v/VSx} — &(x)| dz,

we obtain the following decomposition of Z;.

Proposition 1. Let the conditions of Theorem 1 be satisfied. Let, in addition, V.S, > 0 forall k = 1,2,....
Then, for all « € (0,1),

Ty < X1+ Yo+ Xy, (3.2)

where

Z / |z|! \P{& < wag} — P(zay)| dapy,

keK(a

/ 2]l [8(zar) — B(z)| dapy,
k’EK

Xy = Z / 2" |[P{& < zay} — (x)| dapy.
k€K (a)UK, —

Estimation of X)1. First, we observe that

1
D= > 5Tk (3.3)
keK (o) Tk
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Since 1/<:Lf,:rl < (2- a)(l+1)/2 and V.S, > aV Sy for k € K(«), using (2.3), we obtain from (3.3) that, for
all0 < I <1+,

k
T < (2-a)2 N Gl > EIX [ p
i=1

2+6)/2
bR ) (VS),)(2+8)/2 4
- (2 — a)(l+1)/200(l) El2+5,N1{N€K(a)} (3.4)
(2+0)/2 (VSy)2+0)/2 :
Estimation of Y)». To estimate Y5, we use (2.14) of Lemma 3, according to which, for all [ > 0,

T 2042)/20((1 + 2) /2) Fod

) + t
z|'|P(ray) — P(z)|dz = ap — 1 —_ 3.5

where v, (t) = [1 + t(ay — 1)]?. Now observe that, for k € K (),
1 1

<ap < —. 3.6
2 -« h Va (36

Therefore, for 0 < ¢ < 1 and k € K (o),

if1/v/2—a <a,<1,and

if 1 < a; < 1//a. Thus, we obtained that with 0 < ¢ < 1 (immediately it can be extended to 0 < ¢ < 1) and
a € (0,1), for k € K(a),

1
> . 7
Vi(t) & (3.7
The upper bound of |a; — 1| for k € K («) easily follows:
VS, — VS| 1 |VS,—VSy|
—1| = < . 3.8
o =1 = RS Ve T Vo) Satva  VSy (3-:8)
Substituting (3.8) and (3.7) into (3.5), we obtain that, forall [ > 0 and k € K(«),
T 2(2 — )] FD2D((1 + 2)/2) [VS, — V
V271 (a + va) VSn
It only remains to substitute (3.9) into the expression of Y'5. We obtain that, for all [ > 0,
2(2 — a)]2)/21 2)/2) E|B% — VSy|1 N

V21 (o + /) VSn
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Estimation of X. To estimate X, we rewrite the complement K(a) = {k € N: [VS, — VSy| >

(1—)VSy} of K (c) as the union of two sets K (a) = K () UK (), where K (a) = {k € N: VS, <
aVSy} and K+(a) ={keN: VS, > (2—a)VSy}. Itis easy to see that

2y < Yo+ X + Yo + Vs, (3.11)
where
S = [ 1ol [P{ = <}~ 0(a) o
VVSy

1 1
Su= Y 5l Sio= Y. —5Lpk
T ay, ———
keK (o) keEK " (o)
Y3 = Z 2| P(var) — D(x)| dzpy.
keK(a) —oo

Estimation of X4 + X41. First, we observe that 1/a, < /afork € K ().
From (2.5) of Lemma 1 an estimate of X4y for 0 < [ < 2 follows:

oo (1 if0<I<,
Ti < 2 3.12
PUIAT 22 if1<ixo G2

Since by (2.6) of Lemma 1, 7; ;, < 2/(l 4 1) for 0 < [ < 1, using (3.12), we obtain that, for 0 < [ < 1,

Po 2a(1+1)/2 max{1, 2a(+1)/2}
Yo+ S < <
wFiuS T T T 2 I+1 _Z_p"”
keEK (o) keK ()UK,
max{1,2a+0/2} E[BY — VSN[l ver (i) (3.13)
S0+ D0 —a) Vi ' '

Now,let1 <1 <1+6,0 < 6 < 1. In this case, instead of (2.6) of Lemma 1, we use (2.13) of Lemma 2,
whereby, for any fixed k = 1,2,.. .,

k
1 Z I+1
1=1

Thus, using (3.14) and (3.12), we obtain that, for 1 <! < 14+9,0<d < 1,

2v/2po 1+1)/2
Tio+ Tt € o + Cu(D)aHD2 STy
[+1
\/7_T( ) kEK ™ (a)
1 k
I+1
(VSy) D2 Z ZE|Xi| L(x,1>v V501 Pk
k€K (o) =1

+ ()
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El;11 N1

2\/5 NeK (o)}
< max{ ——~—— C,(1)a(HD/2 ot {
{ﬁ(l R keK%l:)UK Pt GO gy mr

2 —_— p—

< max i C (l)a(l+1)/2 1 E[By - VSN|1{NEK(a)UKO}

b Val+1) " 1—a VS

| DRSNS B
NHNER ()}
TG0 (VSy)U+D/2 (3.15)

To estimate Y42, we use (2.3) of Theorem 5. Since V.S, > (2 — )V Sy for k € er(oz), we obtain that,
forall0<I<1+46,0<6<1,

k

1 245

22 < Co(l) Z (VSyn)HD/2(V S, A+6-1)/2 ZE‘X” Pk
kERK T (a) =1

Col)  Elsnliyer+ oy

S (2 — a)(H5-D/2 (VSy)(2+0)/2 (3.16)
To estimate 343, we use (2.15) of Lemma 3 and obtain that, for all [ > 0,
202/21((1 + 2)/2) 1
Y43 < — Z '1 — 5 |pw
2r(l+1) kER (o) A
_ 209201+ 2)/2) BIBY ' — (VSN2 1 vegria) 1)
S V2l +1) (VSy) /2 ‘ :

Substituting (3.13) in the case 0 < I < 1 ((3.15)inthecase 1 < < 1+ 4), (3.16), and (3.17) into (3.11)
and observing that the function f(I) = |1 — 1/a!*!|, where 0 < a < oo, is nondecreasing for [ € [—1, 00), we
obtain that

5 < 1 <max{1, 2a(+1)/2} N 24221 ((1 + 2) /2)> E|BY — VNI yeR(a)uKo)

1+1 1l -« v 21 VSy
Co(l)  Blwsnlivert () (3.18)
(2 — a)1H+0-D/2 (V§y)2+0)/2 '
for0 </ < 1and
23 L 2P+ 2)2)
2, < —=— Cill (”1)/2} - >
4 <maX{ V(L +1) (Da 1—« V2r(l+1)
y E|B§\J{1 — (VSN)UHW‘1{NeF(a)uFo}
(VSN)(l+1)/2
El N1 (o Ely 5 n1 " (a
O ()N NER (@) Ci(D) TOTTANER (o)} (3.19)

(VSN)(I+1)/2 (2 _ a)(1+5—l)/2 (VSN)(2+5)/2
forl<I<1+9,0<06<1.
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Substituting (3.4), (3.10), and (3.18) for 0 < I < 1 ((3.19)for 1 < [ < 1 + §) into (3.2) and taking

a concrete « € (0, 1), for example, « = 1/2, we obtain estimates (1.1) and (1.2) of Theorem 1.

Theorem 1 is proved.
The proof of Corollary 1 immediately follows from Theorem 1.
The proof of Theorem 2 immediately follows from Theorem 1 since, forall [ > 1,

N <. (3.20)

The proof of Corollary 2 immediately follows from Theorem 2.
The proof of Theorem 3 immediately follows from inequalities (1.3) of Corollary 1, (1.7) of Corollary 2,

and Lemmas 5, 6, and 7.

10.
11.

12.

13.
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