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Abstract. We introduce and investigate the class of A-Darboux functions, namely, the class of functions f : R → R

such that for all a, b ∈ R with a < b and each y between f(a) and f(b), there is a point x0 ∈ (a, b) ∩ A (where A is
a nonempty fixed subset of R) such that f(x0) = y. Furthermore, we generalize the notion of the A-Darboux property
for functions mapping a topological space into a topological space.
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1 Preliminaries

By R and N we denote the real line and the set of positive integers, respectively. The symbol I(a, b) denotes
the open interval with endpoints a and b. For a setA, we use the symbols intA, clA, and cardA to denote the
interior, closure, and cardinality of A, respectively. The cardinality of R is denoted by c. We say that a subset
A of R is c-dense in R if card(I ∩ A) = c for each open interval I ⊂ R. Let x ∈ R. If xn → x and
xn < xn+1 < x for all n ∈ N, then we write xn ↗ x or x ↖ xn. Similarly, if xn → x and xn > xn+1 > x
for all n ∈ N, then we write xn ↘ x or x ↙ xn.

Let f be a function. The symbols C(f) and C+(f) stand for the sets of points of continuity and right-hand
continuity of f , respectively. The symbol L+(f, x) denotes the cluster set from the right of the function f at
the point x ∈ R

1.
Now for real-valued function defined on R, we introduce the notion of A-Darboux function.

DEFINITION 1. Let A ⊂ R be a nonempty set. We say that a function f : R → R has the A-Darboux property
(f ∈ DA) if whenever a, b ∈ R, a < b, and y ∈ I(f(a), f(b)), there is an x0 ∈ (a, b)∩A such that f(x0) = y.

Sometimes, instead of saying that the function f has the A-Darboux property, we will say that f is an
A-Darboux function. We say that f : R → R has the Darboux property2 (f ∈ D) if Definition 1 holds for
A = R. We say that f : R → R has the strong Świątkowski property [10] if Definition 1 holds for A = C(f).
∗ Supported by Kazimierz Wielki University.
1 y ∈ L+(f, x) iff there is a sequence (xn) ⊂ R such that xn ↘ x and f(xn) → y.
2 IfX and Y are topological spaces, then f : X → Y has theDarboux property iff the set f(S) is connected in Y for every connected
set S ⊂ X .
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2 Introduction

A function f : R → R has the intermediate value property if on each interval (a, b) ⊂ R, it assumes every
real value between f(a) and f(b). In the nineteenth century, some mathematicians believed that this property
is equivalent to continuity. In 1875, Darboux showed that this is not true. He proved that every derivative has
the intermediate value property and constructed a function with derivative discontinuous on the set of rational
numbers [3]. For this reason, the intermediate value property is called the Darboux property, and a function
having the intermediate value property is called a Darboux function.

The Darboux property has been studied extensively and in various contexts. In 1995, Maliszewski [10]
defined a condition more special than the Darboux property, which was called the strong Świątkowski property.
The family of strong Świątkowski functions was examined, among other things, by Maliszewski [10, 11],
Kucner and Pawlak [8], and Szczuka [12, 13, 14]. Recently, Grande [5] and Ivanova [6] considered some
modifications of strong Świątkowski property changing the continuity with the approximate continuity and
with the I-approximate continuity, respectively. In 2014, Ivanova and Wagner-Bojakowska [7, Defs. 5, 7]
generalized these definitions replacing continuity withA-continuity. We however notice that the generalization
of the Darboux property introduced in [7] boils down to a generalization of the notion of continuity.

In this paper, we introduce the notion of A-Darboux property (Definition 1) for a nonempty fixed set
A ⊂ R that does not depend on the function f , present a local characterization of A-Darboux functions, and
examine some properties concerning such functions. Moreover, in the last section, we generalize the notion of
A-Darboux property for functions mapping a topological space into a topological space. Note that almost all
results obtained in this paper (with the exception of the results of Section 4) may be also applied to the case
where the set A depends on the function f .

3 Local characterization ofA-Darboux functions

In this section, we present a local characterization of functions with A-Darboux property. We start with a gen-
eralization of the definition introduced by Kucner and Pawlak [8, Def. 1].

DEFINITION 2. Let A ⊂ R be a nonempty set. We say that a point x ∈ R A-cuts a function f : R → R if
there is δ > 0 such that

∅ �= f
(
(x− δ, x) ∩A

) ⊂ (−∞, f(x)
)

and ∅ �= f
(
(x, x+ δ) ∩A

) ⊂ (
f(x),∞)

or
∅ �= f

(
(x− δ, x) ∩A

) ⊂ (
f(x),∞)

and ∅ �= f
(
(x, x+ δ) ∩A

) ⊂ (−∞, f(x)
)
.

Next, we recall a local characterization of Darboux functions (see [1, 9]).

DEFINITION 3. The function f : R → R has the right-hand Darboux property at a point x ∈ R (briefly
x ∈ D+(f)) if

f−1(β) ∩ (x, x+ δ) �= ∅ for all α ∈ L+(f, x) \ {f(x)}, β ∈ I
(
f(x), α

)
, and δ > 0. (3.1)

The left-hand Darboux property of f at a point x is defined analogously (briefly x ∈ D−(f)).

DEFINITION 4. The function f : R → R has the Darboux property at a point x ∈ R (briefly x ∈ D(f)) if
x ∈ D−(f) ∩D+(f).

Moreover, the following equivalence is true (see, e.g., [1, Thm. 5.1]).

Theorem 1. A function f : R → R has the Darboux property if and only if f has the Darboux property at
every point x ∈ R.
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In 2002, Kucner and Pawlak [8, Def. 2] introduced the following local characterization of the strong
Świątkowski property.

DEFINITION 5. The function f : R → R has the right-hand strong Świątkowski property at a point x ∈ R if
x ∈ C+(f) or the following conditions are satisfied:

1. f−1(β) ∩ (x, x+ δ) ∩ C(f) �= ∅ for all α ∈ L+(f, x) \ {f(x)}, β ∈ I
(
f(x), α

)
, and δ > 0.

2. For each α ∈ R, if there are sequences (xn), (yn) ⊂ R such that xn ↘ x ↙ yn and f(xn) ↘ α ↖
f(yn), then f−1(α) ∩ (x, x+ δ) ∩ C(f) �= ∅ for all δ > 0.

The left-hand strong Świątkowski property at a point x is defined analogously (see [8, Def. 3]).

DEFINITION 6. (See [8, Def. 4].) A function f : R → R has the strong Świątkowski property at a point x ∈ R

if f has simultaneously right-hand and left-hand strong Świątkowski properties at a point x, and if the point x
C(f)-cuts the function f , then x ∈ C(f).

Moreover, Kucner and Pawlak proved the following equivalence.

Theorem 2. (See [8, Thm. 12].) A function f : R → R is strong Świątkowski if and only if f has the strong
Świątkowski property at every point x ∈ R.

Now we present similar results for A-Darboux functions.

DEFINITION 7. Let A ⊂ R be a nonempty set. We say that a function f : R → R has the right-hand
A-Darboux property at a point x ∈ R (briefly x ∈ D+

A(f)) if condition (3.1) from Definition 3 holds and
if A �= R, then the following condition is satisfied:

(∗) for every α ∈ R, if there are sequences (xn), (yn) ⊂ R such that xn ↘ x ↙ yn and f(xn) ↘ α ↖
f(yn), then f−1(α) ∩ (x, x+ δ) ∩A �= ∅ for all δ > 0.

We define the left-hand A-Darboux point x of the function f analogously (briefly x ∈ D−
A(f)).

DEFINITION 8. Let A ⊂ R be a nonempty set. We say that a function f : R → R has the A-Darboux property
at a point x ∈ R (briefly x ∈ DA(f)) if x ∈ D−

A(f) ∩D+
A(f) and if the point x ∈ R A-cuts the function f ,

then x ∈ A.

Remark 1. Let f : R → R and A = C(f). In this case, Definition 7 is not equivalent to Definition 5, whence
Definition 8 is not equivalent to Definition 6. Indeed, according to Definition 5, if x is a right-hand continuity
point of the function f and condition (∗) of Definition 7 does not hold, then f has the right-hand strong
Świątkowski property at x in the sense of Kucner and Pawlak, and f does not have the right-hand A-Darboux
property at this point. It is caused by the fact that, in the general case, the continuity may not be correlated
with the set A.

Remark 2. Assume that A is a nonempty fixed subset of R and f : R → R. ThenDA(f) ⊂ D(f).

Theorem 3. Let A ⊂ R be a nonempty set. The function f : R → R has the A-Darboux property if and only
if f has the A-Darboux property at every point x ∈ R.

Proof. First, assume that the function f has the A-Darboux property. Fix a point x ∈ R. We will show that
x ∈ DA(f). SinceDA ⊂ D, we clearly have

x ∈ D−(f) ∩D+(f). (3.2)

Now fix α ∈ R and δ > 0. Assume that there are sequences (xn), (yn) ⊂ R with xn ↘ x ↙ yn and
f(xn) ↘ α ↖ f(yn). Then there are a, b ∈ (x, x + δ) such that f(a) < α and f(b) > α. Since f ∈ DA,

Lith. Math. J., 56(1):107–113, 2016.
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f(c) = α for some c ∈ (a, b)∩A ⊂ (x, x+δ)∩A. So, f−1(α)∩(x, x+δ)∩A �= ∅. Hence, by condition (3.2)
we obtain that x ∈ D+

A(f). In a similar way, we can show that x ∈ D−
A(f).

Further assume that the point x A-cuts the function f . By Definition 2 there are a ∈ (x − δ, x) and
b ∈ (x, x+ δ) such that f(x) ∈ I

(
f(a), f(b)

)
. So, the assumption f ∈ DA implies that f(c) = f(x) for some

c ∈ (a, b) ∩A ⊂ (x− δ, x+ δ) ∩A. However, f(z) �= f(x) for each z ∈ (x− δ, x+ δ) ∩ (A \ {x}), whence
x = c ∈ A. Consequently, x ∈ DA(f). This completes the first part of the proof.

Now assume that the function f has the A-Darboux property at every point x ∈ R. By Remark 2,DA(f) ⊂
D(f), whence the function f has the Darboux property. We will show that f ∈ DA.

Let a < b and α ∈ I(f(a), f(b)). We can assume that f(a) < α < f(b). (The case f(a) > α > f(b) is
analogous.) Define

x = inf
{
z ∈ [a, b]: f(z) > α

}
. (3.3)

We consider two cases.

Case 1. f(x) < α. Since f ∈ D and condition (3.3) holds, there are sequences (xn), (yn) ⊂ (x, b) such that
xn ↘ x ↙ yn and f(xn) ↘ α ↖ f(yn). So, by condition (∗) of Definition 7, f−1(α)∩(x, b)∩A �= ∅.
Hence, f(c) = α for some c ∈ (x, b) ∩A ⊂ (a, b) ∩A.

Case 2. f(x) = α. Then x > a. If the point x A-cuts the function f , then x ∈ A. Hence, there is x ∈ (a, b)∩A
such that f(x) = α. So, we can assume that x does not A-cut the function f .

If f−1(α) ∩ (a, x) ∩ A �= ∅, then clearly f(c) = α for some c ∈ (a, x) ∩ A ⊂ (a, b) ∩ A. In the other
case, f−1(α) ∩ (a, x) ∩ A = ∅ and x does not A-cut f . So, by condition (3.3) and since f ∈ D, there are
sequences (xn), (yn) ⊂ (x, b) such that xn ↘ x ↙ yn and f(xn) ↘ α ↖ f(yn). Therefore, by condition (∗)
of Definition 7, f−1(α) ∩ (x, b) ∩A �= ∅. Hence, f(c) = α for some c ∈ (x, b) ∩A ⊂ (a, b) ∩A. ��

The following theorem is an immediate consequence of Theorems 3 and 2.

Theorem 4. Let f : R → R. If A = C(f), then the function f has the A-Darboux property at every point
x ∈ R if and only if f has the strong Świątkowski property in the sense of Kucner and Pawlak at every point
x ∈ R.

4 Properties ofA-Darboux functions

In 1992, Grande defined the Darboux property for restricted functions as follows: if A ⊂ R is a nonempty set,
then we say that a function f : A → R has the Darboux property whenever f(I ∩ A) is a connected set for
every interval I ⊂ R (see [4]). We can extend Grande’s notion for real-valued functions on R.

DEFINITION 9. Let A ⊂ R be a nonempty set. We say that a function f : R → R is restrictively A-Darboux
(f ∈ Dr

A) if for every interval I ⊂ R, the set f(A ∩ I) is connected.

Remark 3. Let A ⊂ R be a nonempty set, and f : R → R. Then f ∈ Dr
A if and only if f�A is Darboux in the

sense of Grande.

Now we will compare A-Darboux functions and restrictively A-Darboux functions. Before we will go to
the next results, observe that there are restrictively A-Darboux functions without the Darboux property.

Proposition 1. Let A ⊂ R be a fixed nonempty set. ThenDA ⊂ D ∩Dr
A. Moreover, if R \ A is of size c, then

DA �= D ∩Dr
A.

Proof. First, we will show that DA ⊂ D ∩ Dr
A. Fix an interval I ⊂ R and assume that f ∈ DA. Then

clearly f ∈ D. We must show that f ∈ Dr
A. Since the function f has the Darboux property, the set f(I) is
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connected. If f(I) is a singleton, then f(I ∩A) is connected. If f(I) is not a singleton, then f(I) = J , where
J is a nonempty interval (maybe unbounded). So,

intJ ⊂ f(I) ⊂ cl J. (4.1)

Let y ∈ int J . There are y1, y2 ∈ int J with y1 < y < y2. Hence, by (4.1) there are x1, x2 ∈ I such
that f(x1) = y1 and f(x2) = y2. Taking into account that f ∈ DA, we have f(x) = y for some x ∈
I(x1, x2) ∩ A ⊂ I ∩A. Consequently, y ∈ f(I ∩A). Hence, using (4.1), we obtain that

int J ⊂ f(I ∩A) ⊂ f(I) ⊂ cl J,

which proves that f(I ∩A) is connected. So, f ∈ Dr
A.

Now we will show that DA �= D ∩ Dr
A. Let card(R \ A) = c. There is a Darboux function f : R → R

such that f �= 0 and A ⊂ f−1(0). Observe that f is also restrictively A-Darboux. However, f /∈ DA. Indeed,
we can choose a < b such that a ∈ A and b ∈ R \ f−1(0). By the definition of f it follows that f(a) = 0 and
f(b) �= 0. Let y = f(b)/2. Then y ∈ (0, f(b)) = (f(a), f(b)) and f(x0) �= y for each x0 ∈ (a, b) ∩ A. So,
f ∈ (D ∩Dr

A) \DA. ��

Proposition 2. Let A ⊂ R be a fixed nonempty set. ThenDA = D ∩Dr
A if and only if card(R \ A) < c.

Proof. By Proposition 1, if DA = D ∩ Dr
A, then card(R \ A) < c. So, assume that the set R \ A has

cardinality less then c. SinceDA ⊂ D ∩Dr
A, it suffices to show the opposite inclusion. Let f ∈ D ∩Dr

A. Fix
a, b ∈ R such that a < b and y ∈ I(f(a), f(b)). Since f has the Darboux property, there is x ∈ (a, b) with
f(x) = y, and the sets (a, x) ∩ f−1(I(f(a), y)) and (x, b) ∩ f−1(I(y, f(b))) are of size c. Hence, there are
c ∈ A ∩ (a, x) ∩ f−1(I(f(a), y)) and d ∈ A ∩ (x, b) ∩ f−1(I(y, f(b))). Observe that the condition f ∈ Dr

A
implies that the set f([c, d] ∩ A) is connected. Moreover, since y ∈ I(f(c), f(d)), we have y ∈ f([c, d] ∩ A).
So, there is x0 ∈ [c, d] ∩A ⊂ (a, b) ∩A such that f(x0) = y, and, consequently, f ∈ DA. ��

In the next two theorems, we present other interesting properties of A-Darboux functions. Note that if
f ∈ DA and there is an interval I ⊂ R such that card(I ∩A) < c, then the function f is constant on cl I . So,
from now on we can assume that A is a c-dense subset of R.

Theorem 5. Let A be a fixed c-dense subset of R, and let f : R → R. Then there is a sequence (fn) of
A-Darboux functions such that fn : R → R for each n ∈ N and f is the pointwise limit of (fn).

Proof. Since A is c-dense subset of R, by [2, Lemma 4.1] A =
⋃

n∈NAn, where all sets An are nonempty,
pairwise disjoint, and c-dense in R. For each n ∈ N, define the function fn : R → R as follows: fn = f
on (R \ A) ∪ ⋃n

k=1Ak, and fn takes every value on I ∩ ⋃∞
k=n+1Ak for each interval I ⊂ R. Then clearly

fn ∈ DA for each n ∈ N, and f is the pointwise limit of (fn). ��

Theorem 6. Let A be a fixed c-dense subset of R, and let f : R → R. Then there are A-Darboux functions
g, h : R → R such that f = g + h.

Proof. Take a set B ⊂ A such that both B and A \ B are c-dense in R. There are functions g1 and h1 such
that g1 takes every value on I ∩ B and h1 takes every value on I ∩ (A \ B) for each interval I ⊂ R. Now
define the functions g, h : R → R by

g(x) =

⎧
⎪⎨

⎪⎩

f(x) if x ∈ R \ A,
g1(x) if x ∈ B,

f(x)− h1(x) if x ∈ A \B,

Lith. Math. J., 56(1):107–113, 2016.
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h(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ R \A,

f(x)− g1(x) if x ∈ B,

h1(x) if x ∈ A \B.

Then clearly f = g + h, and since B ⊂ A, it is easy to see that g, h ∈ DA. ��

Remark 4. Theorems 5 and 6 can be applied only if A is a fixed subset of R. If the set A depends on the
function, Theorems 5 and 6 cannot be used (see, e.g., [10, Cor. 6] concerning pointwise limits of strong
Świątkowski functions and [11, Cor. II.3.4] concerning sums of strong Świątkowski functions).

5 Topological definition ofA-Darboux functions

In the natural way, we can generalize the notion of A-Darboux property for functions mapping a topological
space into a topological space.

DEFINITION 10. LetX and Y be topological spaces, and A ⊂ X be a nonempty set. We say that the function
f : X → Y has the A-Darboux property if int f(S) = int f(S ∩ A) and the set f(S) is connected in Y for
every connected set S ⊂ X.

Note that if A = X and the function f : X → Y has the A-Darboux property, then f is Darboux in the
general sense.

Now we will show that Definition 1 is equivalent to Definition 10 for each real-valued function defined
on R.

Theorem 7. Let A ⊂ R be a nonempty set, and let f : R → R. The following conditions are equivalent:

1. For all a, b ∈ R, a < b, and y ∈ I(f(a), f(b)), there is an x0 ∈ (a, b) ∩A such that f(x0) = y,
2. int f(S) = int f(S ∩A), and f(S) is connected in R for each connected set S ⊂ R.

Proof. Fix a connected set S⊂R. Since f ∈D, the set f(S) is connected inR. Moreover, since int f(S∩A)⊂
int f(S), it suffices to show the opposite inclusion. Let y ∈ int f(S). Then there is an open interval (c, d)
such that y ∈ (c, d) ⊂ f(S). Without loss of generality, we can assume that f(a) = c and f(b) = d for some
a, b ∈ S. By Assumption 1, for each z ∈ (f(a), f(b)) = (c, d), there is an x0 ∈ I(a, b) ∩ A with f(x0) = z.
However, S is connected in R, whence if a, b ∈ S, then I(a, b) ⊂ S. So, x0 ∈ S ∩ A. Consequently,
(c, d) ⊂ f(S ∩A), whence y ∈ int f(S ∩A). This completes the first part of the proof.

Now let a < b and y ∈ I(f(a), f(b)). Since the function f maps connected sets onto connected sets,
I(f(a), f(b)) ⊂ f((a, b)). Observe that the open interval (a, b) is connected in R. So, by assumption
int f((a, b)) = int f((a, b) ∩A). Consequently,

I
(
f(a), f(b)

) ⊂ int f
(
(a, b)

)
= int f

(
(a, b) ∩A

) ⊂ f
(
(a, b) ∩A

)
.

Therefore, y ∈ f((a, b) ∩A), whence f(x0) = y for some x0 ∈ (a, b) ∩A. ��
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