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On the boundedness of hyperbolic Riesz B-potential
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Abstract. This paper deals with the hyperbolic Riesz B-potential, which is the negative real power of an operator
B, —> ", B, where B, = 0%/0xz7 + (v;/x;)0/0x;, i = 1,...,n, is a singular Bessel differential operator. We
prove the boundedness of the hyperbolic Riesz B-potential in proper spaces.
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1 Introduction

In this paper, we prove the boundedness for a new type of potential with Lorentz distance in the weighted
space L. The considered potential I, 0, 1s the negative real power of the operator

n
Uy = Bvl_ ZBwia
=2

where B.,, = 8% /022 + (v;/2:)0/0x;, i = 1,...,n, is the singular differential Bessel operator.
The potential /7 that is the negative real power of the operator

P 0

0= — — =
Ox? — Ox?

was studied in [11]. In [15], for an operator similar to the operator /7 , some properties were obtained, but the

boundedness of such operators has not yet been proved. This work fills this gap. The results of this paper were

announced in [16].
The potential with the Lorentz distance is of the form

o _ 1 [z —y)dy
(Igf)(m)—Hn(a)/ aly) 2<n, n-2<aq, (1.1)
K
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where

Hn(a):2a_1ﬂ'_1+n/2r g F a+2_n ,
2 2

x)z\/x%—x%—---—x%, Ki(z)={z:2i > a3+ - +a2, 21 > 0}.

It was introduced by Riesz [12] (cf. [13, p. 31] and [14, p. 409]).

Potential (1.1) was named the hyperbolic Riesz potential in [14, p. 409].

In this paper, we consider a Riesz potential with Lorentz distance connected with generalized translation
operator in the following form:

n
(I8, ) (x) = / r ) (T ) @)y dy, v =[]l (1.2)
PA i=1
In (1.2), ¥ = (71,...,7) is a multiindex consisting of positive fixed real numbers ~;, i = 1,...,n, |y| =

ME - Fvently—2<a<n+]yl,
_ 20 2 2
={yeRuyizys+ - +un 1 >0, ...,y >0},

and (TY f)(z) = (TY} - - - T¢" f)(x) is amultidimensional generalized translation. Each of the one-dimensional
generalized translations Ty is defined for i = 1,...,n by the formula (see [4, p. 122, (5.19)]

v ) o
(Té’f)(a:) = ﬁ/f Ty, Ti1, \/x —i—yZ — 221; COS iy Tigly... T )sm% L dp;.
2 5

We will call the operator (1.2) a hyperbolic Riesz B-potential. Such potentials are negative real powers of
the operator

n
Dy = B’Yl - ZB'YH
1=2

where B, = 8%/0x? + (v;/x;)0/du; is the singular differential Bessel operator (see [3, p. 3].

Our proof of the boundedness of operator (1.2) is based on applying the appropriate Marcinkiewicz inter-
polation theorem.

Riesz B-potentials with Euclidian distance (elliptic Riesz B-potentials) are studied in detail (see [5, 6,7,
8,91). Such potentials are negative real powers of the operator A, = ;" ; B,,. But methods of studying
elliptic and hyperbolic Riesz B-potentials are different, and we will use techniques for studying the generalized
translation developed by Lyakhov [5, 6, 7] and methods of studying hyperbolic potentials (1.1) proposed by
Nogin and Sukhinin in [11].

The boundedness of operator (1.2) is essentially used when we construct its inverse, but at the same time,
it is of independent interest.

The main result of this paper is a proof of the boundedness for the Riesz potential with Lorentz distance
generated by a generalized translation operator 7Y in special weighted spaces.

The rest of the paper is organized as follows. In Section 2, we present necessary preliminary definitions and
theorems. In Section 3, we prove our main theorem on the boundedness of the hyperbolic Riesz B-potential
from L} to Lg for functions from the Schwartz space. The last section contains further study of the poten-
tial (1.2), which implies its absolute convergence.

Lith. Math. J., 56(4):540-551, 2016.



542 E.L. Shishkina

2 Preliminaries
We consider functions f = f(x) defined on
RY = {ZL‘: (1,...,2p) ERy: 21 >0, ..., a:n>0}.
We call a function defined on R;! to be even with respect to x;, i = 1,...,n, if it can be extended on R, as
an even function with respect to x; preserving the considered class of functions.
The weighted Ly (R;") = L} space, p > 1, is the set of all measurable functions from R, to R that are

even with respect to each variable and, moreover, the absolute value of such a function raised to the pth power
and multiplied by 27 = [, )" is integrable, that is,

i

/ ‘f(a:)|px7 dz < o0.
R}
For a real number p > 1, the L) -norm of f is defined by
1/p n
sty =16l = ([ 156 a0) a7 =T a2
ot i=1
Let 2 C R} U{x; =0,i=1,...,n}, and mes, (2 be the weighted measure of (2 defined by
mes, {2 = /aﬂ dz.
Q

For every measurable function f(z) defined on R, we consider

pry(f 1) = mes, {z € R}: !f(a;)‘>t}: / 7 dx,
{z: | f(@)[>t}+
where {z: |f(z)| > t}T = {z € R}: |f(z)] > t}. The function pu, = p,(f,t) is called the weighted
distribution function of | f (z)].

The space L, (R}) = L is defined as the set of measurable functions f on R, that are even with respect
to each variable and such that

1l @) = 1 f ooy = esssup, | f ()] = inf {p,(f,a) =0} < oco.
ERS ac€R

We have the following inequality [10]:

p
py(f1) < <Hﬂ#> : 2.1

The norms of the spaces L and L, are connected by the following equality:

||f||oom/ = plggo ||f||p,’7' (2.2)

The space Sey(R;}) = Sey consists of all functions on R;! that are even with respect to each variable and
belong to the space of Schwartz functions.
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We denote by SL;,’(]R,J{ ) = SL] the set of all even with respect to each variable functions for which the

norm

1
HfHSL”(Rf{) = ”f”SLZ = Ssup t(ﬂ’y(f7t)) /p < 0, 1 g p < 0.
P 0<t<oo

The operator A is said to be quasilinear (see [2, p. 41]) if A(f1 + f2) is uniquely defined, A f; and A fs are
defined, and if there exists a constant x such that for all f; and f5 , the following inequality is valid pointwise:

|A(f1 + f2)| < K(|AfL] +AS2]).

A quasilinear operator A from Lz to Lg is of strong type (p,q)y, 1 < p < 00, 1 < g < o0, if the following
inequality is valid:

[Afllgny < Al fllpy Yf €Ly, (2.3)

where the constant h does not depend on f.
We say that a quasilinear operator A is an operator of weak type (p,q)y (1 < p < 00,1 < g < 00) if

q
miar ) < (M) vren, 4

where h does not depend on f and A > 0.
If ¢ = oo, then a quasilinear operator A is an operator of weak type (p, q) if it is of strong type (p, q).
A generalized convolution is defined by

(f *g)y /f )(TYg) (z)y” dy

(see [17] formula (14) for one-dimensional convolution and [3, p. 19] for the general case).
Letp,q,r € [1,00] and

—+-=1+-. (2.5)
P oq r

Iffel),ge Ly, 1<p,qr<oo1l/qg=1/p+1/r— 1, thena generalized convolution(f * g)., is bounded
almost everywhere, and the Hausdorf —Young inequality is valid:

H(f * Q)VHTW < 1 fllpllgllgq- (2.6)

We obtain the inequality
ICf * 9l y < Mfllprllglian @7

from (2.6) by tending to the limit as  — oo using (2.2) (with p and ¢ such that 1/p+1/q=1).
We present the Marcinkiewicz interpolation theorem in the following form (see [1] and [10]).

Theorem 1. Ler 1 < p; < ¢ < 00 (i = 1,2), ¢1 # q2, 0 <7 < 1, 1/p = (1 —7)/p1 + 7/p2, and
1/g=1—-7)/q1 + T/Qg Ifa quasilinear operator A has simultaneously weak types (p1,q1), and (p2,q2)~,
then A has a strong type (p,q)~, and

[Afllgr < MI|fllp,qs (2.8)
where the constant M = M (v, T, k,p1, P2, q1,q2) does not depend on f and A.

Lith. Math. J., 56(4):540-551, 2016.



544 E.L. Shishkina
3 The boundedness of the hyperbolic Riesz B-potential with density function from the
Schwartz space
Along with potential (1.2), we consider the operator
(I8, 5f)(x) = / ro =Pl (TY ) (2)y" dy, 0<6 < 1. (3.1)
Syt 2ys+tyn

Lemma l.If f € L], 1 <s < (n+ |y])/a, n+ |y| — 2 < a < n + |7y, then we have the estimate

t
o (1= 8P (12 )(2),3) < Coppy (1 — )02 <%> 7 (32)

wheret = (n+ |y|)s/(n +|y| —as), 0 <6 < 1, A\ >0, and Cq 1, s does not depend on X, 6, and f.
Proof.  Assume, without loss of generality, that || f||;., = 1. Let w be a fixed real number. We define
Gy, ={reRf: 0z > a5+ - +a2, 0< 2y Swl,

Gy, ={z eR}: St as+ -+ a2 w< 2},

K+ (x) _ ra—n—h'(x), xTr € Ggw, K+ (x) _ Ta_”_h‘(l’), T E Gaow’
0.6 0, z e R\ GY,, 00,0 0, z € R\ Gg,.
Using these notations, we obtain
(I8, 5)(x) = (Kg s * f)7 + (KL 5% f)y. (3.3)
Leta' = (w2, , @), |2'| = /23 + - + 22, (2/)7 =23 - - 27". Then we have
1K sl = /Kgré(ac):r“* dz = / (ﬁ 2. = gci)(ol—n—w)/zgc7 da
R} G5

w

B / 2" day / (a7 = 2/P) " 2@ty o

0 o |7<6a2

= {a:' =x1y,y € Rf{_l

20 day / (1= Py ay

— T

ly'|2<8
< [ 2¢7 e / (1) 2y ay
0 ly <1
wa —n— 2 ’
=+ | (= /12Ty dy = o,

ly'I<1
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where CL,  =21""T'((a = n — 7] + 2)/2) [T T((i + 1)/2)) /(al'((w — y1 + 1)/2)) does not depend
on J. Consequently,
K5l < Camy ™, (3.4)

which means that K5 € L.
Letus take s’ suchthat 1/s+1/s’ = 1. We will estimate || K ;|5 . Suppose first that s # 1 (i.e., s’ # 00).

Then
, 1/s
I all, = ( [ 1500l )
R
oy 1/s’

_ < / (2% g3 o g2) O/ dx)

G5
1/s
( 7 day (af = Jo/[?) V2 @y dx,)
|’ \2<6z1
={a'=ny, ¥y eRl_,}
o 1/s
a—n—|y|)s’+n a—n—])/2s’ '
(/ s +ntI=1 g / (1= ly ) gy dy’)
w ly'[2<6
T 7itl 7 v

< 1_[1:2—(71)(1 . 5)(01—71—\7\)/2 (/mga—n—WDs’—i-n‘f"Y_l dx1>
onp (Y 5

_ Cin% ( 5)(01—71—\’y\)/?w—(”H’YD/q’

. 2 [, ()
a,n,y,s

((n+ bl = @)s' = n — VD

Here we take into account that a—n—|y| < 0,8 = s/(s—1), s < (n+]|y|)/aand t = (n+|v|)s/(n+|y|—as).
Then we derive

1L lly sy S Comns(1 = )T D2 m kD 2 5 =1, (3.5)
which means that K+ 08 € Ls,, s’ < 0.
Taking the limit in (3 5)as s — oo, we get
2" T, ()
2 a—n— 2 —(n+ t 2 =2 2
HKOO,5H007’y C2 (1 1-6) V)/2y=(n+hD/t, Coannt = F("*"*/'“) ) (3.6)
2

Now combining (3.5) and (3.6), we derive

<C2 (11— g)amnhD/2, b g o PF M _nthl d<oo.  (37)
a,n,y,s ) o n+ |7| " a

(L
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Then, for any A > 0, (3.3) implies that

oy (1= 8) P2 (18 1) (), 20)
< iy (1= &) (RE s £) L N) iy (1= 8) P2 (KL 5 ) L), (3.8)

From (2.7) and (3.7) it follows that

(1= o) =2 [(KE 55 f) oo

<(1-— 5)(”+|‘*|_°‘)/2||f||s,yHK;J C? w— D/t

8/,’}/ = a,N,Y,S

Putting w = (C2,, _ )/ \=t/(n+1D) it follows that

ASEE)

iy (1= ) PIme)2(KE s f) L A) = 0. (3.9)

¥
Combining (2.1) and (2.6) with (3.4), we obtain
_ §\(ntvl—a) /2 (gt
11, ((1 = 6) (Kols* f),:A)
(1 = o)t hl=eds 2| (K5 f)4115 _ (1 = g)lmtbl=eds2 ) K slis IFIIS

g ~

AS -
< (CL,)°(1 = §)s(nthrl=a)/2 ysa
X = .

Since w = (C2,, ., JY/ DA/ (40D and t = (n 4 |y])s/(n + |y| — as), denoting

1Y,

Ca7n,'y,5 = (Cl )8 X (0021771,7’5)0[ /(n—H’Y‘_OCS)’

a7n7’y

we have
Conys(1— 5)(n+|v|—a)/2

i (1= 8) P2 () F o ) L) < N (3.10)
From (3.8), (3.9), and (3.10) it is clear that
oy (1 = 8)(nhl=e0/2 (18, 5£)(@),) < Cany,s(l —)\f)(nﬂﬂ_aw,
where U, 5, ,s does not depend on A, §, and f. This completes the proof. O
Theorem 2. Letn+ |y| —2 < a<n+ |y, 1 <p < (n+ |vy|)/a. Then the estimate
115, Fll, < Crpll fllpys f € Sev, 3.11)
holds if and only if ¢ = (n + [1])p/ (n + 17| — ap).
Proof. Necessity. Letn+ |y| —2 < a <n—+ |y, 1 <p < (n+|y])/a and suppose that for some g,
18, f 1|,y < Crvpl fllps £ € Sev- (3.12)
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Lets us show that inequality (3.12) holds only for ¢ = (n + |y|)p/(n + || — ap).
Lets consider the extension operator 75: (75f)(x) = f(dx), d > 0. We have

175 Fllpy = 6~V 1], (3.13)
18 f(z) = 6%y g 75 f (), (3.14)
and
757115, £ ()], = 60V 18 f ()], . (3.15)
From (3.13), (3.14), and (3.15) we immediately obtain
178, £ @, = 8 ll757 8, 7S @), = ORI 7 f ()],
< Cnmp(;(n+lvl)/q+aHTéf(x)Hm
= Cn,«,,pé(’”‘7‘)/‘1_(”*‘7‘)/”0‘Hf(ac)Hpﬁ
or
ngwf(x)Hq,'y < Cnmp(;(%lvl)/q—(n+|“/|)/:n+aHf(x)Hpﬁ, (3.16)

If (n+1v])/g— (n+1v])/p+a>0and (n+ |y|)/qg — (n+ |y])/p + « < 0, then taking the limit in (3.16)
as 6 — 0 or 0 — oo, respectively, we get that

178,/ @)ll,, =0
for all functions f € L, and this is obviously false. This means that inequality (3.16) is possible only if
(n+v)/g— (n+|y])/p+ a =0, thatis, if ¢ = (n + |7y|)p/(n + |y| — ap). Thus, the necessity is proved.

Sufficiency. Assume, without loss of generality, that f(x)>0, z € R},
The quasilinear operator A has a weak type (s, ), if

M flls

t
Ha(Af ) < ( s ) Vfe L
(see (2.4)).

If we put s = 1 in Lemma 1, then ¢t = (n + |y|)/(n + |y| — «), and inequality (3.2) will be of the form

v

(n+hyl-a)/2 (o it bl-ayyz [F 1y ) D)
o (1= 8) IO (18 5£)(2),4) < Canya (L= 8)HD ( A’> '

This means that the quasilinear operator I3} ; (see (3.1)) has a weak type (1, (n + |[7])/(n + |7 — a)),.
Similarly, assuming that s = p; and ¢ = (n + |y)p1/(n + |y| — ap1) in Lemma 1, we obtain that the
quasilinear operator It} ; has a weak type (p1, (n + [v[)p1/(n + [v| — ap1))y, where 1 < p1 < (n + |v|/c.
Letus take py = p(1 —7)/(1 —7p), 7 € (0,1), so that 1 < py < (n + [7])/c. Then the operator I} ; has
weak types (pr, 41 and (pa, g2, where pr = p(1—7)/(1—7p), g1 = pln-+ 1]} (1—7)/((n-+ |7 (1~ 7p) —
ap(l—7)),and p2 = 1, g2 = (n+|7[)/(n+ [y — c. Therefore, by Theorem 1 the operator /75 has a strong

type (p, (n + |[7])p/(n + |y] — ap)),, and by (2.8)

(18, 65) @), < M1 fllpys (3.17)

Lith. Math. J., 56(4):540-551, 2016.
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where 1 < p < (n +|y)/ew ¢ = (n + [yD)p/(n + |7] —ap), and n + |y] =2 < a < n + |y], where
M = M(%T K,D1,D2; q1, g2) does not depend onf and I3 5.

Since f(z) > 0,for0 <01 < do < -+ <y < -+ < 1 wehave

(Igwalf)(x) < (Igw,ézf)(ﬂf) <o < (Iéw,amf)(:v) <
Since

lim (13 5f) (@) = (18, f) (=),

—1

taking the limit in (3.17) as § — 1, we obtain

18N @, < MIflo 1<p< T b2 <a<nth
Q'Y o

This proves the desired result. O

4 On absolute convergence of the hyperbolic Riesz B-potential

Letp = (p1,.-.,Pn) 1 < p; < 00, and L%(]R,J{ ) = L% be the space of measurable functions f on R that are
even with respect to each variable for which the norm
1 = AW el

') o] &) Pz/pl P3/;D2 pn/pnfl 1/pn
:</<</</‘f( Pl ’Yld$1> $g2d$2> ) x%”dxﬁ)
0 0 0
is finite.

Let z,y € R;'. We have the generalized Minkowski inequality

o0 o0 o0
H/sO(m,y)y”’dy /y%" dynH/y% dys / z,y)y;* dys
R 0 0 0

Lemma?2. Let p(z) € L), 1 <p < (n+|y|-1)/aan+|y|—2<a<n+|y—1and1/qg=1/p—
a/(n+|y| —1). Then

<
Py

4.1

P1,7111p2,72 PrnyYn

HI%WSOH@-Y < C”y%PHSOH;D,"/? q: (p>Q>>Q)

n—1
Proof. We derive
786l = | [ 7o) @) @y
K+ q,y
“+o00
Il [oran [ @@y | |
0 Yi—Ys——Yn_ 1 2V2 7' gy

where y=(y1, ..., yn) ER, ¥'= (Y1, .-, Yn—1). T=(p,q, ..., q), and (¢ ) dy'=y]" - -y 3 dyr - -+ dyn1.
—

n—2
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Next we apply inequality (4.1):

“+00

/ Yo dyn
0

Let us consider the expression

178, elly, <

/ P () (T9 £ () () dyf

YI—Y5——Yh 1 2Y3

=/
g, yn

[ e al = [ () 6 )

Yi—Ys— YR 2y R,
where
a—n—hl(y) _ ga—n—hl(y re0y), y ERT L u =3 - v >
r K (y) =r K (y 7yn) = / + 2 2 2 2
0, yER, 1, yi—vys— = Yny < Yp

Then

/ Ta_n_h‘(y) (Tyf) (m)(y/)“/ dy/ — (Tynf(,7 yn) " :,Ta—n—\’ﬂ (.7 yn))’y/‘
V=20

Applying the Hausdorf—Young inequality (2.6) to this generalized convolution, we get

(T £ Coyn) #7070 ) < T2 £ G |72 )

wheres = (1,s,...,s),1/s=1—-1/p+1/q.
2
e

Lets estimate the norm ||7*~"~11(- y,,))./||5. First, we have

7 )yl = F " )y g
Further, it follows that
~a—n—|vy|/. _ 2,2 .2 (a=n—[v|/2 d
HT ( 7yn)H1’71 (yl Ys yn) Yy Ayi-
Ky

Since

a= <1—1>(n+|7|—1) and —:1—1—1-1,

p q p q

we have

1 1
a=n-hl=a-n-hl+1-1= (=D (athl-1) = (o+ hl-1) -1

11 n+lyl—1
:—(n+|7|—1)<1——+—>—1:—¢—1
P q 5

Lith. Math. J., 56(4):540-551, 2016.
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and

FeMe )|, = (5 — [y |2) "I/ g
V1

Yi—Ys— =Y 2Y2

By the change of variable y; = p|y’| we derive

H;a—n—lvl(.’yn)ulm

+00

_ |y/|—(n+|’y|—1)/8+'yl / (p2 _ 1)_("+|7|_1)/(25)_1/2p’71 dp
1
+00

= |y |" (v hI=D/s4m /(p — 1)~ (=D @29)=1/2 y(n=1)/2 g
1
1

- |y/|—(n+|v|—1)/8+vl /(1 _ p)—(n+\v\—1)/(25)—1/2p(n+|7|—1—71)/(25)—1 dp

0
- |y/|—<n+|v|—1>/s+le<_w Ll ’Yl>

2s 2’ 2s

= Oy |y |~ thI=1/s+m

where —(n + |y| —1)/(2s) +1/2 > 0and (n+ |y| — 1 —71)/(2s) > 0.
This completes the proof of Lemma 2. O

By (3.11) there is a unique extension of I to all L), 1 <p< (n+|y])/a, preserving the boundedness.
It follows that this extension is introduced by the integral (1.2) from its absolute convergence, and the absolute
convergence of (1.2) is a consequence of Lemma 2 whenn + |y| —2 < a <n+ |y| — L.
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