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Abstract. We investigate properties of local time for one class of Gaussian processes. These processes are called integra-
tors since every function from L2([0; 1]) can be integrated over it. Using the white noise representation, we can associate
integrators with continuous linear operators in L2([0; 1]). In terms of these operators, we discuss the existence and prop-
erties of local time for integrators. Also, we study the asymptotic behavior of Brownian self-intersection local time as its
end-point tends to infinity.
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1 Introduction

The aim of this article is to study the local time for a certain class of Gaussian processes. Since works of
Berman [1,2], the existence and properties of local time are studied for a wide class of Gaussian processes and
fields [25]. In the case of Brownian motion, the local time can be investigated using parabolic equations and
potential theory due to the independence of increments and self-similarity. For general Gaussian processes,
Berman proposed the notion of local nondeterminism, which in some sense means the almost independence
of increments on small intervals. Under some technical assumptions, this property leads to the existence and
regularity of the local time with respect to both spatial and time variables. Different authors proposed the ver-
sion of local nondeterminism property for Gaussian processes and fields and proved not only the existence of
local time, but also investigated some its asymptotic properties such as the law of iterated logarithm or small-
ball probabilities [19, 25]. Nevertheless, the local nondeterminism property is hard to check for an arbitrary
Gaussian process. Simple sufficient conditions were given for processes with stationary increments or for self-
similar processes [1, 2]. In the case of planar Gaussian process, the situation is much worse. Namely, for the
Brownian motion on the plane, the existence of multiple self-intersection points is well known [11]. The cor-
responding local time of multiple self-intersection needs to be properly renormalized. Such a renormalization
was done by Varadhan [23], Dynkin [12], Rosen [17,18]. Later, Le Gall [13] obtained an asymptotic expansion
for an area of Brownian sausage that contains renormalized self-intersection local times as coefficients. Since
all these results are essentially based on the structure of a Brownian motion, the technique used cannot be
∗ The work was partially supported by the Presidium of National Academy of Sciences of Ukraine as a part of the joint scientific
project with the Russian foundation of fundamental research, project number 09-01-14.
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expanded to other Gaussian processes. However, the question of such a generalization is quiet interesting in
view of constructing random polymer models using not only Markov processes (in some cases, there are no
reasons for molecule to differ the starting point and the end-point) [3,5,21]. All mentioned reasons lead to the
attempt to find a class of Gaussian processes for which some version of local nondeterminism holds and results
related to the existence and renormalization of local time and self–intersection local times can be achieved.
Such a class of processes was introduced by Dorogovtsev [8, 9] in connection with anticipating stochastic
integration. The original definition is the following.

DEFINITION 1. (See [8].) A centered Gaussian process x(t), t ∈ [0; 1], is said to be an integrator if there
exists a constant c > 0 such that for an arbitrary partition 0 = t0 < t1 < · · · < tn = 1 and real numbers
a0, . . . , an−1,

E

(
n−1∑
k=0

ak
(
x(tk+1)− x(tk)

))2

� c

n−1∑
k=0

a2kΔtk. (1.1)

Inequality (1.1) allows us to integrate functions from L2([0; 1]) with respect to x. This naturally leads to
a definition of Skorokhod-type stochastic integral with respect to x [20]. In [8], the corresponding stochastic
calculus, including the Itô formula, for x was considered. The following statement describes the structure of
integrators.

Proposition 1. (See [8].) A centeredGaussian processx(t), t ∈ [0; 1], is an integrator iff there exist a Gaussian
white noise ξ [7, 20] in L2([0; 1]) and a continuous linear operator A in the same space such that

x(t) = (A1[0;t], ξ), t ∈ [0; 1]. (1.2)

In this paper, we use the language of white noise analysis [7,15,20,24]. Note that if A equals identity, then
x in expression (1.2) is a Wiener process. For continuously invertible operator A, we can expect that x will
inherit some properties of a Wiener process. For example, we will prove in Section 2 that if A is continuously
invertible, then x has a local time at any point u ∈ R. Such a local time can be obtained as the occupation
density. Also, we will check that this density is a continuous function in spatial and time variables. In Section
3, we will prove a continuous dependence of local times of integrators on operators generating them. The
main method of our investigations is based on the study of functional properties of Hilbert-valued functions.
In particular, we obtain some estimations for Gram determinant constructed by increments of such a function.
These estimations allow us to investigate conditional moments of Brownian self-intersection local time in
dimensions one and two as the end point (the valuew(1)) tends to infinity. We establish the rate of decreasing of
the moments mentioned. The question of conditional behavior of self-intersection local times is inspired by the
study of properties of continuous polymer models [5, 21]. Real polymers cannot have self-intersections due to
excluded volume effect [21], but the energy of interaction between monomers from different places in polymer
molecule influences its form. Flory proposed the evaluation of the size of polymer based on the counting
of interaction energy [21]. The Brownian path can be viewed as an ideal Gaussian model of polymer [21].
Applying Flory method, we have to substitute the energy of interaction by the self-intersection local time. So
the question of dependence of self-intersection local time on the size of Brownian path is natural. We present
corresponding estimations in Section 4. Some necessary facts from geometry of Hilbert-valued functions are
proved in Appendix.

2 Existence of local time for Gaussian integrators

Let us recall a definition of local time for one-dimensional Wiener process w(t), t ∈ [0; 1]. Put

fε(y) =
1√
2πε

e−y2/(2ε), y ∈ R, ε > 0.
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DEFINITION 2. For any t ∈ [0; 1] and u ∈ R,

t∫
0

δu
(
w(s)

)
ds := L2- lim

ε→0

t∫
0

fε
(
w(s)− u

)
ds

is said to be the local time of the Wiener process at point u up to time t.

Consider the occupation measure of w up to time t defined by the formula

μt(D) =

t∫
0

1D
(
w(s)

)
ds, D ∈ B(R)

(B(R) is the Borel σ-field onR); μt(D) equals the Lebesguemeasure of time a trajectory of theWiener process
spends in the set D up to time t. Levy [16] proved that for almost all trajectories of w and any t ∈ [0; 1], the
measure μt has a density, that is, there exists a random function l(u, t), u ∈ R, such that a.s. for any t ∈ [0; 1]
andD ∈ B(R),

μt(D) =

∫
D

l(u, t) du.

Trotter [22] proved that the density of occupation measure of the Wiener process is continuous in u and t.
A useful consequence of joint continuity is the next occupation density formula. For every continuous func-
tion ϕ on R with a compact support,

t∫
0

ϕ
(
w(s)

)
ds =

∫
R

ϕ(u)l(u, t) du. (2.1)

It follows from (2.1) that

t∫
0

δu
(
w(s)

)
ds = lim

ε→0

t∫
0

fε
(
w(s)− u

)
ds = lim

ε→0

∫
R

fε(v − u)l(v, t) dv = l(u, t).

Therefore, the value of density of occupation measure l(u, t) is the local time of the Wiener process at u
up to time t. In this section, we will establish the same properties of local time for Gaussian integrators. To
prove the existence of local time for the Gaussian integrator x with representation (1.2), we need the notion
of local nondeterminism for Gaussian processes introduced by Berman [1]. Let {y(t), t ∈ J} be an R-valued
zero-mean Gaussian process on an open interval J . Suppose that there exists d > 0 such that:

1) E(y(t)− y(s))2 > 0 for all s, t ∈ J : 0 � |t− s| � d;
2) Ey2(t) > 0 for all t ∈ J .

Form � 2, t1, . . . , tm ∈ J , t1 < t2 < · · · < tm, put

Vm =
Var(y(tm)− y(tm−1) | y(t1), . . . , y(tm−1))

Var(y(tm)− y(tm−1))
,

which is the ratio of conditional and unconditional variances.

Lith. Math. J., 55(4):489–505, 2015.
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DEFINITION 3. (See [1].) A Gaussian process y is said to be locally nondetermined on J if for everym � 2,

lim
c→0

inf
tm−t1�c

Vm > 0.

The following statement was proved in [1] and demonstrates that the local nondeterminism property can be
used as one of sufficient conditions for the existence and smoothness of local time for general Gaussian process.

Theorem 1. (See [1].) Let y(t), t ∈ [0;T ], be a centered Gaussian process satisfying the following three
conditions:

(i) y(0) = 0;
(ii) y is locally nondetermined on (0;T );
(iii) there exist positive real numbers γ, δ and a continuous even function b(t) such that b(0) = 0, b(t) > 0,

t ∈ (0;T ],

lim
h→0

h−γ

h∫
0

(
b(t)

)−1−2δ
dt = 0,

and E(y(t)− y(s))2 � b2(t− s) for all s, t ∈ [0;T ].

Then there exists a version l(u, t), u ∈ R, t ∈ [0;T ], of local time of the process y that is jointly continuous in
(u, t) and satisfies the Hölder condition in t uniformly in u, that is, for every γ1 < γ, there exist positive and
finite random variables η and η1 such that

sup
u

∣∣l(u, t+ h)− l(u, t)
∣∣ � η1|h|γ1

for all s, t, t+ h ∈ [0;T ] and all |h| < η.

To discuss the existence of local time for Gaussian integrator x, we need a reformulation of the notion
of local nondeterminism. Denote by G(e1, . . . , en) the Gram determinant constructed by vectors e1, . . . , en.
Let g ∈ C([0; 1], L2([0; 1])), Δg(ti) = g(ti+1) − g(ti), i = 1,m− 1 (C([0; 1], L2([0; 1])) is the space of all
continuous functions from [0; 1] into L2([0; 1])).

Lemma 1. The Gaussian process y(t) = (g(t), ξ), where ξ is a white noise in L2([0; 1]), is locally nondeter-
mined on J iff for everym � 2,

lim
c→0

inf
tm−t1�c

G(g(t1),Δg(t1), . . . ,Δg(tm−1))

‖g(t1)‖2‖Δg(t1)‖2 · · · ‖Δg(tm−1)‖2
> 0.

Proof. This is a consequence of the definition of Vm and relation

V2 · · ·Vm =
det cov(x(ti), x(tj))

m
ij=1

Varx(t1)Var(x(t2)− x(t1)) · · ·Var(x(tm)− x(tm−1))

=
G(g(t1),Δg(t1), . . . ,Δg(tm−1))

‖g(t1)‖2‖Δg(t1)‖2 · · · ‖Δg(tm−1)‖2
. ��

By using Lemma 1 we can establish the following statement.

Theorem 2. (See [14].) Suppose that the operator A in representation (1.2) of x is continuously invertible.
Then there exists a version l(u, t), u ∈ R, t ∈ [0; 1], of the local time of x that is jointly continuous in (u, t)



Properties of Gaussian local times 493

and satisfies a Hölder condition in t uniformly in u, that is, for every γ < 1/2, there exist positive and finite
random variables η and η1 such that

sup
u

∣∣l(u, t+ h)− l(u, t)
∣∣ � η1|h|γ

for all s, t, t+ h ∈ [0; 1] and all |h| < η.

Note that for A = I+S, where S is a compact operator, the integrator x inherits pathwise properties of the
Wiener process (see [10]). In the general case, pathwise properties of integrators remain to be unclear even in
the case of invertible operator A. The reason is that the constant in Lemma A.1 depends on k. This does not
allow us to apply approaches directly based on the independency of increments as for the Wiener process. Of
course, for invertible A, we can check that the integrator x does not have a representation

x(t) =

t∫
0

y(s) ds

with the process y satisfying the condition

1∫
0

(
Ey(s)2

)1/2
ds < +∞.

Here the integral is understood in the mean-square sense. Pathwise properties of integrators will be a subject
of further consideration.

Theorem 2 was proved in the article of the second author [14]. Here we briefly recall the main steps of the
proof, which is based on the following key property of Gram determinant.

Lemma 2. Suppose that A is a continuously invertible operator in Hilbert spaceH . Then for all k � 1, there
exists a positive constant c(k) depending on k and such that for any e1, . . . , ek ∈ H, the following relation
holds:

G(Ae1, . . . , Aek) � c(k)G(e1, . . . , ek).

Lemma 2 is proved in Appendix (Lemma A.1).

Proof of Theorem 2. To prove the theorem, let us check that x satisfies conditions (i)–(iii) of Theorem 1. It
is obvious that x(0) = 0. Lemmas 1 and 2 imply that x is locally nondetermined. Let us check that x satisfies
condition (iii) of Theorem 1. Let b(t) = c

√
t, c > 0. Pick δ < 1/2 and then γ such that γ < 1/2 − δ. We can

see that

lim
h→0

h−γ

h∫
0

t−1/2−δ dt =
2

1− 2δ
lim
h→0

h1/2−δ−γ = 0. ��

3 On continuous dependence of local times of integrators on operators generating them

Suppose that An and A are continuously invertible operators in L2([0; 1]) that generate Gaussian integra-
tors xn, x, that is,

xn(t) =
(
An1[0;t], ξ

)
, x(t) =

(
A1[0;t], ξ

)
, t ∈ [0; 1].

Lith. Math. J., 55(4):489–505, 2015.
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We proved in Section 2 that there exist random variables

ln(u) := ln(u, 1) =

1∫
0

δu
(
xn(t)

)
dt, l(u) := l(u, 1) =

1∫
0

δu
(
x(t)

)
dt, u ∈ R.

The following statement shows that if a sequence of operatorsAn converges strongly to an operatorA, then the
sequence of local times of integrators xn converges in mean square to the local time of x. To avoid confusion
in the next theorem for the norm in the space L2([0; 1]), we use the notation ‖ · ‖2. The operator norm is
denoted by ‖ · ‖.

Theorem 3. Suppose that An, A are continuously invertible operators in L2([0; 1]) such that:

(i) for any y ∈ L2([0; 1]), ‖Any −Ay‖2 → 0, n → ∞;
(ii) supn�1 ‖A−1

n ‖ < ∞.

Then

E

∫
R

(
ln(u)− l(u)

)2
du → 0, n → ∞.

Proof. To prove the theorem, it suffices to check that

E

∫
R

l2n(u) du → E

∫
R

l2(u) du, E

∫
R

ln(u)l(u) du → E

∫
R

l2(u) du, n → ∞.

It follows from Theorem B.1 that

E

∫
R

ln(u)ln(u) du = E

1∫
0

1∫
0

δ0
(
xn(t)− xn(s)

)
ds dt

= lim
ε→0

E

1∫
0

1∫
0

fε
(
xn(t)− xn(s)

)
ds dt =

2√
2π

∫
Δ2

ds dt

‖An1[s;t]‖2
,

whereΔ2 = {0 � s � t � 1}. It follows from the invertibility of operators An and from condition (ii) that

1

‖An1[s;t]‖2
� sup

n�1
‖A−1

n ‖ 1√
t− s

.

The Lebesgue dominated convergence theorem implies that

E

∫
R

l2n(u) du → E

∫
R

l2(u) du, n → ∞.

Let us check that

E

∫
R

ln(u)l(u) du → E

∫
R

l2(u) du, n → ∞.
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Again by using Theorem B.1 we can write

E

∫
R

ln(u)l(u) du = E

1∫
0

1∫
0

δ0
(
xn(t)− x(s)

)
ds dt =

2√
2π

∫
Δ2

ds dt

‖An1[0;t] −A1[0;s]‖2

=
2√
2π

∫
Δ2

ds dt

‖An(1[0;t] −A−1
n A1[0;s])‖2

� 2√
2π

sup
n�1

∥∥A−1
n

∥∥ ∫
Δ2

ds dt

‖1[0;t] − κn(s)‖2
,

where κn(s) = A−1
n A1[0;s]. It follows from Lemma A.4 (see Appendix A) that the sequence {1/‖1[0;t] −

κn(s)‖2}n�1 is uniformly integrable. Consequently,

E

∫
R

ln(u)l(u) du → E

∫
R

l2(u) du, n → ∞. ��

4 Conditional moments of Brownian self-intersection local time

In this section, we discuss relationships between the norm of end-point of Brownian path and its self-intersection
local time. As it was mentioned in Introduction, such relation reflects the fact that real polymers have a greater
Flory number than ideal polymers due to excluded volume effect. Here we will study the conditional distribu-
tion of the self-intersection local time for the Brownian motion under the condition that its end-point tends to
infinity. Let us begin with one-dimensional Brownian motion w. As it was discussed, for example, in [4], the
self-intersection local time for w exists. Denote it by

T2 =

∫
Δ2

δ0
(
w(t2)− w(t1)

)
dt1 dt2.

Let us check the following statement.

Theorem 4. For any p > 0 and β ∈ (0; 1),

E
(
T p
2

∣∣ w(1) = a
)
= O

(
|a|−β

)
, a → ∞.

Proof. It suffices to consider integer p. Then

E
(
T p
2

∣∣ w(1) = a
)
= E

∫
Δp

2

p∏
i=1

δ0
(
η
(
ti2
)
− η

(
ti1
))

d�t,

where η(t) = w(t)− tw(1) + at, t ∈ [0; 1]. In terms of white noise ξ = ẇ, the process η has a representation

η(t) =
(
Qg0(t), ξ

)
+ at.

Here g0(t) = 1[0;t], and Q is the projection onto the orthogonal complement to g0(1) = 1[0;1]. To estimate the
conditional expectation for T p

2 , let us use the following lemma from Appendix (Lemma A.5).

Lith. Math. J., 55(4):489–505, 2015.
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Lemma 3. For elements e1, . . . , en of L2([0; 1]) and a projectionQ, letQe1, . . . , Qen be linearly independent.
Suppose that elements f , g satisfy the following relationships for all i = 1, . . . , n:

(f, ei) = (g,Qei).

Then
‖P1f‖ � ‖P2g‖,

where P1 and P2 are theorthogonal projections on linear spans of e1, . . . , en and Qe1, . . . , Qen, respectively.

To apply this lemma for our situation, denote by ΓQ
�t

and PQ
�t

the Gram determinant for Qe1, . . . , Qep and
the projection on its linear span, where ei = 1[ti1;ti2], i = 1, . . . , p, and Q is the projection onto 1⊥[0;1]. Then

E

∫
Δp

2

p∏
i=1

δ0
(
η
(
ti2
)
− η

(
ti1
))

d�t =

∫
Δp

2

e−‖PQ
�t
h�t‖2a2/2

ΓQ
�t

d�t.

Here h�t is taken in a such way that for all i = 1, . . . , p,

(h�t, Qei) = ti2 − ti1.

It follows from the previous lemma that ∥∥PQ
�t
h�t
∥∥ �

∥∥P�t1[0;1]
∥∥,

where P�t is the projection onto the linear span of 1[t11;t12], . . . ,1[tp1 ;tp2 ]. Consequently, for arbitrary k = 1, . . . , p,

e−‖PQ
�t
h�t‖2a2/2 � e−(tk2−tk1 )a

2/2.

To find the estimation for ΓQ
�t
, note that

ΓQ
�t

= Γ
(
1[0;1],1[t11;t12], . . . ,1[t

p
1 ;t

p
2 ]

)
.

Let us use the following lemma (Lemma A.6).

Lemma 4. LetΔ0 = ∅, andΔ1, . . . ,Δn be subsets of [0; 1]. Then

Γ (1Δ1
, . . . ,1Δn

) �
n∏

k=1

∣∣∣∣∣Δk \
k−1⋃
j=1

Δj

∣∣∣∣∣.
As a consequence of this lemma, we can obtain the following estimate for Gram determinant:

ΓQ
�t

�
N∏
j=1

|Δ̃j|,

where Δ̃j , j = 1, . . . , N , are intervals from the partition of [0; 1] by end-points of intervals [t1k, t
2
k],

k = 1, . . . , p. Now using the previous estimation for ‖PQ
�th�t‖, we can get that

E

∫
Δp

2

p∏
i=1

δ0
(
η
(
ti2
)
− η

(
ti1
))

d�t � (2p)!
1√
2π

p

∫
Δ2p

e−a2(t2p−t2p−1)/2

(
∏2p

j=0(tj+1 − tj))1/2
d�t,
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where t0 = 0 and t2p+1 = 1. Consider the following integral with respect to the last variable t2p:

1∫
2p−1

e−a2(t2p−t2p−1)/2√
(t2p − t2p−1)(1 − t2p)

dt2p.

Using the expression δ = 1− t2p−1 and changing the variable, we can rewrite the last integral as

δ∫
0

e−a2s/2√
s(δ − s)

ds =

1∫
0

e−a2δs′/2√
s′(1− s′)

ds′.

Using the Hölder inequality, we get, for α ∈ (1; 2),

1∫
0

e−a2δs′/2√
s′(1− s′)

ds′ � cα

( 1∫
0

e−a2δ(α/(α−1))s′/2 ds′
)α/(α−1)

� c̃α

(
α− 1

αδa2

)α/(α−1)

,

where cα and c̃α are positive constants depending on α. Finally, for any α ∈ (1; 2),

E

∫
Δp

2

p∏
i=1

δ0
(
η
(
ti2
)
− η

(
ti1
))

d�t � ˜̃cα
∫

Δ2p−1

2p−2∏
j=0

1√
tj+1 − tj

d�t · a−2α/(α−1). ��

For a planar Wiener processw on the interval [0; 1], consider the trajectories with w(1) = a. We can expect
that if ‖a‖ is large, then the trajectory of w has a small number of self-intersections. The conditional distri-
bution of the Wiener process under the condition w(1) = a coincides with the distribution of the Brownian
bridge

ya(t) = w(t)− tw(1) + at, t ∈ [0; 1].

Let us investigate the dependence of the self-intersection local time of the process ya(t), t ∈ [0; 1], on ‖a‖.
Denote

T2(a, α) =

∫
Δ2(a,α)

δ0
(
ya(t2)− ya(t1)

)
dt1 dt2,

where

Δ2(a, α) =
{
(t1, t2): 0 � t1 � 1− ‖a‖−α, t1 + ‖a‖−α � t2 � 1

}
.

The self-intersection local time ∫
Δ2(a,α)

δ0
(
w(t2)− w(t1)

)
dt1 dt2

exists (see [4]). As before, we can check that

T2(a, α) = E

(∫
Δ2(a,α)

δ0(w(t2)− w(t1)) dt1 dt2

w(1)
= a

)
.

Let us prove the following statement.

Lith. Math. J., 55(4):489–505, 2015.
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Theorem 5.
(i) For α = 2, lim‖a‖→+∞ ET2(a, α) = 1/(2π)

∫ +∞
1 (1/y)e−y/2 dy;

(ii) For α < 2, lim‖a‖→+∞ ET2(a, α) = 0;

(iii) For α > 2, lim‖a‖→∞ ET2(a, α) = +∞.

Proof. LetΔt1 = t2 − t1. Then

ET2(a, α) =

∫
Δ2(a,α)

1

2πΔt1(1−Δt1)
eΔt1‖a‖2/(2(1−Δt1)) d�t. (4.1)

Let t1 = s1 and ‖a‖2Δt1 = s2. Then (4.1) equals

1−‖a‖−α∫
0

(1−s1)‖a‖2∫
‖a‖−α+2

‖a‖2
2πs2(‖a‖2 − s2)

e−‖a‖2s2/(2(‖a‖2−s2)) ds2 ds1

=

‖a‖2∫
‖a‖−α+2

1−s2/‖a‖2∫
0

‖a‖2
2πs2(‖a‖2 − s2)

e−‖a‖2s2/(2(‖a‖2−s2)) ds1 ds2

=

‖a‖2∫
‖a‖−α+2

(
1− s2

‖a‖2

)
‖a‖2

2πs2(‖a‖2 − s2)
e−‖a‖2s2/(2(‖a‖2−s2)) ds2

=
1

2π

‖a‖2∫
‖a‖−α+2

1

s2
e−‖a‖2s2/(2(‖a‖2−s2)) ds2. (4.2)

Put ‖a‖2s2/‖a‖2 − s2 = y. Then (4.2) equals

1

2π

+∞∫
‖a‖2−α/(1−‖a‖−α)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy. (4.3)

Note that, for α = 2,

1

2π

+∞∫
1/(1−‖a‖−2)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy → 1

2π

+∞∫
1

1

y
e−y/2 dy, ‖a‖ → +∞.

We can see that, for α < 2,

1

2π

+∞∫
‖a‖2−α/(1−‖a‖−2)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy � 1

2π

(1− ‖a‖−α)2

‖a‖2−α
e−‖a‖2−α/(1−‖a‖−α). (4.4)
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Estimate (4.4) implies that, for α < 2,

lim
‖a‖→+∞

1

2π

+∞∫
‖a‖2−α/(1−‖a‖−α)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy = 0.

On the other hand, for α > 2,

1

2π

+∞∫
‖a‖2−α/(1−‖a‖−α)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy � 1

2π

1/m∫
‖a‖2−α/(1−‖a‖−α)

‖a‖2
y(‖a‖2 + y)

e−y dy

� 1

2π

m‖a‖2

‖a‖2 + 1
m

(
−e1/m + e−‖a‖2−α/(1−‖a‖−α)

)
. (4.5)

It follows from (4.5) that, for α > 2,

lim
‖a‖→+∞

1

2π

+∞∫
‖a‖2−α/(1−‖a‖−α)

‖a‖2
y(‖a‖2 + y)

e−y/2 dy = +∞. ��

Appendix A: On some geometry of Hilbert-valued functions

In this appendix, we collect some useful estimates for a Gramian matrix and Gram determinant that describe
the changing of geometry of Hilbert-valued functions under the action of a linear continuous operator. Also,
for 0 � α < 1, we check that

sup
y∈L2([0;1])

1∫
0

dt

‖1[0;t] − y‖1+α
< +∞.

Let B(e1, . . . , en) be the Gramian matrix constructed from vectors e1, . . . , en in Hilbert spaceH .

Lemma A.1. Suppose that A is a continuously invertible operator in a Hilbert space H . Then, for all k � 1,
there exists a positive constant c(k), depending on k and A, such that for any e1, . . . , ek ∈ H , we have the
following relation:

G(Ae1, . . . , Aek) � c(k)G(e1, . . . , ek).

Proof. It suffices to check that

infG

(
Af1
‖Af1‖

, . . . ,
Afk
‖Afk‖

)
> 0,

where the infimum is taking over all orthonormal systems (f1, . . . , fk). Using the Gram–Schmidt orthogonal-
ization procedure build the orthogonal system q1, . . . , qk from Af1/‖Af1‖, . . . , Afk/‖Afk‖. Here

qj =
Afj
‖Afj‖

−
j−1∑
i=1

aij
Afi
‖Afi‖
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with some aij . Let us prove that

inf
(f1,...,fk)

G

(
Af1

‖Af1‖
, . . . ,

Afk
‖Afk‖

)
= inf

(f1,...,fk)

k∏
i=1

‖qi‖2 > 0.

If it is not so, then there exist the sequence {fn
1 , . . . , f

n
k }n�1 and j = 1, k such that ‖qnj ‖ → 0, n → ∞. The

invertibility of the operator A implies that∥∥∥∥∥ fn
j

‖Afn)j‖ −
j−1∑
i=1

anij
fn
i

‖Afn
i ‖

∥∥∥∥∥ → 0, n → ∞.

But ∥∥∥∥ fn
j

‖Afn
j ‖

−
j−1∑
i=1

anij
fn
i

‖Afn
i ‖

∥∥∥∥ � 1

‖Afn
j ‖

> 0. ��

Lemma A.2. Suppose that A is a continuously invertible operator in a Hilbert spaceH . Then, for any e0 = 0,
e1, . . . , en ∈ H such that ei+1 − ei ⊥ ej+1 − ej , i, j = 1, n − 1, i �= j, there exists a positive constant c such
that for all �u ∈ R

n with u0 = 0, we have the following relation:

(
B−1(Ae1, . . . , Aen)�u, �u

)
� c

n−1∑
i=0

(ui+1 − ui)
2

‖ei+1 − ei‖2
.

Proof. It was proved in [6] that in the case �u = ((h0, Ae1), . . . , (h0, Aen)), h0 ∈ H, we have the following
relation: (

B−1(Ae1, . . . , Aen)�u, �u
)
= ‖PAe1...Aenh0‖2,

where Pe1...en is the projection onto LS{e1, . . . , en} (the linear span generated by elements e1, . . . , en). Note
that (

(h0, Ae1), . . . , (h0, Aen)
)
=

(
(A∗h0, e1), . . . , (A∗h0, en)

)
.

Since (A∗h0, e1) = u1, . . . , (A
∗h0, en) = un, we have

A∗h0 =
n−1∑
i=0

ei+1 − ei
‖ei+1 − ei‖2

(ui+1 − ui) + r, (A.1)

where r ⊥ ei, i = 0, n.
Consequently,

h0 =

n−1∑
i=0

A∗−1

(
ei+1 − ei

‖ei+1 − ei‖2
(ui+1 − ui)

)
+A∗−1r.

Let us remark that the continuous invertibility of the operator A implies the existence of A∗−1. It follows from
(A.1) that

(
B−1(Ae1, . . . , Aen)�u, �u

)
=

∥∥∥∥∥A∗−1

(
n−1∑
i=0

(ei+1 − ei)(ui+1 − ui)

‖ei+1 − ei‖2
+ r

)∥∥∥∥∥
2

,
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consequently,

(
B−1(Ae1, . . . , Aen)�u, �u

)
� c

n−1∑
i=0

(ui+1 − ui)
2

‖ei+1 − ei‖2
+ c‖r‖2 � c

n−1∑
i=0

(ui+1 − ui)
2

‖ei+1 − ei‖2
. ��

The following statement describes a direct application of Lemmas A.1 and A.2.
For s1, . . . , sn ∈ Δn and u1, . . . , un ∈ R, let ps1...sn(u1, . . . , un) be the density of the Gaussian vector

(x(s1), . . . , x(sn)) in R
n. Here x is the Gaussian integrator with representation (1.2).

Lemma A.3. (See [14].) Suppose that A in representation (1.2) is continuously invertible. Then there exist
positive constants c1(n), c2 such that we have the following relation:

ps1...sn(u1, . . . , un) �
c1(n)√

s1(s2 − s1) . . . (sn − sn−1)
exp

{
−1

2
c2

n−1∑
j=0

(uj+1 − uj)
2

sj+1 − sj

}
.

For a proof, see [14].

Lemma A.4. For any 0 � α < 1,

sup
y∈L2([0;1])

1∫
0

1

‖1[0;t] − y‖1+α
dt < +∞.

Proof. Put g0(t) := 1[0;t]. Note that

1∫
0

1

‖g0(t)− y‖1+α
dt =

+∞∫
0

λ
{
t:

∥∥g0(t)− y
∥∥−(1+α) � z

}
dz,

where λ is the Lebesgue measure on [0; 1]. Then to prove the lemma, it suffices to check that, for b > 0,

sup
y∈L2([0;1])

+∞∫
b

λ
{
t:

∥∥g0(t)− y
∥∥−(1+α) � z

}
dz < +∞.

For any g0(t0) and g0(t1) from the closed ball B(y, 1/z1/(1+α)), we have the following relation:

|t0 − t1| =
∥∥g0(t0)− g0(t1)

∥∥2 � 4

z2/(1+α)
. (A.2)

Inequality (A.2) implies that{
t:

∥∥g0(t)− y
∥∥ � 1

z1/(1+α)

}
⊂

[
t0 −

4

z2/(1+α)
; t0 +

4

z2/(1+α)

]
. (A.3)

It follows from (A.3) that, for 0 � α < 1,

∞∫
b

λ

{
t:

∥∥g0(t)− y
∥∥ � 1

z1/(1+α)

}
dz � 8

+∞∫
b

dz

z2/(1+α)
< +∞.
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Lemma A.5. For elements e1, . . . , en of L2([0; 1]) and a projection Q, let Qe1, . . . , Qen be linearly indepen-
dent. Suppose that elements f , g satisfy the following relationships for all i = 1, . . . , n:

(f, ei) = (g,Qei).

Then
‖P1f‖ � ‖P2g‖,

where P1 and P2 are the orthogonal projections onto linear spans of e1, . . . , en and Qe1, . . . , Qen, respec-
tively.

Proof. Note that, for all i = 1, . . . , n,

(g,Qei) = (P2g,Qei) = (QP2g, ei) = (P1f, ei).

Consequently,

P1f = P1QP2g = P1P2g.

Hence,

‖P1f‖ � ‖P2g‖. ��

Lemma A.6. LetΔ0 = ∅, andΔ1, . . . ,Δn be subsets of [0; 1]. Then

Γ (1Δ1
, . . . ,1Δn

) �
n∏

k=1

∣∣∣∣∣Δk \
k−1⋃
j=1

Δj

∣∣∣∣∣.
Proof. Since

Γ (1Δ1
, . . . ,1Δn

) = |Δ1|
n∏

k=2

‖hk‖2,

where hk is the orthogonal component of 1Δk
with respect to the linear span of 1Δ1

, . . . ,1Δk−1
, it suffices to

prove that, for k = 2, . . . , n,

‖hk‖2 �
∣∣∣∣∣Δk \

k−1⋃
j=1

Δj

∣∣∣∣∣.
For the setΔ such that |Δ| > 0, denote by PΔ the orthogonal projection onto 1Δ. Then

‖PΔj
1Δk

‖2 = |Δk ∩Δ|2
|Δ| �

∣∣Δk ∩Δ
∣∣.

Consider the representation
k−1⋃
j=1

Δj =

l⋃
i=1

Hi,

where |Hi| > 0, Hi ∩Hj = ∅, i �= j. All Hi belong to the algebra generated by {Δj} and every Δj can be
obtained as the union of certain Hi. Then the linear span of 1Δ1

, . . . ,1Δk−1
is a subset of the linear span of

1H1
, . . . ,1Hl

. Hence,

‖hk‖2 � |Δk| −
l∑

i=1

|Δk ∩Hi| =
∣∣∣∣∣Δk \

k−1⋃
j=1

Δj

∣∣∣∣∣. ��
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Appendix B: On some relations between generalized functionals from white noise

Consider linearly independent elements f1, . . . , fn ∈ L2([0; 1]). Here we investigate conditions on elements
rj ∈ L2([0; 1]), j = 1, n − 1, that allow us to establish the following relation:

∫
R

n∏
k=1

δ0
(
(fk, ξ)− u

)
du =

n−1∏
j=1

δ0
(
(rj , ξ)

)
, (B.1)

which is understood as equality of the generalized functionals from white noise [24] and will be checked using
the Fourier–Wiener transform.

Let us recall that for random variable α that has a finite second moment and is measurable with respect to
the white noise ξ, its Fourier–Wiener transform is

T (α)(h) = Eαe(h,ξ)−‖h‖2/2.

It is well known that the Fourier–Wiener transform uniquely determines a random variable α. The definition
of the action of δ-function on the random vector ((f1, ξ)−u, . . . , (fn, ξ)−u) or ((r1, ξ), . . . , (rn−1, ξ)) can be
found in [24]. For example, to consider the Fourier–Wiener transform of

∏n−1
j=1 δ0((rj , ξ)), we can substitute

δ0 by the Gaussian density

fε(u) =
1√
2πε

e−u2/(2ε)

and pass to the limit as ε → 0.
The following statement describes a possible choice for rj , j = 1, n− 1.

Theorem B.1. Let f1, . . . , fn be linearly independent elements in L2([0; 1]). Then

∫
R

n∏
k=1

δ0
(
(fk, ξ)− u

)
du =

n−1∏
k=1

δ0
(
(fk+1 − fk, ξ)

)
. (B.2)

Proof. To prove the statement let us calculate the Fourier–Wiener transform of the left-hand side and the
right-hand side of equality (B.2). Denote by T (α)(h) the Fourier–Wiener transform of random variable α. We
can check that

T
(

n−1∏
j=1

δ0
(
(rj , ξ)

))
(h) =

1

(2π)(n−1)/2
√

G(r1, . . . , rn−1)
e−‖Pr1...rn−1

h‖2/2. (B.3)

Let us find the Fourier–Wiener transform of
∫
R

∏n
k=1 δ0((fk, ξ)− u) du:

T
(∫

R

n∏
k=1

δ0
(
(fk, ξ)− u

)
du

)
(h) =

∫
R

1

(2π)n/2
√

G(f1, . . . , fn)
e−(B−1(f1,...,fn)(u�e−�a), u�e−�a)/2 du, (B.4)

where �e = (1, . . . , 1)T and �a = ((f1, h), . . . , (fn, h))
T. By integrating (B.4) over u we can get

1

(2π)(n−1)/2
√

G(f1, . . . , fn)
√

(B−1(f1, . . . , fn)�e,�e)

× exp

{
−1

2

((
B−1(f1, . . . , fn)�a,�a

)
− (B−1(f1, . . . , fn)�a,�e)

2

(B−1(f1, . . . , fn)�e,�e)

)}
. (B.5)
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It is not difficult to check that (
B−1(f1, . . . , fn)�a,�a

)
= ‖Pf1...fnh‖2.

Consider the function f ∈ LS{f1, . . . , fn} such that (f, fk) = 1, k = 1, n. Then(
B−1

f1...fn
�e,�e

)
= ‖Pf1...fnf‖2 = ‖f‖2,

(
B−1

f1...fn
�a,�e

)
= (Pf1...fnh, f).

Therefore, (B.5) equals

1

(2π)(n−1)/2
√

G(f1, . . . , fn)‖f‖
e−(‖Pf1...fnh‖2−‖PfPf1...fnh‖2)/2.

Denote by f⊥ = {v ∈ LS{f1, . . . , fn}: (v, f) = 0}. Then

T
(∫

R

n∏
k=1

δ0
(
(fk, ξ)− u

)
du

)
(h) =

1

(2π)(n−1)/2
√

G(f1, . . . , fn)‖f‖
e−‖Pf⊥h‖2/2. (B.6)

By comparing (B.3) and (B.6) we obtain the following conditions on elements rk, k = 1, n − 1:

1) LS{r1, . . . , rn−1} = f⊥;
2) G(r1, . . . , rn−1) = G(f1, . . . , fn)‖f‖2.
Let us check that rj := fj+1−fj satisfy conditions 1) and 2). Indeed, putM = LS{f2−f1, . . . , fn−fn−1}.

Then f ⊥ M . Denote by r the distance from f1 to M . W can see that

G(f1, . . . , fn) = G(f1, f2 − f1, . . . , fn − fn−1) = r2G(f2 − f1, . . . , fn − fn−1).

Since (
f1,

f

‖f‖

)
= ‖f1‖ cosα = r,

it follows that r = 1/‖f‖. Consequently,

‖f‖2G(f1, . . . , fn−1) = G(f2 − f1, . . . , fn − fn−1). ��
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