
Lithuanian Mathematical Journal, Vol. 57, No. 2, April, 2017, pp. 155–170

Goodness-of-fit tests based on the empirical
characteristic function

Aleksej Bakshaev and Rimantas Rudzkis

Institute of Mathematics and Informatics, Vilnius University, Akademijos str. 4, LT-08663 Vilnius, Lithuania
(e-mail: aleksej.bakshaev@gmail.com; rimantas.rudzkis@mii.vu.lt)

Received May 5, 2016; revised February 17, 2017

Abstract. The paper is devoted to the supremum-typemultivariate goodness-of-fit tests based on the empirical character-
istic function. Particular attention is devoted to the composite hypothesis of normality and Gaussian distribution mixture
model. An analytical way to approximate the null asymptotic distributions of the considered test statistics is discussed
applying the theory of large excursions of differentiable Gaussian random fields. The produced comparativeMonte Carlo
power study shows that the considered tests are powerful competitors to the existing classical criteria, clearly dominating
in verification of the goodness-of-fit hypotheses against the specific types of alternatives.
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1 Introduction

Let Xn = (X1, . . . ,Xn) be a sample of observations of a random vector X with unknown cumulative dis-
tribution function (cdf) F (x) and probability density function (pdf) f(x), x ∈ R

d. In the classical statistical
analysis of observations, there often arises a need to check whether the observations are taken from a cer-
tain distribution, that is, to test the goodness-of-fit hypothesis (H0) f = f0, where f0 is the prespecified
expected distribution ofX. Classical well-studied approaches to solve this problem are based on the empirical
processes [1, 2, 3, 19, 20, 33], that is, the differences between the empirical and theoretical distribution func-
tions. These procedures also have analogues related to empirical quantile processes and density estimates (see,
e.g., [4, 5, 6, 28]). However, the most powerful (simultaneously for all the hypotheses of this type) test does
not exist. Even among the classical tests there is no clear winner. Therefore, the creation of more powerful
criteria for different types of densities f0 and considered classes of alternative hypotheses remains nowadays
a topical problem in statistics. Particular attention in this work is devoted to the hypothesis of normality and
the mixture model of Gaussian distributions, which are widely applicable in classification problems. This work
is a continuation of our research in [4, 5]. The null hypothesis assumes that f0 is a Gaussian density or a mix-
ture of a known number of Gaussian densities. The alternative assumes the existence of an additional small
distribution cluster g, that is,

(H1) f = (1− ε)f0 + εg, ε � 1
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In this paper, we suggest to apply supremum-type goodness-of-fit tests based on empirical characteristic func-
tions (ecf) for testing the stated type of hypothesis. This idea is not new. Certain probabilistic properties of
ecf are in detail discussed in [9], where ecf is also suggested to be a useful tool in verification of statistical
hypotheses, for example, symmetry about the origin. During the last decades, applications of ecf attracted
plenty of attention in statistical papers adjusting the methodology for different practical purpose. Regarding
the goodness-of-fit tests, utilization of ecf became widely spread and popular primarily in the problems of test-
ing the hypothesis of normality (see, e.g., [10, 11, 12, 13, 27, 34]), with the following extension of the methods
to testing for Cauchy, Laplace, and other distributions [8, 18, 21, 22]. Supremum-type goodness-of-fit ecf cri-
teria were also considered in [7, 26]. A comprehensive review of testing procedures based on ecf is presented
in [14, 15, 25, 35, 36] and references therein.

Additional motivation for the usage of ecf in goodness-of-fit testing is related to the tests for stable dis-
tributions; see, for example, [25, 37]. Classical goodness-of-fit procedures such as the Kolmogorov–Smirnov
test, the Cramer–von Mises test, etc. generally are not able to handle the stable distributions directly because
of the lack of analytical pdf and cdf. Since stable distributions can be fully characterized by their characteristic
functions, goodness-of-fit tests based on the ecf can be particularly useful.

The problem of analytical approximation of the null distribution of the proposed test statistics, and therefore
establishment of the critical regions of the tests, is discussed in Section 4. The results are obtained using
the theory of high excursions of Gaussian (and, in some sense, close to Gaussian) random fields developed
in [30, 31]. Produced simulation study shows that the precision of the derived approximations is good enough
even for small samples sizes and moderate test significance levels.

Specific algorithms proposed in this work are constructed using the results of both theoretical authors in-
vestigations in the theory of large excursions of random fields and produced comparative simulation analysis.
One of the main results of this analysis, presented in Section 5, justifies the expediency of application of the
described procedures. Provided comparative Monte Carlo power study shows that the considered supremum-
type tests are powerful competitors to the existing classical criteria in verification of the normality hypothesis
and detection of additional contaminating clusters in Gaussian distribution mixtures. Restriction to consider-
ation of stated null and alternative distributions within the scope of this paper, however, does not limit the
generality of the application of proposed test procedures to other goodness-of-fit hypotheses.

2 Statement of the problem. Simple hypothesis

Let X1, . . . ,Xn be a sample of independent observations of a random vector X with an unknown pdf f(x),
x ∈ R

d, d � 1. Based on the given sample, it is required to test a simple hypothesis of goodness-of-fit

(H0) f(x) = f0(x), (2.1)

where f0(x) is a prespecified pdf. In view of the one-to-one correspondence between density functions and
characteristic functions, their Fourier transforms, the initial null hypothesis can be replaced with

(H0) c(x) = c0(x),

where c(t) and c0(t) are the characteristic functions corresponding to f(t) and f0(t), respectively.
Particular attention in the work, especially in the simulation power study, is devoted to the complex alter-

native of the form

(H1) f(x) = (1− ε)f0(x) + εg(x), (2.2)

where ε is a mixing probability, 0 < ε � 1/2, and g(x) is an arbitrary distribution. Different forms of
deviations of contaminating cluster g from f0 are investigated. In particular, we consider differences in scale,
for example, σg

i � σf0
i , i = 1, . . . , d, where σf

i is the standard deviation of the ith component of a random
vector with density function f . The form of the alternative is topical in some social and economic studies, for
instance, the data clusterization problem in Gaussian mixture models.
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Let cn(t) be the ecf based on the given sample and defined by

cn(t) =
1

n

n∑

j=1

eit
�Xj . (2.3)

Denote
ξ(t) = cn(t)− c0(t), (2.4)

ξ1(t) = �(ξ(t)), ξ2(t) = �(ξ(t)), (2.5)

where �(c(t)) and �(c(t)) are the real and imaginary parts of the complex-valued function c(t), respectively.
Taking into account the form of the alternative hypothesis of interest, the following functionals are considered
as the test statistics for (H0):

ζ1 = max
i=1,2,
t∈I

∣∣∣∣
ξi(t)

σi(t)

∣∣∣∣, (2.6)

ζ2 = max
t∈I

∣∣∣∣
ξ1(t)

σ1(t)

∣∣∣∣, (2.7)

ζ3 = max
t∈I

∣∣ξ(t)
∣∣2, (2.8)

where σ2
i (t) = Var(ξi(t)), i = 1, 2, are defined in the case of null hypothesis, and I is a fixed d-dimensional

interval without zero neighborhood.

Remark. Consideration of three forms of test statistics (2.7)–(2.8) is primarily justified by the fact that c0(t) is
a complex-valued function, and therefore different forms of deviations of empirical and theoretical functions
are investigated. Consequently, it is worth noting that that test statistic (2.7) based on the empirical function
ξ1(t) is assumed to be applied for symmetric null distributions when the imaginary part of c0(t) is zero.
In contrast to criteria ζi, i = 1, 3, the test ζ2 is not consistent against all fixed alternatives; however, the
test is practically useful and powerful relative to other criteria, as it is shown in the subsequent simulation
study. Regarding the test (2.8), similar supremum-type statistics applied for testing multivariate normality were
primarily considered in [26]. Essentially, ζ3 seems weaker relative to other statistics and primarily considered
in this study for comparison.

Naturally, we should reject the null hypothesis in the case of large values of the test statistics, that is, if
ζi > zα, where zα can be found from the equation

P0(ζi > zα) = α, (2.9)

where α is a significance level of the test.

3 Composite hypothesis. Normality tests

The modifications of the proposed statistics ζi, i = 1, 2, 3, for testing the composite hypothesis of goodness-of-
fit, that is, based on the sample X1, . . . ,Xn to test whether the unknown characteristic function c(t) belongs
to a certain parametric family, are straightforward. Since in this case, c0(t) = c0(t, θ), θ ∈ Θ ⊂ R

p, and
the variances σi(t), i = 1, 2, depend on the unknown parameter θ, we have to replace it by θ̂n, where θ̂n is
a consistent estimator of θ, the true parameter value under (H0). Finally, the hypothesis can be verified by using
statistics (2.7)–(2.8), where σ2

i (t) = Var
̂θn
ξi(t), and the characteristic function c0(t) is replaced by c0(t, θ̂n)

in the definition of the process (2.4).

Lith. Math. J., 57(2):155–170, 2017.
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However, in the general case, similarly to the classical Kolmogorov–Smirnov and Cramer–vonMises statis-
tics with estimated parameters, the asymptotic distributions of ζi, i = 1, 2, 3, with c0(t, θ̂n) are not parameter-
free, that is, depend on the value of unknown parameter θ. This makes the establishment of the critical region
of the test complicated. Nevertheless, in some cases, this parametric dependence problem can be avoided.

Further, in the composite hypothesis case, we restrict to consideration of the hypothesis of normality, where
the initial sampleX1, . . . ,Xn is first standardized by means of the sample covariance matrix Ŝn and mean X̄ ,
that is,

Yi = Ŝ−1/2
n (Xi − X̄), i = 1, . . . , n. (3.1)

For testing the hypothesis that X has a nondegenerate multivariate normal distribution, which means that Ŝn

is nonsingular with probability one, we consider the statistics (2.7)–(2.8), where ecf is constructed based
on Y1, . . . , Yn, that is, cn(t) = (1/n)

∑n
j=1 e

it�Yj and c0(t) = e−t�t/2. Since the joint distribution of the
standardized sample Y1, . . . , Yn does not depend on the initial distribution parameters ofX, the critical regions
of ζi, i = 1, 2, 3, can be obtained by means of Monte Carlo simulations.

4 Analytical approximation of the null distribution of the statistic ζi

In practice, the critical regions of the examined tests can be determined by means of Monte Carlo simulations.
An alternative approach refers to the establishment of the asymptotic null distribution of the test statistics,
which is the objective of this section. Further, we discuss the problem of analytical approximation of the
null distribution of statistics (2.6)–(2.7). The problem is investigated using the theory of large excursions of
Gaussian (and, in some sense, close to Gaussian) random fields introduced in [30, 31].

Remark. One can see that the empirical process |ξ(t)|2 in the definitions of statistic (2.8) can be rewritten in
the form of V-statistics with degenerate kernel

∣∣ξ(t)
∣∣2 = 1

n2

n∑

i,j=1

[
cos

(
t�(Xi −Xj)

)− 2�(c0(t)
)
cos

(
t�Xi

)

− 2�(c0(t)
)
sin

(
t�Xi

)
+
∣∣c0(t)

∣∣2].

This implies that the finite-dimensional distributions of the process |ξ(t)|2 are not Gaussian. Therefore, the
following approximations of the null distribution of test statistics will be derived only for tests (2.6)–(2.7)
based on the maxima of empirical random processes ξ1(t) and ξ2(t).

For calculation of the thresholds for the critical regions of the tests, we are concerned with the asymptotics
of the probabilities

Pi(u) = P0{ζi < u}, n → ∞, i = 1, 2, (4.1)

representing the distribution function of ζi, i = 1, 2. The fact that ξi(t), i = 1, 2, are close to the Gaussian
random field, that is, the multivariate central limit theorem implies the asymptotical normality of the finite-
dimensional distributions of ξi(t), i = 1, 2, which suggests us to apply the mentioned results from the theory
of high excursions of Gaussian fields to approximate the probabilities Pi(u).

It has been shown in [30, 31] that if a differentiable (in the mean square sense) Gaussian random field
{η(t), t ∈ T} with Eη(t) ≡ 0, Var(η(t)) ≡ 1, and continuous trajectories defined on a d-dimensional
interval T ⊂ R

d satisfies certain smoothness and regularity conditions [30, Thm. 1], then P{−v1(t) < η(t) <
v2(t), t ∈ T} ∼= e−Q since for all t ∈ T , v1(t), v2(t) > χ, χ → ∞, where vi(·), i = 1, 2, are smooth
enough functions, and Q is a certain constructive functional depending on v1, v2, T , and the matrix function
R(t) = cov(η′(t), η′(t)). Here η′(t) is the gradient of η(t).
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The exact definition of the functional Q in the general case is presented in [4, 5, 30, 31]. In the case d = 2
and v1(t) = v2(t) = u, the functional Q(u) has the form

Q(u) =
1

π

(
1− Φ(u) + uφ(u)

) ∫

I

|R|1/2 dt1 dt2

+
φ(u)√
2π

∫

I1

(
R

1/2
1,1 (t1, a2) +R

1/2
1,1 (t1, b2)

)
dt1

+
φ(u)√
2π

∫

I2

(
R

1/2
2,2 (a1, t2) +R

1/2
2,2 (b1, t2)

)
dt2,

where t = (t1, t2) ∈ R
2, R is the covariance matrix with the elements Rk,l = Rk,l(t1, t2), k, l = 1, 2, and

I = I1 × I2 = [a1, b1] × [a2, b2]. Regarding the probabilistic interpretation of Q(u), it equals to the average
number of local maxima of the considered Gaussian random field above the level u within the interval I .

The stated result leads to the following approximation of the probabilities Pi(u), i = 1, 2:

P1(u) ∼= e−Q1(u)−Q2(u) =: P̂1(u), (4.2)

P2(u) ∼= e−Q1(u) =: P̂2(u), (4.3)

where Qi depends on u, I , and the matrix function Ri(t),

Ri(t) = Var

((
ξi(t)

σi(t)

)′)
=

Var(ξ′i(t))
σ2
i (t)

− [(σ2
i (t))

′][(σ2
i (t))

′]�

4σ4
i (t)

, (4.4)

where σ2
i (t) = Var(ξi(t)), i = 1, 2.

Remark. Regarding the statistic ζ1, we are interested in the large excursions of the bivariate random process,
that is, the real and imaginary parts of the empirical random process ξ(t). The asymptotic results stated in
[30, 31] imply that, as u → ∞, the events {maxt∈I |ξi(t)/σi(t)| > u}, i = 1, 2, can be treated independently.
This implies (4.2).

In the univariate case, the proposed approximations (4.3) and (4.2) can be improved by applying the large
excursion results for Gaussian processes presented in [29]. In this case,

P1(u) ∼=
[
2Φ(u)− 1

]2
exp

{
−exp(−u2/2)

π

∫

I

(
β1(t) + β2(t)

)
dt

}
,

P2(u) ∼=
[
2Φ(u)− 1

]
exp

{
−exp(−u2/2)

π

∫

I

β1(t) dt

}
,

where β2
i (t) = Var((ξi(t)/σi(t))

′), and Φ is the standard normal distribution function.

4.1 Simple goodness-of-fit hypothesis

Recall that, in this case,X1, . . . ,Xn are iid random vectors, and c0(t) is a known hypothesized characteristic
function.

Lith. Math. J., 57(2):155–170, 2017.
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Let us rewrite the empirical processes (2.5) in the form

ξ1(t) =
1

n

∑

i

cos
(
t�Xi

)−�(c0(t)
)
, ξ2(t) =

1

n

∑

i

sin
(
t�Xi

)−�(c0(t)
)
. (4.5)

Further, from the above representation of ξi(t), i = 1, 2, by means of straightforward but rather lengthy cal-
culations we obtain the following exact expressions for computation of the corresponding covariance matrices
Ri(t) defined in (4.4):

Var
(
ξ′1(t)

)
=

1

2n

(
EXX� + �(c′′0(2t)

))− 1

n

(�(c′0(t)
))(�(c′0(t)

))�
, (4.6)

σ2
1(t) =

1

n

[�(c0(2t)) + 1

2
− (�(c0(t)

))2
]
, (4.7)

Var(ξ′2(t)) =
1

2n

(
EXX� −�(c′′0(2t)

))− 1

n

(�(c′0(t)
))(�(c′0(t)

))�
, (4.8)

σ2
2(t) =

1

n

[
1−�(c0(2t))

2
− (�(c0(t)

))2
]
, (4.9)

whereX is a random vector with charactersitic function c0(t).

4.2 Composite hypothesis of normality

As discussed in Section 3, in this case, statistics (2.6)–(2.7) for testing the normality are constructed based on
the standardized sample Y1, . . . , Yn. Unfortunately, the produced transformation (3.1) leads to the dependency
among the observations within the sample, which makes a direct application of the mentioned large excursions
results and therefore calculation of the critical regions of ζi, i = 1, 2, complicated. These difficulties can be
overcome using the approach suggested in the proof of Theorem 2.1 in [12] considering the approximations
for the processes ξi(t), i = 1, 2, constructed based on the sample of independent observations.

LetX1, . . . ,Xn be independent standard normal random vectors. Define the auxiliary process

ξ̂1(t) =
1

n

n∑

j=1

[
cos

(
t�Xj

)− e−t�t/2 + e−t�t/2 (t
�Xj)

2 − t�t
2

]
, (4.10)

ξ̂2(t) =
1

n

n∑

j=1

[
sin

(
t�Xj

)− t�Xje
−t�t/2

]
. (4.11)

In a way analogous to that in [12], we can obtain that, for any fixed interval I ,

sup
t∈I

∣∣ξi(t)− ξ̂i(t)
∣∣ P→ 0, n → ∞, i = 1, 2,

where ξi(t), i = 1, 2, are previously defined randomfields constructed based on the sample Yi= Ŝ
−1/2
n (Xi−X̄),

i = 1, . . . , n.
This fact gives us a possibility to approximate the probabilities (4.1) of large excursions of the random fields

ξi(t), i = 1, 2, by the excursions of the fields ξ̂i(t), i = 1, 2, based on the sample X1, . . . ,Xn of independent
observations. Moreover, difficulties with calculation of the variances σ2

i (t), i = 1, 2, in the definitions of
(2.6)–(2.7) can be solved by replacing them with σ̂2

i (t) = Var ξ̂i(t), i = 1, 2.
Finally, to obtain the constructive way for calculation of the large excursion probabilities of the processes

ξ̂i(t) and therefore null distribution approximations (4.3), (4.2) of ζi, i = 1, 2, we further provide exact
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expressions for computation of the covariance matrices R̂i(x) = Var(ξ̂i(t)/σ̂i(t))
′ (4.4) in this case:

Var
(
ξ̂′1(t)

)
=

1

n

[
1

2

(
I − e−2t�t

(
I − 4tt�

))− 1

2

(
t�t

)2
e−t�ttt�

− (
t�t

)
e−t�tI + 2

(
t�t

)
e−t�ttt� − 2e−t�ttt�

]
,

σ̂2
1(t) =

1

2n

[
e−2t�t − 2e−t�t − (

t�t
)2
e−t�t + 1

]
, (4.12)

Var(ξ̂′2(t)) =
1

n

[
1

2

(
I + e−2t�t

(
I − 4tt�

))− (
t�t

)
e−t�ttt� − e−t�tI + 2e−t�ttt�

]
,

σ̂2
2(t) =

1

2n

[
1− e−2t�t − 2(t�t)e−t�t

]
. (4.13)

4.3 Accuracy of proposed approximations

For a graphical assessment of the precision of the proposed approximations, we performed a simulation study
where the empirical distribution functions of statistics ζi, i = 1, 2, were compared with the corresponding
asymptotic distribution functions (4.2) and (4.3) in the cases d = 1, 2. Simple and composite hypotheses of
normality were investigated. The empirical distributions of ζi, i = 1, 2, were obtained by generating 5000
samples of sizes 20–1000 from the standard normal distribution. In the case of composite hypothesis, the
considered statistics were calculated using the procedure described in Section 3. Different variants of intervals
I in the definitions of considered statistics were investigated.

The experimental results show that, in the general case, the precision of obtained approximations strongly
depends on the size of the available sample and chosen maximization interval I , especially its length and
deviation from zero. In the univariate case, for a simple goodness-of-fit hypothesis, obtained approximations
for the distributions of statistics ζi, i = 1, 2, are sufficiently precise even for small sample sizes n � 20 and
moderate significance levels α � 0.2 for arbitrary intervals I without zero neighborhood. However, a similar
precision level for the same sample sizes in the case of composite hypothesis could be obtained only for I =
[a, b], a � 1. Achieving the same accuracy level dealing with the closer to zero intervals I requires the increase
of sample size. For example, if I = [0.5, 2], then the sample size should be n � 500. A similar situation could
be also seen in the case d = 2, where in general an adequate approximation precision was obtained for larger
sample sizes relative to univariate case, that is, n � 50, 100. Some simulation results for the statistics ζi,
i = 1, 2, composite hypothesis of normality, d = 1, 2, and sample sizes n = 25, 50 are presented in Fig. 1.

(a) (b)

Figure 1. Composite hypothesis of normality, empirical and asymptotic distributions of ζi, i = 1, 2: (a) ζ2, d = 1, n = 25,
I = [1, 2]; (b) ζ1, d = 2, n = 50, I = [1, 2]× [−2, 2].

Lith. Math. J., 57(2):155–170, 2017.
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4.4 Considered tests application algorithm

We further provide an algorithm for application of the proposed statistics in practice, where the critical region
of the tests is established using the obtained approximations. For simplicity, we consider the simple hypothesis
case. The modification of the procedure for the case of composite hypothesis of normality is straightforward
and requires the replacement of the further stated formulas by their analogues from Section 4.2.

1. For a given sample X1, . . . ,Xn, evaluate the statistic of interest by calculating the maximum with re-
spect to t ∈ I using a small enough partition of the interval I . The processes ξi(t)/σi(t), i = 1, 2, are
computed by means of formulas (4.5), (4.7), and (4.9).

2. For a prespecified significance level α, determine the critical test level cα using the equation P̂i(cα) =
1− α, i = 1, 2, where P̂i are defined in (4.2) and (4.3), respectively.

3. Reject the null hypothesis if the calculated value of statistics is greater than cα.

5 Simulation study

To evaluate the relative efficiency of the proposed criteria, a simulation power study was performed, where
analysed tests (2.7)–(2.8) were compared with some popular criteria in the following problems:

• Verification of the composite hypothesis of normality in the cases d = 1, 2, 5.
• A simple goodness-of-fit hypothesis, where the null distribution is a mixture of two Gaussian densities.
The following cases were investigated:

– (H0) f0 = 0.6N(0, 1) + 0.4N(0, 3),
– (H0) f0 = 0.6N(0, 3) + 0.4N(0, 1).

The following classical general and specific normality criteria for comparison were considered:

• Tests based on empirical distribution function: Anderson–Darling (AD) [1, 2], Cramer–von Mises (CM)
[3, 24], Kolmogorov–Smirnov (KS) [20, 33], and Mahalanobis1 (d > 1);

• Tests based on distribution skewness and kurtosis: Jarque–Bera (JB, d = 1) [16, 17] and Mardia (d > 1)
[23];

• L2-type ecf test: BHEP [11, 13, 27];
• Regression and correlation tests: Shapiro–Wilk (SW, d = 1) [32].

The tests were studied for a wide range of alternative distributions. Particular attention was devoted to the
mixtures of Gaussian distributions (with different location and scale parameters) and mixtures of Gaussian and
non-Gaussian symmetric, asymmetric, as well as short- and long-tailed distributions. Recall that the power of
a statistical test is the probability that the test will reject the null hypothesis when the alternative hypothesis is
true.

In all the cases, the behavior of the above-mentioned tests was investigated for sample sizes n = 20, 50,
100, 200, 5002 and the significance level α = 0.05. The simulations were carried out in R. A brief descrip-
tion and specifications for calculation of the considered classical test statistics are presented in [5] or the
corresponding references. In the univariate case, the Kolmogorov–Smirnov, Anderson–Darling, Cramer–von
Mises, and Shapiro–Wilk criteria were applied using the corresponding procedures from the statistical package
nortest. Regarding the considered ecf statistics ζi, i = 1, 2, 3, they were calculated applying the procedure
described in Section 4.4. In the case of composite hypothesis of normality, the unknown parameters were
1 The test is based on the Mahalanobis transformation of initial sample X1, . . . , Xn using the sample mean and covariance matrix,
i.e., Yi = (Xi− X̄)� ̂S−1(Xi− X̄), i = 1, . . . , n. Transformed univariate sample has chi-squared limit distribution with d degrees
of freedom. After that, the null hypothesis should be rejected in the case of large values of one-sample Kolmogorov–Smirnov
statistic.

2 To shorten the presentation of the comparative study, in the tables below, the simulation results are provided only for sample sizes
n = 20, 100, 500.



Goodness-of-fit tests based on the empirical characteristic function 163

calculated using the ML-estimates of the mean and covariance matrix parameters. Since, according to the
methodology in this case, the initial sampleX1, . . . ,Xn is first standardized by means of (3.1), which leads to
the sample Y1, . . . , Yn with dependent observations, the variances σ2

i (t), i = 1, 2, in the definitions of statistics
ζi, i = 1, 2, were replaced by σ̂2

i (t), i = 1, 2, calculated using formulas (4.12) and (4.13).
The maxima with respect to t in all proposed test statistics ζi, i = 1, 2, 3, were calculated using the follow-

ing intervals without zero neighborhood:

I = [−2, 2]k \ [−0.05, 0.05]k (d = k, k = 1, 2, 5).

Remark. Empirically investigated dependence of the power of ecf tests on the choice of the interval I shows
that the extension of the internal I outside the outer thresholds does not improve the results of the tests;
however, it increases the calculation time of the considered statistics.

For unification of the calculation approaches and comparability of the results, the critical regions of all the
investigated tests were established using the finite sample null distribution of the corresponding test statistics
obtained by the Monte Carlo method applying the following procedure:

1. Generate repeatedly i.i.d. random samples X1, . . . ,Xn from the null distribution. In our study, 5000
samples were simulated.

2. For each sample, evaluate all the statistics under consideration, that is, calculate the maxima with respect
to t ∈ I of the corresponding processes ξi(t)/σi(t), i = 1, 2, and |ξ(t)|2. The processes ξi(t), i = 1, 2,
were calculated using formulas (4.5), where the corresponding variances σi, i = 1, 2, were obtained
from (4.7), (4.9), (4.12), (4.13), respectively.

3. For each statistic, calculate the empirical distribution functionFn(x) on the basis of previously computed
values.

4. For each statistic and chosen significance level α > 0, find cα from the equation

cα = inf
{
cα: Fn(cα) > 1− α

}
.

The power of the tests was estimated by the proportion of the 5000 samples of alternative distributions for
which the values of the corresponding statistics fall into the critical region of the tests.

5.1 Simulation results

The main simulation results of the power study are summarized in Tables 1–8. Tables 1–6 present the empirical
powers, that is, the percentage of the rejected null hypothesis in the case of composite hypothesis of normality
with d = 1, 2, 5, whereas Tables 7 and 8 contain the results for the Gaussian mixture model.

5.1.1 Normality hypothesis

It can be observed from the simulations that, in the univariate case, the best ecf tests behave similarly to the
most powerful classical tests chosen for comparison.

The tests ζi, i = 1, 2, were slightly more powerful than the majority of other criteria testing the null
hypothesis against the scale contaminated mixtures of normal distributions (see Table 1), where the variance
of the contaminating distribution was significantly greater than the variance of the main one. This is especially
seen in the case of unbalanced distribution mixtures with different mixing probabilities and can be explained
by the usage of the uniform metric as the loss function for ecf in (2.6) and (2.7). Among the other criteria close
to ζi, i = 1, 2, results were shown by the Jarque–Bera and Shapiro–Wilk tests; see, for example, Fig. 2(a).

Investigating the alternatives in the form of the mixtures of Gaussian and non-Gaussian distributions (see
Table 2), the best results among ecf tests were shown by the criteria ζi, i = 1, 2, except for the case (H1)
(1− ε)×N(0, 1)+ εU(0, 1). Their empirical power was significantly better, especially for moderate and large
sample sizes n � 100, than the power of the majority of classical criteria, comparable only to the Jarque–Bera
and Shapiro–Wilk tests results.
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Table 1. Normality hypothesis, d = 1. Power against scale contaminated Gaussian distribution mixtures.
Percentage of the rejected (H0), σ1 ∼ U(1, 5), σ2 ∼ U(1, 10), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP JB SW

0.5N(0, 1) + 0.5N(0, σ1) 20 28 28 28 30 29 24 29 27 25
100 71 73 68 67 68 62 68 64 67
500 86 86 83 82 83 79 82 85 83

(1− ε1)N(0, 1) + ε1N(0, σ1) 20 35 37 33 31 32 26 33 37 33
100 70 71 62 61 63 56 61 69 66
500 85 85 78 77 79 75 77 85 84

(1− ε2)N(0, 1) + ε2N(0, σ1) 20 21 21 17 17 18 14 18 23 21
100 50 52 35 36 40 31 36 54 49
500 74 75 58 58 61 54 56 77 73

(1− ε1)N(0, 1) + ε1N(0, σ2) 20 57 58 56 57 58 53 57 55 56
100 85 86 80 80 81 77 80 86 84
500 91 91 89 88 89 87 87 91 91

Table 2. Normality hypothesis, d = 1. Power against non-Gaussian mixtures. Percentage of the rejected
(H0), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP JB SW

(1− ε1)N(0, 1) + ε1Logistic(0, 1) 20 17 18 14 12 13 10 15 18 15
100 46 50 25 25 29 18 25 50 41
500 87 88 87 67 73 56 64 89 86

(1− ε1)N(0, 1) + ε1t(10)
∗ 20 7 6 6 6 5 5 6 7 6

100 12 13 6 6 7 6 6 15 11
500 24 23 21 9 10 7 8 28 23

(1− ε1)N(0, 1) + ε1t(4) 20 13 14 12 11 12 9 12 15 13
100 35 36 17 20 23 16 19 38 32
500 75 76 73 49 55 39 43 78 74

(1− ε1)N(0, 1) + ε1U(0, 1)† 20 18 12 18 18 18 15 19 14 17
100 49 31 52 56 55 53 55 39 48
500 70 57 75 81 80 78 80 67 76

(1− ε2)N(0, 1) + ε2χ
2(2)‡ 20 17 17 15 14 15 12 16 19 17

100 48 49 28 33 37 27 30 51 48
500 82 83 82 68 73 62 62 86 85

(1− ε2)N(0, 1) + ε2Cauchy(0, 1) 20 20 19 18 18 18 17 19 20 19
100 54 55 41 43 46 41 43 56 53
500 87 87 87 80 81 77 77 88 88

Considering scale contaminated Gaussian distribution mixtures as an alternative in multivariate cases,
that is, d = 2, 5 (Tables 3, 5), two different cases of independent and dependent marginal components were
investigated. In the first case, that is, (H1) (1 − ε)N(0, Id) + εN(0, σId), the tests ζi, i = 1, 2, were better
than the majority of classical criteria, except the Mardia test with much the same results. Here Id is the d× d
unit matrix. Dealing with dependent marginal components, that is, (1− ε)N(0, Id) + εN(0, σR), R = Id, we
observed an absolute superiority of the tests ζi, i = 1, 2, which is especially evident for n � 50. The behavior
of the mentioned tests in this case is characterized by an obvious tendency. We observe the increasing superi-
ority of the tests if the correlation between the components of the multivariate distributions becomes greater.
The graphical comparison of the power functions of ζi, i = 1, 2, 3, and the Mardia tests for different sample
sizes is presented in Fig. 2(b).

∗ t(k) denotes the Student t-distribution with k degrees of freedom.
† U(a, b) denotes the uniform distribution in the interval [a, b].
‡ χ2(k) denotes the chi-squared distribution with k degrees of freedom.
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Table 3. Normality hypothesis, d = 2. Power against scale contaminated Gaussian distribution mixtures.
Percentage of the rejected (H0), σ1 ∼ U(1, 5), σ2 ∼ U(1, 10), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP Mardia Mahalanobis

0.5N(0, Id) + 0.5N(0, σ1Id) 20 41 39 34 41 36 33 48 37 44
100 79 79 74 75 74 72 78 79 80
500 88 89 85 86 85 84 86 89 89

(1− ε1)N(0, Id) + ε1N(0, σ1Id) 20 48 46 37 39 38 31 46 47 41
100 75 75 64 67 68 64 70 78 72
500 87 88 81 83 83 81 82 90 86

(1− ε1)N(0, Id) + ε1N(0, σ1R1)
† 20 13 13 8 10 8 8 12 16 8

100 44 44 24 23 21 21 30 42 30
500 74 75 60 55 52 52 60 72 61

(1− ε1)N(0, Id) + ε1N(0, σ1R2)
† 20 17 15 10 9 8 7 11 15 7

100 45 48 29 21 19 18 30 38 24
500 80 82 66 54 54 51 64 75 61

(1− ε1)N(0, Id) + ε1N(0, σ1R3)
† 20 17 15 10 9 8 8 11 15 8

100 55 57 36 20 23 17 34 41 27
500 89 90 79 56 69 47 77 82 75

(1− ε2)N(0, Id) + ε2N(0, σ1Id) 20 23 25 18 20 19 13 24 28 17
100 57 57 38 43 45 39 44 62 48
500 73 74 58 62 63 60 61 79 68

(1− ε1)N(0, Id) + ε1N(0, σ2Id) 20 68 69 65 66 63 45 71 69 66
100 90 90 86 87 87 84 87 92 89
500 95 95 91 92 92 91 92 95 93

Table 4. Normality hypothesis, d = 2. Power against non-Gaussian mixtures. Percentage of the rejected
(H0), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP Mardia Mahalanobis

(1− ε1)N(0, Id) + ε1[Logistic(0, 1)]
2‡ 20 16 21 12 14 15 13 18 22 13

100 57 62 22 35 30 27 39 66 51
500 91 92 76 80 81 75 81 95 88

(1− ε1)N(0, Id) + ε1[t(10)]
2 20 7 6 6 7 7 7 6 5 5

100 11 11 6 7 6 8 7 14 9
500 21 22 10 12 12 11 10 34 16

(1− ε1)N(0, Id) + ε1[t(4)]
2 20 14 15 11 13 13 12 14 15 10

100 40 44 17 25 24 20 27 50 32
500 76 77 49 57 60 50 57 86 70

(1− ε1)N(0, Id) + ε1[U(0, 1)]2 20 22 17 21 27 25 18 33 17 15
100 59 46 60 64 59 56 70 50 49
500 83 74 84 86 85 84 89 77 74

(1− ε2)N(0, Id) + ε2[χ
2(2)]2 20 21 22 15 16 16 14 19 24 11

100 59 60 29 41 37 35 39 67 43
500 88 89 74 79 78 77 75 93 82

(1− ε2)N(0, Id) + ε2[Cauchy(0, 1)]
2 20 24 26 20 22 23 21 25 28 18

100 67 68 53 59 60 56 59 72 62
500 92 92 87 89 89 87 88 93 88

Exploring the alternatives, where the null distribution is contaminated with some non-Gaussian cluster
(Tables 4, 6), the relative results of the ecf tests in this case on average reflect the corresponding situation
when d = 1: the tests ζi, i = 1, 2, were better than most of the classical criteria but slightly inferior to the
performance of the Mardia test, the multivariate analogue of the Jarque–Bera univariate normality criterion.
It is worth noting that for additionally examined alternatives in the form of Gaussian distribution mixtures
with different location parameters, the dominance of the ecf tests was not so convincing, except probably for
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Table 5. Normality hypothesis, d = 5. Power against scale contaminated Gaussian distribution mixtures.
Percentage of the rejected (H0), σ1 ∼ U(1, 5), σ2 ∼ U(1, 10), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP Mardia Mahalanobis

0.5N(0, Id) + 0.5N(0, σ1Id) 20 40 39 39 35 30 20 71 72 62
100 83 84 76 78 75 65 84 87 87
500 91 92 87 88 85 87 92 93 94

(1− ε1)N(0, Id) + ε1N(0, σ1Id) 20 51 45 33 28 27 20 58 68 47
100 82 83 68 72 71 57 78 85 82
500 89 90 80 83 84 83 86 92 90

(1− ε1)N(0, Id) + ε1N(0, σ1R1)
† 20 11 10 6 6 5 5 12 20 6

100 58 60 31 23 22 19 41 51 37
500 86 87 73 55 51 46 69 73 71

(1− ε1)N(0, Id) + ε1N(0, σ1R2)
† 20 11 9 7 6 6 6 10 14 6

100 65 67 38 19 17 15 34 39 19
500 93 93 83 54 54 40 81 70 72

(1− ε1)N(0, Id) + ε1N(0, σ1R3)
† 20 12 8 6 7 7 5 13 19 5

100 73 74 46 22 24 16 49 48 32
500 95 95 88 66 73 45 88 85 87

(1− ε2)N(0, Id) + ε2N(0, σ1Id) 20 32 29 10 8 7 6 21 43 11
100 70 71 38 47 50 29 53 73 63
500 78 78 59 62 63 61 68 83 77

(1− ε1)N(0, Id) + ε1N(0, σ2Id) 20 74 70 62 52 50 18 77 85 66
100 90 90 85 85 85 73 89 91 90
500 96 96 91 93 93 92 94 96 96

Table 6. Normality hypothesis, d = 5. Power against non-Gaussian mixtures. Percentage of the re-
jected (H0), ε1 ∼ U(0, 0.5), ε2 ∼ U(0, 0.1).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP Mardia Mahalanobis

(1− ε1)N(0, Id) + ε1[Logistic(0, 1)]
5‡ 20 16 13 9 8 8 7 19 36 9

100 79 81 21 39 36 27 64 88 77
500 94 95 73 79 80 78 87 96 95

(1− ε1)N(0, Id) + ε1[t(10)]
5 20 6 5 7 5 5 5 5 8 5

100 13 13 5 8 7 8 8 16 6
500 23 23 6 7 8 9 10 39 25

(1− ε1)N(0, Id) + ε1[t(4)]
5 20 13 11 6 5 5 6 11 22 7

100 57 59 13 22 21 17 34 66 45
500 85 85 41 53 55 51 66 89 83

(1− ε1)N(0, Id) + ε1[U(0, 1)]5 20 17 13 25 17 18 10 62 40 25
100 71 64 73 68 64 45 86 65 69
500 88 85 89 84 81 83 95 83 86

(1− ε2)N(0, Id) + ε2[χ
2(2)]5 20 24 22 8 8 6 6 17 35 7

100 81 80 40 44 39 24 56 84 59
500 96 96 83 83 81 75 86 97 90

(1− ε2)N(0, Id) + ε2[Cauchy(0, 1)]
5 20 40 39 21 13 15 8 29 44 12

100 86 87 73 73 73 51 78 87 81
500 97 97 93 94 93 92 94 97 96

the case of balanced mixtures, that is, (H1) 0.5N(0, Id) + 0.5N(a, Id), especially for small and moderate
sample sizes. In the general case, dealing with arbitrary distribution mixtures, their results were similar to the
performance of the best examined classical criteria.
† Ri = (1− αi)Id + αiJd, i = 1, 2, 3, where Id is the d× d unit matrix, Jd is the d× d all-ones matrix, and α1 = 0.5, α2 = 0.75,
α3 = 0.9.

‡ [P ]k := P × · · · × P denotes the k-variate distribution having independent marginals P .
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Table 7. Gaussian mixture model. Power against location and scale contaminated Gaussian distribution
mixtures. Percentage of the rejected (H0) f0 = 0.6N(0, 1) + 0.4N(0, 3), a ∼ U(1, 10), σ1 ∼ U(1, 5),
σ2 ∼ U(1, 10), σ3 ∼ U(0, 1), ε ∼ U(0, 0.2).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP

(1− ε)f0 + εN(a, 1) 20 33 34 12 12 25 9 14
100 60 58 43 46 59 40 44
500 79 76 69 71 78 70 67

(1− ε)f0 + εN(0, σ1) 20 9 8 7 6 7 5 6
100 14 16 9 7 10 5 6
500 35 41 20 14 24 12 24

(1− ε)f0 + εN(0, σ2) 20 25 26 7 7 12 6 7
100 42 45 12 9 24 7 13
500 63 67 38 29 49 27 43

(1− ε)f0 + εN(0, σ3) 20 5 5 6 5 5 5 7
100 14 18 16 8 8 9 14
500 41 50 39 29 30 30 40

Table 8. Gaussian mixture model. Power against location and scale contaminated Gaussian distribution
mixtures. Percentage of the rejected (H0) f0 = 0.6N(0, 3) + 0.4N(0, 1), σ1 ∼ U(1, 5), σ2 ∼ U(1, 10),
σ3 ∼ U(0, 1), ε ∼ U(0, 0.2).

Alternative n ζ1 ζ2 ζ3 CvM AD KS BHEP

(1− ε)f0 + εN(a, 1) 20 25 28 8 13 21 11 14
100 55 53 36 40 54 37 45
500 80 75 71 73 78 72 73

(1− ε)f0 + εN(0, σ1) 20 6 9 5 5 5 5 7
100 10 12 7 6 7 5 10
500 24 30 13 11 16 8 28

(1− ε)f0 + εN(0, σ2) 20 18 21 6 5 9 5 6
100 39 40 11 9 23 7 20
500 61 63 31 26 45 21 53

(1− ε)f0 + εN(0, σ3) 20 5 6 5 5 5 5 5
100 13 19 16 7 7 9 4
500 50 57 48 33 35 34 11

(a) d = 1, (H1) (1− ε)N(0, 1) + εN(0, σ) (b) d = 2, (H1) (1− ε)N(0, Id) + εN(0, σR3)

Figure 2. Empirical power of the tests, where (i) ∼ ζi, i = 1, 2, 3. Composite hypothesis of normality, a ∼ U(1, 5), σ ∼ U(1, 5),
ε ∼ U(0, 0.5), R3 =

(

1 0.9
0.9 1

)

.
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(a) (1− ε)f0 + εN(a, 1) (b) (1− ε)f0 + εN(0, σ)

Figure 3. Empirical power of the tests, where (i) ∼ ζi, i = 1, 2, 3. (H0) f0 = 0.6N(0, 1) + 0.4N(0, 3), a ∼ U(1, 10),
σ ∼ U(1, 10), ε ∼ U(0, 0.2).

5.1.2 Gaussian mixture model

Considering the hypothesis devoted to the detection of additional cluster with different location in Gaussian
distribution mixtures, for example, (H1) (1 − ε)f0 + εN(a, 1), one can see that the results of the tests ζi,
i = 1, 2, were in general similar to the performance of the Anderson–Darling criterion and slightly superior
to the other classical examined tests (see, e.g., Fig. 3(a)). However, absolute dominance of ζi, i = 1, 2, over
the other criteria is observed in the case where the additional distribution cluster has the same location but
different scale parameters. This is especially evident in the case where the variance of the contaminating
cluster is significantly different from the variance of the null distribution, for example, (H0) f0 = 0.6N(0, 1)+
0.4N(0, 3) and (H1) (1− ε)f0 + εN(0, σ2), where σ2 ∼ U(1, 10) and ε � 0.2 (see Fig. 3(b)).

5.2 Conclusion

In this paper, we have considered supremum-type statistics for comparing distributions based on empirical
characteristic functions. All examined tests ζi, i = 1, 2, 3, are practical to apply for moderate dimension
and arbitrary sample sizes. In the cases of simple goodness-of-fit hypothesis and composite hypothesis of
normality, the constructive approximations of the null distributions of the test statistics ζi, i = 1, 2, were
established using the theory of large excursions of Gaussian random fields. The obtained approximations are
sufficiently precise even for small sample sizes and moderate significance levels and are advisable to apply for
calculation of the cut-off points for the critical regions of the examined tests.

The presented Monte Carlo power study illustrates that the relative performance of the considered ecf tests
is competitive both to the classical general criteria based on the empirical distribution function, for example,
the Anderson–Darling, and some popular specific normality tests, for example, the BHEP, Jarque–Bera, and
Mardia tests, against a wide range of alternative distributions. The considered tests were especially powerful
in the following cases:

• Hypothesis of normality: arbitrary mixtures of normal distributions with different scale parameters
(H1) (1 − ε)N(0, Id) + εN(0, σR), ε < 1/2, where the contaminating distribution has significantly
larger variance, that is, σ � 1, and dependent marginal components, that is, R = Id;

• Gaussian mixture model: detection of the additional distribution cluster with significantly different vari-
ance relative to the null distribution.

Taking into account all the examined alternatives, the best results among the investigated ecf criteria on
average were shown by the tests ζ1 and ζ2, where the first one is outperforming the second only for clearly
asymmetric alternatives.
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