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Abstract. We consider real-valued random variables X1, . . . , Xn with corresponding distributions F1, . . . , Fn such
thatX1, . . . , Xn admit some dependence structure and n−1(F1 + · · ·+Fn) belongs to the class of dominatedly varying-
tailed distributions. We establish weak equivalence relations among P(Sn > x), P(max{X1, . . . , Xn} > x),
P(max{S1, . . . , Sn} > x), and

∑n
k=1 Fk(x) as x → ∞, where Sk := X1 + · · · + Xk. Some copula-based exam-

ples illustrate the results.
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1 Introduction and main result

Let X1, . . . ,Xn be real-valued random variables (r.v.s) with corresponding distributions F1, . . . , Fn. Denote
Fk(x) := 1− Fk(x) and Sk := X1 + · · · +Xk for k = 1, . . . , n.

Li and Tang [12] and Yang et al. [18] investigated the (weak) equivalence relations among the quanti-
ties P(Sn > x), P(max{X1, . . . ,Xn} > x), P(max{S1, . . . , Sn} > x), and

∑n
k=1 Fk(x) as x → ∞,

considering, respectively, the independent or pairwise negative dependent (see the definition below) random
variables X1, . . . ,Xn together with the condition that their maximum belongs to a specific class of heavy-
tailed distributions. In this paper, we consider the class of dominatedly varying-tailed distributions, denoted by
D, and dependence structure given further in (1.4), which covers a wide range of negative and some positive
dependent structures. Recall that a distribution function (d.f.) F (x) = 1 − F (x) belongs to the class D if
lim supF (xy)/F (x) < ∞ for any (or for some) 0 < y < 1. It is well known that F ∈ D if and only if

LF := lim
y↘1

lim inf
x→∞

F (xy)

F (x)
> 0.
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Recall some related dependence structures. Random variables X1, . . . ,Xn are said to be upper extended
negatively dependent (UEND) if there exists a positive constantM such that, for all x1, . . . , xn,

P(X1 > x1, . . . , Xn > xn) � M

n∏

i=1

P(Xi > xi); (1.1)

they are said to be lower extended negatively dependent (LEND) if there exists a positive constant M such
that, for all x1, . . . , xn,

P(X1 � x1, . . . , Xn � xn) � M

n∏

i=1

P(Xi � xi); (1.2)

and they are said to be extended negatively dependent (END) if they are both UEND and LEND (see [13]).
When M = 1 in (1.1) and (1.2), the r.v.s X1, . . . ,Xn are said to be upper negatively dependent (UND) and
lower negatively dependent (LND), respectively, and they are said to be negatively dependent (ND) if (1.1)
and (1.2) both hold with M = 1; see [4, 6, 17].

Random variablesX1, . . . ,Xn are called pairwise upper extended negatively dependent (pairwise UEND)
if

P(Xi > xi, Xj > xj) � MP(Xi > xi)P(Xj > xj) (1.3)

for all xi, xj ∈ R, i �= j, i, j ∈ {1, . . . , n}, and some M > 0. Similarly, the related positive dependence
structures can be introduced.

Denote the d.f. Hn(x) := n−1(F1(x) + · · · + Fn(x)) and assume that Hn(x) > 0 for all x. Introduce the
following condition:

∑

1�k<l�n

P(Xk > x, Xl > x) = o(1)Hn(x), x → ∞, (1.4)

or, equivalently,

P(Xk > x, Xl > x) = o(1)Hn(x) for all k, l = 1, . . . , n, k < l. (1.5)

Random variables satisfying (1.4) allow a wide range of dependence structures. In particular, they cover the
pairwise ND r.v.s and even some positive dependence structures (see Section 3). They also include dependent
r.v.s characterized by the condition

P(Xk > x, Xl > x) = o(1)
(
Fk(x) + Fl(x)

)
with 1 � k < l � n, (1.6)

which, in the case whereX1, . . . ,Xn are all nonnegative, generate the pairwise quasi-asymptotically indepen-
dence structure; see [5]. The dependence structure (1.5) strictly contains the structure (1.6). To see this, take
the trivial example n = 3, X1 = X2 with distribution F1 = F2 = F , and independent r.v. X3 with distribu-
tion F3 such that F (x) = o(F3(x)). Then X1,X2,X3 do not satisfy (1.6) but satisfy (1.5). Note that under
some stronger dependence conditions, related equivalence results for subexponential r.v.s were established by
Geluk and Tang [8] and Jiang et al. [11].

WhenX1, . . . ,Xn are real-valued and identically distributed r.v.s, the dependence structure (1.5) coincides
with the bivariate upper tail independence (BUTI) structure. Note that the BUTI is strictly larger than the
UEND structure. To see this, consider two positive r.v.s ξ1 and ξ2 with the joint tail probability

P(ξ1 > x, ξ2 > y) =
1

(x ∨ 1)(y ∨ 1)(1 + x+ y)
, x � 0, y � 0.

Such a pair (ξ1, ξ2) is bivariate upper tail independent but not UEND (see Example 3.1 in [14]).
The goal of the paper is to prove some weak max-sum equivalence relations under condition (1.4) and

provide some concrete dependence structures satisfying (1.4).
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Let Gn(x) = 1 − Gn(x) := P(max{X1, . . . ,Xn} > x), S(n) := max{S1, . . . , Sn}, and Tn := X+
1 +

· · · + X+
n , where x+ := max{x, 0}. All the limit relationships further hold for x tending to ∞. For two

positive functions a(x) and b(x), we write a(x) � b(x) if lim sup a(x)/b(x) � 1 and a(x) � b(x) if
lim inf a(x)/b(x) � 1.

The main result of the paper is the following theorem.

Theorem 1. Let r.v.sX1, . . . ,Xn satisfy condition (1.4). If Hn ∈ D (or, equivalently,Gn ∈ D), then

P(S(n) > x) � P(Tn > x) � L−1
Hn

nHn(x). (1.7)

If, in addition,Hn(−x) = o(Hn(x)), then

P(S(n) > x) � P(Sn > x) � LHn
nHn(x). (1.8)

Here,
LHn

= LGn
and nHn(x) ∼ Gn(x). (1.9)

Remark 1. Yang et al. [18] proved that for pairwise ND r.v.s X1, . . . ,Xn such that Gn ∈ D, we have

P(S(n) > x) � P(Tn > x) � L−1
Gn

Gn(x) (1.10)

and, under the condition Gn(−x) = o(Gn(x)),

P(S(n) > x) � P(Sn > x) � LGn
Gn(x). (1.11)

Since pairwise ND r.v.s satisfy condition (1.4), Theorem 1 generalizes the result in [18]; moreover (see Propo-
sition 1), the constant LGn

in (1.10) and (1.11) can be replaced by LHn
.

Remark 2. Clearly, in the case Fk ∈ C ⊂ D, k = 1, . . . , n, where C denotes the consistently varying-tailed
class of distributions, characterized by

lim
y↗1

lim sup
x→∞

F (xy)

F (x)
= 1,

we have Hn ∈ C and thus LHn
= 1 in Theorem 1. However, there may exist some more relaxed conditions

implying Hn ∈ C; see, for example, a method in Theorem 1.1 of [11].

In the case of identically distributed random variables, we obtain the following corollary.

Corollary 1. Let assumptions of Theorem 1 hold, and let X1, . . . ,Xn be identically distributed with common
distribution F . Then relations (1.7) and (1.8) hold with LHn

= LGn
= LF andHn(x) = F (x).

In Section 2, we formulate an auxiliary proposition and prove the main theorem. In Section 3, we illustrate
the result using some copula-based dependence structures.

2 Proof of main result

We start with the following useful proposition.

Proposition 1. Assume that condition (1.4) holds. Then Gn(x) ∼ nHn(x), and therefore LGn
= LHn

.

Lith. Math. J., 56(1):49–59, 2016.
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Proof. We have

Gn(x) = P

(
n⋃

k=1

{Xk > x}
)

�
n∑

k=1

P(Xk > x). (2.1)

On the other hand,

Gn(x) �
n∑

k=1

P(Xk > x)−
∑

1�k<l�n

P(Xk > x, Xl > x). (2.2)

From (1.4) and (2.1)–(2.2) it follows that Hn(x) is positive for all x if and only if Gn(x) > 0 is positive for
all x. Then

lim sup
Gn(x)

nHn(x)
� 1

and

lim inf
Gn(x)

nHn(x)
� 1− lim sup

∑
1�k<l�nP(Xk > x,Xl > x)

nHn(x)
= 1,

implying Gn(x) ∼ nHn(x) and, thus, LGn
= LHn

. 	

Proof of Theorem 1. Relations (1.9) hold by Proposition 1, implying the equivalence ofHn ∈ D andGn ∈ D.

We first show the upper bound (1.7). For any 0 < v < 1 and x > 0, write

P(Tn > x) � P

(
n⋃

k=1

{
X+

k > (1− v)x
}
)

+P

(

Tn > x,

n⋂

k=1

{
X+

k � (1− v)x
}
)

� nHn

(
(1− v)x

)
+P

(

Tn > x,

n⋃

i=1

{

X+
i >

x

n

}

,

n⋂

k=1

{
X+

k � (1− v)x
}
)

=: I1(v, x) + I2(v, x).

We have byHn ∈ D that

lim
v↘0

lim sup
x→∞

I1(v, x)

L−1
Hn

nHn(x)
= LHn

lim
v↘0

lim sup
x→∞

Hn((1− v)x)

Hn(x)
= 1.

As for I2(v, x), we have

I2(v, x) �
n∑

i=1

P

(

Tn > x, X+
i >

x

n
,

n⋂

k=1

{
X+

k � (1− v)x
}
)

�
n∑

i=1

P

(

Tn −X+
i > vx, X+

i >
x

n

)

�
n∑

i=1

P

(
n⋃

j=1
j �=i

{

X+
j >

vx

n− 1

}

, X+
i >

x

n

)

�
n∑

i=1

n∑

j=1
j �=i

P

(

X+
j >

vx

n
, X+

i >
vx

n

)

.
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Hence, by (1.4) and the assumptionHn ∈ D we obtain

lim sup
I2(v, x)

L−1
Hn

nHn(x)
� LHn

lim sup

∑
i �=j P(Xi > vx/n, Xj > vx/n)

nHn(vx/n)
lim sup

Hn(vx/n)

Hn(x)
= 0.

Therefore,

lim sup
x→∞

P(Tn > x)

L−1
Hn

nHn(x)
� lim

v↘0
lim sup
x→∞

I1(v, x)

L−1
Hn

nHn(x)
+ lim

v↘0
lim sup
x→∞

I2(v, x)

L−1
Hn

nHn(x)
= 1.

To obtain the lower bound, note that, for any v > 0 and x > 0,

P(Sn > x) � P

(

Sn > x,

n⋃

k=1

{
Xk > (1 + v)x

}
)

�
n∑

k=1

P
(
Sn > x, Xk > (1 + v)x

)

−
∑

1�i<j�n

P
(
Sn > x, Xi > (1 + v)x, Xj > (1 + v)x

)

=: I3(v, x) − I4(v, x). (2.3)

Here, by (1.4),

I4(v, x) �
∑

1�i<j�n

P(Xi > x, Xj > x) = o
(
Hn(x)

)
. (2.4)

For I3(v, x), we have

I3(v, x) �
n∑

k=1

P
(
Sn −Xk > −vx, Xk > (1 + v)x

)

�
n∑

k=1

(
P(Sn −Xk > −vx) + Fk

(
(1 + v)x

)− 1
)

= nHn

(
(1 + v)x

)−
n∑

k=1

P(Sn −Xk � −vx) =: I31(v, x)− I32(v, x). (2.5)

Here,

lim
v↘0

lim inf
x→∞

I31(v, x)

LHn
nHn(x)

= 1. (2.6)

For the term I32(v, x), sinceHn ∈ D, we have

I32(v, x) =

n∑

k=1

P

(
n∑

i=1
i �=k

(−Xi) � vx

)

�
n∑

k=1

P

(
n⋃

i=1
i �=k

{

−Xi �
v

n− 1
x

})

� n2Hn

(

− v

n− 1
x

)

= o(1)Hn

(
v

n− 1
x

)

= o
(
Hn(x)

)
. (2.7)

Lith. Math. J., 56(1):49–59, 2016.



54 L. Dindienė and R. Leipus

Hence, by (2.3)–(2.7),

lim inf
x→∞

P(Sn > x)

LHn
nHn(x)

� lim
v↘0

lim inf
x→∞

I31(v, x)

LHn
nHn(x)

− lim
v↘0

lim sup
x→∞

I32(v, x)

LHn
nHn(x)

− lim
v↘0

lim sup
x→∞

I4(v, x)

LHn
nHn(x)

= 1.

The proof is completed. 	


3 Modeling negative dependence structures with copulas

In this section, we discuss some copula-based examples of dependence structures satisfying (1.4). It is clear
that any pairwise ND or pairwise UEND r.v.s X1, . . . ,Xn satisfy (1.4). Moreover, some positive dependent
structures can be constructed as well.

3.1 Generalized FGM copula

Consider the class of generalized Farlie–Gumbel–Morgenstern (GFGM) copulas given by the formula

QGFGM(u1, . . . , un) =

n∏

i=1

ui

(

1 +
∑

1�k<l�n

θkl
(
1− uαk

)(
1− uαl

)
)m

(3.1)

with α > 0, m ∈ {0, 1, 2, . . . }, and θkl taking values from a corresponding admissible region. Obviously, if
θkl are all nonpositive and take values from a corresponding admissible region, then QGFGM(u1, . . . , un) �
u1 . . . un, that is, we obtain the LND structure.

The following particular cases of (3.1) are well known:

• If m = 0, then we get the independence copula.
• If m = 1 and α = 1, then we get the classical multivariate FGM copula

QFGM(u1, . . . , un) =

n∏

i=1

ui

(

1 +
∑

1�k<l�n

θkl(1− uk)(1− ul)

)

,

which was introduced in [7,9] and [16] in the case n = 2. This copula was widely investigated and used
in practice. The well-known limitation to FGM copula is that it does not allow the modeling of high
dependencies. For example, if n = 2, then the admissible region for the parameter θ12 is [−1, 1], and the
correlation ρ between the corresponding uniformly distributed random variables is ρ = θ12/3; thus, the
range for correlation ρ is [−1/3, 1/3].

• If m = 1, n = 2, and α > 0, then we get the copula introduced by Huang and Kotz [10]. It was
shown that the admissible range of θ12 is −min{1, α−2} � θ12 � α−1 and the correlation ρ between
the corresponding uniformly distributed random variables is ρ = 3θ12α

2(α + 2)−2; thus, the range for
correlation ρ is −3(α+ 2)−2 min{1, α2} � ρ � 3α(α + 2)−2.

• If m � 1, n = 2, and α > 0, then we get the copula introduced by Bekrizadeh et al. [3]. They have
shown that the admissible range of θ12 is −min{1, (mα2)−1} � θ12 � (mα)−1 and the correlation
between the corresponding uniformly distributed random variables is given by the formula

ρ = 12

1∫

0

1∫

0

QGFGM(u, v) dudv − 3 = 12

m∑

k=1

(
m

k

)

θk12

(
Γ(k + 1)Γ(2/α)

αΓ(k + 1 + 2/α)

)2

.
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Because of the weak dependence generated by the FGM family, many authors considered the modifications
of this class. Examples of modified FGM copula can be found in [1, 2], among others.

The finding of the admissible region for parameters θkl in (3.1) is technical, although straightforward, task.
Essentially, it requires the verification that the corresponding copula density (if exists) qGFGM(u1, . . . , un) =
∂nQGFGM(u1, . . . , un)/∂u1 . . . ∂un is nonnegative for all u1, . . . , un. In the case of copula (3.1) withm = 1,

qGFGM(u1, . . . , un) = 1 +
∑

1�k<l�n

θkl
(
1− (1 + α)uαk

)(
1− (1 + α)uαl

)
,

and these conditions can be obtained by considering the 2n cases for uk = 0 or 1, k = 1, . . . , n, and verifying
that qGFGM(u1, . . . , un) � 0. For example, if m = 1 and n = 3, then these conditions are the following:

1 + α2θ � 0, θkl �
{

αθ−1
1+α if αθ > 1,

1
α
αθ−1
1+α if αθ � 1,

1 � k < l � 3, for α > 1

and

1 + θ � 0, θkl �
{

1
α
αθ−1
1+α if αθ > 1,

αθ−1
1+α if αθ � 1,

1 � k < l � 3, for 0 < α � 1

with θ := θ12 + θ13 + θ23.
Note that any pair of variables X1, . . . ,Xn, linked by copula (3.1), satisfies P(Xk � x, Xl � y) =

QGFGM
kl (Fk(x), Fl(y)), k �= l, where

QGFGM
kl (u, v) = uv

(
1 + θkl

(
1− uα

)(
1− vα

))m
. (3.2)

Obviously, (3.2) implies QGFGM
kl (u, v) � uv, k < l, whenever θkl are all nonpositive. Hence, the gener-

alized FGM copula (3.1) provides a pairwise negative dependence structure if θkl � 0, 1 � k < l � n. The
following proposition shows that this copula also captures the pairwise UEND structure, which contains some
positive dependence structures too.

Proposition 2. Let the distribution of (X1, . . . ,Xn) be generated by copula in (3.1). Then

P(Xk > x, Xl > y) � CklFk(x)Fl(y), (3.3)

where Ckl := 1 + max{α, 1}((|θkl|+ 1)m − 1).

Proof. For every k < l, by (3.2) we have that

P(Xk � x, Xl � y) = Fk(x)Fl(y)
[
1 + θkl

(
1− Fα

k (x)
)(
1− Fα

l (y)
)]m

.

Hence,

P(Xk > x, Xl > y) = 1− Fk(x)− Fl(y) +P(Xk � x, Xl � y)

= 1− Fk(x)− Fl(y) + Fk(x)Fl(y)
(
1 + θkl

(
1− Fα

k (x)
)(
1− Fα

l (y)
))m

= Fk(x) + Fl(y)− 1 +
(
1− Fk(x)− Fl(y) + Fk(x)Fl(y)

)

×
(

1 +

m∑

i=1

(
m

i

)

θikl
(
Fα
k (x)

)i(
Fα
l (y)

)i
)

Lith. Math. J., 56(1):49–59, 2016.
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= Fk(x)Fl(y) +
(
1− Fk(x)− Fl(y) + Fk(x)Fl(y)

)

×
m∑

i=1

(
m

i

)

θikl
(
Fα
k (x)

)i(
Fα
l (y)

)i
,

where Fα
k (x) := 1− Fα

k (x). Using the inequality 1− uα � max{α, 1}(1 − u), u ∈ [0, 1], we get

P(Xk > x, Xl > y) � Fk(x)Fl(y) + Fα
k (x)F

α
l (y)

m∑

i=1

(
m

i

)

|θkl|i

�
(
1 + max{α, 1}((|θkl|+ 1

)m − 1
))
Fk(x)Fl(y). 	


Obviously, if θkl in (3.1) are all nonnegative, then X1, . . . ,Xn are both lower positive dependent and
pairwise positive dependent. By (3.3) this is also a pairwise UEND structure.

3.2 Ali–Mikhail–Haq copula

Consider the copula of the form

QAMH(u1, . . . , un) =
u1 · · · un

1− θ(1− u1) · · · (1− un)
, −1 � θ < 1, (3.4)

and let P(X1 � x1, . . . , Xn � xn) = QAMH(F1(x1), . . . , Fn(xn)). Then, for k �= l,

P(Xk � x, Xl � y) =
Fk(x)Fl(y)

1− θFk(x)Fl(y)
,

and hence

P(Xk > x, Xl > y) = 1− Fk(x)− Fl(y) +
Fk(x)Fl(y)

1− θFk(x)Fl(y)

� Fk(x)Fl(y) (3.5)

if −1 � θ � 0. In the case 0 < θ < 1, we have

P(Xk � x, Xl � y) � 1

1− θ
Fk(x)Fl(y), (3.6)

P(Xk > x, Xl > y) � 1

1− θ
Fk(x)Fl(y). (3.7)

Inequality (3.6) is obvious. In order to show (3.7), it suffices to verify that

1− u− v +
uv

1− θ(1− u)(1− v)
� (1− u)(1 − v)

1− θ
, 0 � u, v � 1, 0 < θ < 1.

The proof is straightforward, and we omit it.
By (3.5)–(3.7) the copula in (3.4) generates a pairwise ND structure if −1 � θ � 0 and a pairwise END

structure (which is also lower positive dependent and pairwise positive dependent) if 0 < θ < 1.
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3.3 Frank copula

Consider the copula of the form

QF(u1, . . . , un) = −1

θ
log

(

1 +
(e−θu1 − 1) · · · (e−θun − 1)

(e−θ − 1)n−1

)

, θ > 0, (3.8)

and assume that P(X1 � x1, . . . , Xn � xn) = QF(F1(x1), . . . , Fn(xn)). Then P(Xk � x, Xl � y) =
QF(Fk(x), Fl(y)), k �= l, where

QF(u, v) := −1

θ
log

(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)

.

In this case, the copula density is bounded:

qF(u, v) =
−θ(e−θ − 1)e−θ(u+v)

((e−θ − 1) + (e−θu − 1)(e−θv − 1))2
� θ

(1− e−θ)e−2θ
=: cθ.

Thus, denoting the corresponding marginal densities fk(x), we have

P(Xk > x, Xl > y) =

∫

w>x,z>y

qF
(
Fk(w), Fl(z)

)
fk(w)fl(z) dw dz

� cθFk(x)F l(y), k �= l,

that is, the Frank copula generates a pairwise UEND structure.

3.4 Clayton copula

Consider the copula

QC(u1, . . . , un) =
(
u−θ
1 + · · ·+ u−θ

n − n+ 1
)−1/θ

, θ > 0, (3.9)

and assume that P(X1 � x1, . . . ,Xn � xn) = QC(F1(x1), . . . , Fn(xn)). Then P(Xk � x, Xl � y) =
QC(Fk(x), Fl(y)), where

QC(u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

Note that if θ → 0, thenQC(u, v) tends to uv, that is, we obtain the independence copula, whereas if θ → ∞,
then QC(u, v) tends to min(u, v), that is, the comonotonicity copula.

We will show that for any k �= l and x, y ∈ R,

P(Xk > x, Xl > y) � (1 + θ)Fk(x)Fl(y).

This implies the pairwise UEND property and, hence, relation (1.4). The proof of this inequality follows from
the identity P(Xk > x,Xl > y) = 1− Fk(x)− Fl(y) +P(Xk � x, Xl � y) and the following lemma.

Lemma 1. For any (u, v) ∈ [0, 1]2 and θ > 0, we have

(
u−θ + v−θ − 1

)−1/θ � uv + θ(1− u)(1 − v).
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Proof. Denote, for convenience,Qθ(u, v) := (u−θ + v−θ − 1)−1/θ . Take any small ε > 0 and write

Qθ(u, v) −Qε(u, v)

=

θ∫

ε

∂Qt(u, v)

∂t
dt =

θ∫

ε

(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)1+1/t
dt

=

θ∫

ε

Qt(u, v)
(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
dt.

For all (u, v) ∈ [0, 1]2 and t > 0, we have

Qt(u, v) �
√
uv (3.10)

and
(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
� (1− u)(1− v)√

uv
. (3.11)

Bound (3.10) is due to the inequality (u−t/2 − v−t/2)2 + u−t/2v−t/2 � 1. In order to prove (3.11), we use the
following inequality:

(x+ y − 1) log(x+ y − 1)− x log x− y log y � (x+ y − 1) log x log y (3.12)

for any x � 1, y � 1. Denote

f(x, y) := (x+ y − 1) log(x+ y − 1)− x log x− y log y − (x+ y − 1) log x log y.

Then (3.12) follows by noting that f(1, y) = 0 for any y � 1 and

∂f(x, y)

∂x
= −

(

log x log y +
y − 1

x
log y + log

xy

x+ y − 1

)

� 0, x, y � 1.

By (3.12) we have

(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
� log u log v,

where, by the inequality log x � (x− 1)/
√
x, x � 1 (see [15, p. 272]),

− log u = log
1

u
� 1/u− 1

1/
√
u

=
1− u√

u
.

Inequalities (3.10) and (3.11) imply

Qθ(u, v) � Qε(u, v) + (θ − ε)(1− u)(1− v).

Taking ε → 0, we obtain the desired inequality. 	

Summarizing, we have the following corollary.

Corollary 2. Let r.v.s X1, . . . ,Xn have corresponding univariate distributions F1, . . . , Fn such that Hn ∈ D,
and let the dependence structure be generated by either of the copulas in (3.1), (3.4), (3.8), or (3.9). Then
the asymptotic relation (1.7) holds. If, in addition,Hn(−x) = o(Hn(x)), then (1.8) also holds.
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