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Abstract. This paper deals with the hyperbolic Riesz B-potential, which is the negative real power of an operator
Bγ1−

∑n
i=2 Bγi , where Bγi = ∂2/∂x2

i + (γi/xi)∂/∂xi, i = 1, . . . , n, is a singular Bessel differential operator. We
prove the boundedness of the hyperbolic Riesz B-potential in proper spaces.
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1 Introduction

In this paper, we prove the boundedness for a new type of potential with Lorentz distance in the weighted
space Lγ

p . The considered potential Iα�γ
is the negative real power of the operator

�γ = Bγ1
−

n∑

i=2

Bγi
,

where Bγi
= ∂2/∂x2i + (γi/xi)∂/∂xi, i = 1, . . . , n, is the singular differential Bessel operator.

The potential Iα
�
that is the negative real power of the operator

� =
∂2

∂x21
−

n∑

i=2

∂2

∂x2i

was studied in [11]. In [15], for an operator similar to the operator Iα
�γ

, some properties were obtained, but the
boundedness of such operators has not yet been proved. This work fills this gap. The results of this paper were
announced in [16].

The potential with the Lorentz distance is of the form

(
Iα
�
f
)
(x) =

1

Hn(α)

∫

K+

f(x− y) dy

rn−α(y)
, 2 � n, n− 2 < α, (1.1)
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where

Hn(α) = 2α−1π−1+n/2Γ

(
α

2

)

Γ

(
α+ 2− n

2

)

,

r(x) =
√

x21−x22 − · · · − x2n, K+(x) =
{
x: x21 � x22 + · · ·+ x2n, x1 � 0

}
.

It was introduced by Riesz [12] (cf. [13, p. 31] and [14, p. 409]).
Potential (1.1) was named the hyperbolic Riesz potential in [14, p. 409].
In this paper, we consider a Riesz potential with Lorentz distance connected with generalized translation

operator in the following form:

(
Iα
�γ

f
)
(x) =

∫

K+

rα−n−|γ|(y)
(
T yf

)
(x)yγ dy, yγ =

n∏

i=1

yγi

i . (1.2)

In (1.2), γ = (γ1, . . . , γn) is a multiindex consisting of positive fixed real numbers γi, i = 1, . . . , n, |γ| =
γ1 + · · ·+ γn, n+ |γ| − 2 < α < n+ |γ|,

K+ =
{
y ∈ Rn: y

2
1 � y22 + · · ·+ y2n, y1 > 0, . . . , yn > 0

}
,

and (T yf)(x) = (T y1
x1 · · · T yn

xn f)(x) is a multidimensional generalized translation. Each of the one-dimensional
generalized translations T yi

xi is defined for i = 1, . . . , n by the formula (see [4, p. 122, (5.19)]

(
T yi

xi
f
)
(x) =

Γ(γi+1
2 )

Γ(γi

2 )Γ(
1
2 )

π∫

0

f
(
x1, . . . , xi−1,

√
x2i + y2i − 2xiyi cosϕi, xi+1, . . . , xn

)
sinγi−1 ϕi dϕi.

We will call the operator (1.2) a hyperbolic Riesz B-potential. Such potentials are negative real powers of
the operator

�γ = Bγ1
−

n∑

i=2

Bγi
,

where Bγi
= ∂2/∂x2i + (γi/xi)∂/∂xi is the singular differential Bessel operator (see [3, p. 3].

Our proof of the boundedness of operator (1.2) is based on applying the appropriate Marcinkiewicz inter-
polation theorem.

Riesz B-potentials with Euclidian distance (elliptic Riesz B-potentials) are studied in detail (see [5, 6, 7,
8, 9]). Such potentials are negative real powers of the operator �γ =

∑n
k=1Bγk

. But methods of studying
elliptic and hyperbolic Riesz B-potentials are different, and we will use techniques for studying the generalized
translation developed by Lyakhov [5, 6, 7] and methods of studying hyperbolic potentials (1.1) proposed by
Nogin and Sukhinin in [11].

The boundedness of operator (1.2) is essentially used when we construct its inverse, but at the same time,
it is of independent interest.

The main result of this paper is a proof of the boundedness for the Riesz potential with Lorentz distance
generated by a generalized translation operator T y in special weighted spaces.

The rest of the paper is organized as follows. In Section 2, we present necessary preliminary definitions and
theorems. In Section 3, we prove our main theorem on the boundedness of the hyperbolic Riesz B-potential
from Lγ

p to Lγ
q for functions from the Schwartz space. The last section contains further study of the poten-

tial (1.2), which implies its absolute convergence.
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2 Preliminaries

We consider functions f = f(x) defined on

R
+
n =

{
x = (x1, . . . , xn) ∈ Rn: x1 > 0, . . . , xn > 0

}
.

We call a function defined on R+
n to be even with respect to xi, i = 1, . . . , n, if it can be extended on Rn as

an even function with respect to xi preserving the considered class of functions.
The weighted Lγ

p(R+
n ) = Lγ

p space, p � 1, is the set of all measurable functions from R
+
n to R that are

even with respect to each variable and, moreover, the absolute value of such a function raised to the pth power
and multiplied by xγ =

∏n
i=1 x

γi

i is integrable, that is,
∫

R
+
n

∣
∣f(x)

∣
∣pxγ dx < ∞.

For a real number p � 1, the Lγ
p -norm of f is defined by

‖f‖Lγ
p (R

+
n ) = ‖f‖p,γ =

(∫

R
+
n

∣
∣f(x)

∣
∣pxγ dx

)1/p

, xγ =

n∏

i=1

xγi

i .

Let Ω ⊂ R
+
n ∪ {xi = 0, i = 1, . . . , n}, andmesγ Ω be the weighted measure of Ω defined by

mesγ Ω =

∫

Ω

xγ dx.

For every measurable function f(x) defined on R+
n , we consider

μγ(f, t) = mesγ
{
x ∈ R

+
n :

∣
∣f(x)

∣
∣ > t

}
=

∫

{x: |f(x)|>t}+

xγ dx,

where {x: |f(x)| > t}+ = {x ∈ R
+
n : |f(x)| > t}. The function μγ = μγ(f, t) is called the weighted

distribution function of |f(x)|.
The space Lγ∞(R+

n ) = Lγ∞ is defined as the set of measurable functions f on R+
n that are even with respect

to each variable and such that

‖f‖Lγ
∞(R+

n ) = ‖f‖∞,γ = ess sup
x∈R+

n

γ

∣
∣f(x)

∣
∣ = inf

a∈R
{
μγ(f, a) = 0

}
< ∞.

We have the following inequality [10]:

μγ(f, t) �
(‖f‖p,γ

t

)p

. (2.1)

The norms of the spaces Lγ
p and Lγ∞ are connected by the following equality:

‖f‖∞,γ = lim
p→∞‖f‖p,γ . (2.2)

The space Sev(R
+
n ) = Sev consists of all functions on R

+
n that are even with respect to each variable and

belong to the space of Schwartz functions.



On the boundedness of hyperbolic Riesz B-potential 543

We denote by SLγ
p(R

+
n ) = SLγ

p the set of all even with respect to each variable functions for which the
norm

‖f‖SLγ
p(R

+
n ) = ‖f‖SLγ

p
= sup

0<t<∞
t
(
μγ(f, t)

)1/p
< ∞, 1 � p < ∞.

The operator A is said to be quasilinear (see [2, p. 41]) if A(f1 + f2) is uniquely defined,Af1 and Af2 are
defined, and if there exists a constant κ such that for all f1 and f2 , the following inequality is valid pointwise:

∣
∣A(f1 + f2)

∣
∣ � κ

(|Af1|+ |Af2|
)
.

A quasilinear operator A from Lγ
p to Lγ

q is of strong type (p, q)γ , 1 � p � ∞, 1 � q � ∞, if the following
inequality is valid:

‖Af‖q,γ � h‖f‖p,γ ∀f ∈ Lγ
p , (2.3)

where the constant h does not depend on f .
We say that a quasilinear operator A is an operator of weak type (p, q)γ (1 � p � ∞, 1 � q < ∞) if

μγ(Af, λ) �
(
h‖f‖p,γ

λ

)q

∀f ∈ Lγ
p , (2.4)

where h does not depend on f and λ > 0.
If q = ∞, then a quasilinear operator A is an operator of weak type (p, q)γ if it is of strong type (p, q)γ .
A generalized convolution is defined by

(f ∗ g)γ(x) =
∫

R
+
n

f(y)
(
T yg

)
(x)yγ dy

(see [17] formula (14) for one-dimensional convolution and [3, p. 19] for the general case).
Let p, q, r ∈ [1,∞] and

1

p
+

1

q
= 1 +

1

r
. (2.5)

If f ∈ Lγ
p , g ∈ Lγ

q , 1 � p, q, r � ∞, 1/q = 1/p+1/r− 1, then a generalized convolution(f ∗ g)γ is bounded
almost everywhere, and the Hausdorf–Young inequality is valid:

∥
∥(f ∗ g)γ

∥
∥
r,γ

� ‖f‖p,γ‖g‖q,γ . (2.6)

We obtain the inequality
∥
∥(f ∗ g)γ

∥
∥
∞,γ

� ‖f‖p,γ‖g‖q,γ (2.7)

from (2.6) by tending to the limit as r→∞ using (2.2) (with p and q such that 1/p+1/q=1).
We present the Marcinkiewicz interpolation theorem in the following form (see [1] and [10]).

Theorem 1. Let 1 � pi � qi < ∞ (i = 1, 2), q1 �= q2, 0 < τ < 1, 1/p = (1 − τ)/p1 + τ/p2, and
1/q = (1− τ)/q1 + τ/q2. If a quasilinear operator A has simultaneously weak types (p1, q1)γ and (p2, q2)γ ,
then A has a strong type (p, q)γ , and

‖Af‖q,γ � M‖f‖p,γ , (2.8)

where the constantM = M(γ, τ, κ, p1, p2, q1, q2) does not depend on f and A.
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3 The boundedness of the hyperbolic Riesz B-potential with density function from the
Schwartz space

Along with potential (1.2), we consider the operator

(
Iα
�γ ,δf

)
(x) =

∫

δy2
1�y2

2+···+y2
n

rα−n−|γ|(y)
(
T yf

)
(x)yγ dy, 0 < δ < 1. (3.1)

Lemma 1. If f ∈ Lγ
s , 1 � s < (n+ |γ|)/α, n+ |γ| − 2 < α < n+ |γ|, then we have the estimate

μγ

(
(1− δ)(n+|γ|−α)/2

(
Iα
�γ ,δf

)
(x), λ

)
� Cα,n,γ,s(1− δ)(n+|γ|−α)/2

(‖f‖s,γ
λ

)t

, (3.2)

where t = (n+ |γ|)s/(n + |γ| − αs), 0 < δ < 1, λ > 0, and Cα,n,γ,s does not depend on λ, δ, and f .

Proof. Assume, without loss of generality, that ‖f‖s,γ = 1. Let ω be a fixed real number. We define

G0
δ,ω = {x ∈ R

+
n : δx

2
1 � x22 + · · ·+ x2n, 0 � x1 � ω},

G∞
δ,ω = {x ∈ R

+
n : δx

2
1 � x22 + · · ·+ x2n, ω < x1},

K+
0,δ(x) =

{
rα−n−|γ|(x), x ∈ G0

δ,ω,

0, x ∈ R
+
n \G0

δ,ω,
K+

∞,δ(x) =

{
rα−n−|γ|(x), x ∈ G∞

δ,ω,

0, x ∈ R
+
n \G∞

δ,ω.

Using these notations, we obtain
(
Iα
�γ ,δf

)
(x) =

(
K+

0,δ ∗ f
)
γ
+
(
K+

∞,δ ∗ f
)
γ
. (3.3)

Let x′ = (x2, · · · , xn), |x′| =
√

x22 + · · ·+ x2n, (x
′)γ′

= xγ2

2 · · · xγn
n . Then we have

‖K+
0,δ‖1,γ =

∫

R
+
n

K+
0,δ(x)x

γ dx =

∫

G0
δ,ω

(
x21 − x22 − · · · − x2n

)(α−n−|γ|)/2
xγ dx

=

ω∫

0

xγ1

1 dx1

∫

|x′|2�δx2
1

(
x21 − |x′|2)(α−n−|γ|)/2

(x′)γ
′
dx′

=
{
x′ = x1y

′, y′ ∈ R
+
n−1

}

=

ω∫

0

xα−1
1 dx1

∫

|y′|2�δ

(
1− |y′|2)(α−n−|γ|)/2

(y′)γ
′
dy′

�
ω∫

0

xα−1
1 dx1

∫

|y′|2�1

(
1− |y′|2)(α−n−|γ|)/2

(y′)γ
′
dy′

=
ωα

α

∫

|y′|�1

(
1− |y′|2)(α−n−|γ|)/2

(y′)γ
′
dy′ = C1

α,n,γω
α,
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where C1
α,n,γ = 21−nΓ((α − n − |γ| + 2)/2)

∏n
i=2 Γ((γi + 1)/2))/(αΓ((α − γ1 + 1)/2)) does not depend

on δ. Consequently,
∥
∥K+

0,δ

∥
∥
1,γ

� C1
α,n,γ ωα, (3.4)

which means thatK+
0,δ ∈ Lγ

1 .
Let us take s′ such that 1/s+1/s′ = 1. We will estimate ‖K+

∞,δ‖s′,γ . Suppose first that s �= 1 (i.e., s′ �= ∞).
Then

∥
∥K+

∞,δ

∥
∥
s′,γ =

(∫

R
+
n

∣
∣K+

0,δ(x)
∣
∣s

′
xγ dx

)1/s′

=

( ∫

G∞
δ,ω

(
x21 − x22 − · · · − x2n

)(α−n−|γ|)/2·s′
xγ dx

)1/s′

=

( ∞∫

ω

xγ1

1 dx1

∫

|x′|2�δx2
1

(
x21 − |x′|2)(α−n−|γ|)/2·s′

(x′)γ
′
dx′

)1/s′

=
{
x′ = x1y

′, y′ ∈ R
+
n−1

}

=

( ∞∫

ω

x
(α−n−|γ|)s′+n+|γ|−1
1 dx1

∫

|y′|2�δ

(
1− |y′|2)(α−n−|γ|)/2·s′

(y′)γ
′
dy′

)1/s′

�
∏n

i=2 Γ(
γi+1
2 )

2nΓ(n+|γ′|+1
2 )

(1− δ)(α−n−|γ|)/2
( ∞∫

ω

x
(α−n−|γ|)s′+n+|γ|−1
1 dx1

)1/s′

= C2
α,n,γ,s(1− δ)(α−n−|γ|)/2ω−(n+|γ|)/q,

C2
α,n,γ,s =

2−n
∏n

i=2 Γ(
γi+1
2 )

((n+ |γ| − α)s′ − n− |γ|)1/s′Γ(n+|γ′|+1
2 )

.

Here we take into account that α−n−|γ| < 0, s′ = s/(s−1), s < (n+|γ|)/α and t = (n+|γ|)s/(n+|γ|−αs).
Then we derive

∥
∥K+

∞,δ

∥
∥
s′,γ � C2

α,n,γ,s(1− δ)(α−n−|γ|)/2ω−(n+|γ|)/t,
1

s
+

1

s′
= 1, (3.5)

which means thatK+
∞,δ ∈ Lγ

s′ , s
′ < ∞.

Taking the limit in (3.5) as s′ → ∞, we get

∥
∥K+

∞,δ

∥
∥
∞,γ

� C2
α,n,γ,1(1− δ)(α−n−|γ|)/2ω−(n+|γ|)/t, C2

α,n,γ,1 =
2−n

∏n
i=2 Γ(

γi+1
2 )

Γ(n+|γ′|+1
2 )

. (3.6)

Now combining (3.5) and (3.6), we derive

∥
∥K+

∞,δ

∥
∥
s′,γ � C2

α,n,γ,s(1− δ)(α−n−|γ|)/2ω−(n+|γ|)/t, 1 � s <
n+ |γ|

α
,

n+ |γ|
n+ |γ| − α

< s′�∞. (3.7)
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Then, for any λ > 0, (3.3) implies that

μγ

(
(1− δ)(n+|γ|−α)/2

(
Iα
�γ ,δf

)
(x), 2λ

)

� μγ

(
(1− δ)(n+|γ|−α)/2

(
K+

0,δ ∗ f
)
γ
, λ

)
+ μγ

(
(1− δ)(n+|γ|−α)/2

(
K+

∞,δ ∗ f
)
γ
, λ

)
. (3.8)

From (2.7) and (3.7) it follows that

(1− δ)(n+|γ|−α)/2
∥
∥
(
K+

∞,δ ∗ f
)
γ

∥
∥
∞,γ

� (1− δ)(n+|γ|−α)/2‖f‖s,γ
∥
∥K+

∞,δ

∥
∥
s′,γ

� C2
α,n,γ,s ω

−(n+|γ|)/t.

Putting ω = (C2
α,n,γ,s)

t/(n+|γ|)λ−t/(n+|γ|), it follows that

μγ

(
(1− δ)(n+|γ|−α)/2

(
K+

∞,δ ∗ f
)
γ
, λ

)
= 0. (3.9)

Combining (2.1) and (2.6) with (3.4), we obtain

μγ

(
(1− δ)(n+|γ|−α)/2

(
K+

0,δ ∗ f
)
γ
, λ

)

�
(1− δ)(n+|γ|−α)s/2‖(K+

0,δ ∗ f)γ‖ss,γ
λs

�
(1− δ)(n+|γ|−α)s/2‖K+

0,δ‖s1,γ‖f‖ss,γ
λs

�
(C1

α,n,γ)
s(1− δ)s(n+|γ|−α)/2 ωsα

λs
.

Since ω = (C2
α,n,γ,s)

t/(n+|γ|)λ−t/(n+|γ|) and t = (n + |γ|)s/(n + |γ| − αs), denoting

Cα,n,γ,s =
(
C1
α,n,γ

)s × (
C2
α,n,γ,s

)α2/(n+|γ|−αs)
,

we have

μγ

(
(1− δ)(n+|γ|−α)/2

(
K+

0,δ ∗ f
)
γ
, λ

)
� Cα,n,γ,s(1− δ)(n+|γ|−α)/2

λt
. (3.10)

From (3.8), (3.9), and (3.10) it is clear that

μγ

(
(1− δ)(n+|γ|−α)/2

(
Iα
�γ ,δf

)
(x), λ

)
� Cα,n,γ,s(1− δ)(n+|γ|−α)/2

λt
,

where Cα,n,γ,s does not depend on λ, δ, and f . This completes the proof. �

Theorem 2. Let n+ |γ| − 2 < α < n+ |γ|, 1 � p < (n+ |γ|)/α. Then the estimate
∥
∥Iα

�γ
f
∥
∥
q,γ

� Cn,γ,p‖f‖p,γ , f ∈ Sev, (3.11)

holds if and only if q = (n+ |γ|)p/(n + |γ| − αp).

Proof. Necessity. Let n+ |γ| − 2 < α < n+ |γ|, 1 < p < (n + |γ|)/α and suppose that for some q,
∥
∥Iα

�γ
f
∥
∥
q,γ

� Cn,γ,p‖f‖p,γ , f ∈ Sev. (3.12)
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Lets us show that inequality (3.12) holds only for q = (n+ |γ|)p/(n + |γ| − αp).
Lets consider the extension operator τδ: (τδf)(x) = f(δx), δ > 0. We have

‖τδf‖p,γ = δ−(n+|γ|)/p‖f‖p,γ , (3.13)

Iα
�γ

f(x) = δατ−1
δ Iα

�γ
τδf(x), (3.14)

and
∥
∥τ−1

δ Iα
�γ

f(x)
∥
∥
q,γ

= δ(n+|γ|)/q∥∥Iα
�γ

f(x)
∥
∥
q,γ

. (3.15)

From (3.13), (3.14), and (3.15) we immediately obtain

∥
∥Iα

�γ
f(x)

∥
∥
q,γ

= δα
∥
∥τ−1

δ Iα
�γ

τδf(x)
∥
∥
q,γ

= δ(n+|γ|)/q+α
∥
∥Iα

�γ
τδf(x)

∥
∥
q,γ

� Cn,γ,pδ
(n+|γ|)/q+α

∥
∥τδf(x)

∥
∥
p,γ

= Cn,γ,pδ
(n+|γ|)/q−(n+|γ|)/p+α

∥
∥f(x)

∥
∥
p,γ

or
∥
∥Iα

�γ
f(x)

∥
∥
q,γ

� Cn,γ,pδ
(n+|γ|)/q−(n+|γ|)/p+α

∥
∥f(x)

∥
∥
p,γ

. (3.16)

If (n + |γ|)/q − (n+ |γ|)/p + α > 0 and (n + |γ|)/q − (n+ |γ|)/p + α < 0, then taking the limit in (3.16)
as δ → 0 or δ → ∞, respectively, we get that

∥
∥Iα

�γ
f(x)

∥
∥
q,γ

= 0

for all functions f ∈ Lγ
p , and this is obviously false. This means that inequality (3.16) is possible only if

(n + |γ|)/q − (n+ |γ|)/p + α = 0, that is, if q = (n+ |γ|)p/(n + |γ| − αp). Thus, the necessity is proved.

Sufficiency. Assume, without loss of generality, that f(x)�0, x ∈ R
+
n .

The quasilinear operator A has a weak type (s, t)γ if

μγ(Af, λ) �
(
h‖f‖s,γ

λ

)t

∀f ∈ Lγ
p

(see (2.4)).
If we put s = 1 in Lemma 1, then t = (n+ |γ|)/(n + |γ| − α), and inequality (3.2) will be of the form

μγ

(
(1− δ)(n+|γ|−α)/2

(
Iα
�γ ,δf

)
(x), λ

)
� Cα,n,γ,1(1− δ)(n+|γ|−α)/2

(‖f‖1,γ
λ

)(n+|γ|)/(n+|γ|−α)

.

This means that the quasilinear operator Iα
�γ ,δ

(see (3.1)) has a weak type (1, (n + |γ|)/(n + |γ| − α))γ .
Similarly, assuming that s = p1 and t = (n + |γ|)p1/(n + |γ| − αp1) in Lemma 1, we obtain that the
quasilinear operator Iα

�γ ,δ
has a weak type (p1, (n + |γ|)p1/(n + |γ| − αp1))γ , where 1 < p1 < (n+ |γ|/α.

Let us take p1 = p(1− τ)/(1− τp), τ ∈ (0, 1), so that 1 < p1 < (n+ |γ|)/α. Then the operator Iα
�γ ,δ

has
weak types (p1, q1)γ and (p2, q2)γ , where p1 = p(1−τ)/(1−τp), q1 = p(n+ |γ|)(1−τ)/((n+ |γ|)(1−τp)−
αp(1− τ)), and p2 = 1, q2 = (n+ |γ|)/(n+ |γ|−α. Therefore, by Theorem 1 the operator Iα

�γ ,δ
has a strong

type (p, (n+ |γ|)p/(n + |γ| − αp))γ , and by (2.8)
∥
∥
(
Iα
�γ ,δf

)
(x)

∥
∥
q,γ

� M‖f‖p,γ , (3.17)
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where 1 � p < (n + |γ|)/α, q = (n + |γ|)p/(n + |γ| − αp), and n + |γ| − 2 < α < n + |γ|, where
M = M(γ, τ, κ, p1, p2, q1, q2) does not depend on f and Iα

�γ ,δ
.

Since f(x) � 0, for 0 < δ1 � δ2 � · · · � δm � · · · < 1, we have
(
Iα
�γ ,δ1f

)
(x) �

(
Iα
�γ ,δ2f

)
(x) � · · · � (

Iα
�γ ,δmf

)
(x) � · · · .

Since
lim
δ→1

(
Iα
�γ ,δf

)
(x) =

(
Iα
�γ

f
)
(x),

taking the limit in (3.17) as δ → 1, we obtain

∥
∥
(
Iα
�γ

f
)
(x)

∥
∥
q,γ

� M‖f‖p,γ , 1�p <
n+ |γ|

α
, n+ |γ| − 2 < α < n+ |γ|.

This proves the desired result. �

4 On absolute convergence of the hyperbolic Riesz B-potential

Let p = (p1, . . . , pn), 1 � pi � ∞, and Lγ
p(R

+
n ) = Lγ

p be the space of measurable functions f on R
+
n that are

even with respect to each variable for which the norm

‖f‖p,γ =
∥
∥ · · · ∥∥‖f‖p1,γ1

∥
∥
p2,γ2

· · · ∥∥
pn,γn

=

( ∞∫

0

(

· · ·
( ∞∫

0

( ∞∫

0

∣
∣f(x)

∣
∣p1xγ1

1 dx1

)p2/p1

xγ2

2 dx2

)p3/p2

· · ·
)pn/pn−1

xγn

n dxn

)1/pn

is finite.
Let x, y ∈ R

+
n . We have the generalized Minkowski inequality

∥
∥
∥
∥

∫

R
+
n

ϕ(x, y)yγ dy

∥
∥
∥
∥
p,γ

�
∥
∥
∥
∥
∥

∞∫

0

yγn

n dyn · · ·
∥
∥
∥
∥
∥

∞∫

0

yγ2

2 dy2

∥
∥
∥
∥
∥

∞∫

0

ϕ(x, y)yγ1

1 dy1

∥
∥
∥
∥
∥
p1,γ1

∥
∥
∥
∥
∥
p2,γ2

· · ·
∥
∥
∥
∥
∥
pn,γn

. (4.1)

Lemma 2. Let ϕ(x) ∈ Lγ
p , 1 < p < (n + |γ| − 1)/α, n + |γ| − 2 < α < n + |γ| − 1, and 1/q = 1/p −

α/(n + |γ| − 1). Then
∥
∥Iα

�γ
ϕ
∥
∥
q,γ

� cn,γ,p‖ϕ‖p,γ , q = (p, q, . . . , q
︸ ︷︷ ︸

n−1

).

Proof. We derive

∥
∥Iα

�γ
ϕ
∥
∥
q,γ

=

∥
∥
∥
∥

∫

K+

rα−n−|γ|(y)
(
T yf

)
(x)yγ dy

∥
∥
∥
∥
q,γ

=

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

+∞∫

0

yγn

n dyn

∫

y2
1−y2

2−···−y2
n−1�y2

n

rα−n−|γ|(y)
(
T yf

)
(x)(y′)γ

′
dy′

∥
∥
∥
∥
∥
q ′

∥
∥
∥
∥
∥
q,γn

,

where y=(y1, . . . , yn)∈R
+
n , y

′=(y1, . . . , yn−1), q′=(p, q, . . . , q
︸ ︷︷ ︸

n−2

), and (y′)γ′
dy′=yγ1

1 · · · yγn−1

n−1 dy1 · · · dyn−1.



On the boundedness of hyperbolic Riesz B-potential 549

Next we apply inequality (4.1):

∥
∥Iα

�γ
ϕ
∥
∥
q,γ

�
∥
∥
∥
∥
∥

+∞∫

0

yγn

n dyn

∥
∥
∥
∥

∫

y2
1−y2

2−···−y2
n−1�y2

n

rα−n−|γ|(y)
(
T yf

)
(x)(y′)γ

′
dy′

∥
∥
∥
∥
q ′

∥
∥
∥
∥
∥
q,γn

.

Let us consider the expression
∫

y2
1−y2

2−···−y2
n−1�y2

n

rα−n−|γ|(y)
(
T yf

)
(x)(y′)γ

′
dy′ =

∫

R
+
n−1

r̃ α−n−|γ|(y′, yn)
(
T y′(

T ynf
))
(x′, xn)(y′)γ

′
dy′,

where

r̃ α−n−|γ|(y) = r̃ α−n−|γ|(y′, yn) =

{
rα−n−|γ|(y), y′ ∈ R

+
n−1, y

2
1 − y22 − · · · − y2n−1 � y2n,

0, y′ ∈ R
+
n−1, y

2
1 − y22 − · · · − y2n−1 < y2n.

Then
∫

y2
1−y2

2−···−y2
n−1�y2

n

rα−n−|γ|(y)
(
T yf

)
(x)(y′)γ

′
dy′ =

(
T ynf(·, yn) ∗ r̃ α−n−|γ|(·, yn)

)
γ′ .

Applying the Hausdorf–Young inequality (2.6) to this generalized convolution, we get

∥
∥
(
T ynf(·, yn) ∗ r̃ α−n−|γ|(·, yn)

)
γ′

∥
∥
q ′ �

∥
∥T ynf(·, yn)

∥
∥
p

∥
∥r̃ α−n−|γ|(·, yn)γ′

∥
∥
s
,

where s = (1, s, . . . , s
︸ ︷︷ ︸

n−2

), 1/s = 1− 1/p + 1/q.

Lets estimate the norm ‖r̃ α−n−|γ|(·, yn))γ′‖s. First, we have
∥
∥r̃ α−n−|γ|(·, yn)γ′

∥
∥
s
=

∥
∥
∥
∥r̃ α−n−|γ|(·, yn)

∥
∥
1,γ1

∥
∥
s,γ2,...,γn−1

.

Further, it follows that

∥
∥r̃ α−n−|γ|(·, yn)

∥
∥
1,γ1

=

∫

K+

(
y21 − y22 − · · · − y2n

)(α−n−|γ|/2
yγ1

1 dy1.

Since

α =

(
1

p
− 1

q

)
(
n+ |γ| − 1

)
and

1

s
= 1− 1

p
+

1

q
,

we have

α− n− |γ| = α− n− |γ|+ 1− 1 =

(
1

p
− 1

q

)
(
n+ |γ| − 1

)− (
n+ |γ| − 1

)− 1

= −(
n+ |γ| − 1

)
(

1− 1

p
+

1

q

)

− 1 = −n+ |γ| − 1

s
− 1
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and
∥
∥r̃ α−n−|γ|(·, yn)

∥
∥
1,γ1

=

∫

y2
1−y2

2−···−y2
n−1�y2

n

(
y21 − |y′|2)−(n+|γ|−1)/(2s)−1/2

yγ1

1 dy1.

By the change of variable y1 = ρ|y′| we derive
∥
∥r̃ α−n−|γ|(·, yn)

∥
∥
1,γ1

= |y′|−(n+|γ|−1)/s+γ1

+∞∫

1

(
ρ2 − 1

)−(n+|γ|−1)/(2s)−1/2
ργ1 dρ

= |y′|−(n+|γ|−1)/s+γ1

+∞∫

1

(ρ− 1)−(n+|γ|−1)/(2s)−1/2ρ(γ1−1)/2 dρ

= |y′|−(n+|γ|−1)/s+γ1

1∫

0

(1− ρ)−(n+|γ|−1)/(2s)−1/2ρ(n+|γ|−1−γ1)/(2s)−1 dρ

= |y′|−(n+|γ|−1)/s+γ1B

(

−n+ |γ| − 1

2s
+

1

2
,
n+ |γ| − 1− γ1

2s

)

= C1|y′|−(n+|γ|−1)/s+γ1 ,

where −(n+ |γ| − 1)/(2s) + 1/2 > 0 and (n+ |γ| − 1− γ1)/(2s) > 0.
This completes the proof of Lemma 2. �

By (3.11) there is a unique extension of Iα
�γ

to all Lγ
p , 1 < p < (n + |γ|)/α, preserving the boundedness.

It follows that this extension is introduced by the integral (1.2) from its absolute convergence, and the absolute
convergence of (1.2) is a consequence of Lemma 2 when n+ |γ| − 2 < α < n+ |γ| − 1.
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