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Abstract. We consider Gini’s mean difference statistic as an alternative to the empirical variance in the settings of
finite populations, where simple random samples are drawn without replacement. In particular, we discuss specific (in the
finite-population context) estimation strategies for a scale of the population, related to the alternative statistic in a possible
presence of outliers in the data.

The paper also presents a wide comparative survey of properties of Gini’s mean difference statistic and the empirical
variance. It includes asymptotic properties of both statistics: the asymptotic normality, one-term Edgeworth expansions,
and bootstrap approximations for Studentized versions of the statistics. Estimation of the variances and other parameters
of the statistics is also studied, where we use auxiliary information available on the population elements. Theoretical
results are illustrated by a simulation study.
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1 Introduction

Together with a location parameter, a spread (or scale) of survey population usually is a parameter of interest.
If a statistician assumes the classical model of independent and identically distributed (i.i.d.) observations, then
he has at his disposal a number of various parametric distribution families, for example, Gaussian, Cauchy,
etc. Assume that he chooses a particular family (population model) for a further analysis of data. This family
comes with its own location and scale measures, for instance, the normal distribution parameters “suggest”
to measure the mean and variance of the survey population, and the Cauchy distribution is specified by the
population median and interquartile range. The traditional statistics theory gives the answers of how to get ef-
ficient estimates of locations and scales in the case of commonly used population models. However, parametric
statistical models, being comparatively convenient, are also known as nonrobust, that is, deviations from their
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assumptions may lead to misleading conclusions. As it is often the instance, appearance of some or more out-
lying observations can strongly affect the quality of typical estimators of the population location and scale.
Then, if we believe that these outliers are, for example, measurement errors, robust estimation methods can
be a treatment of the problem. The pioneering book of Huber [23] on the formalization of robust estimation
starts from the normal distribution scale estimation example showing the inefficiency of the empirical variance
compared to the mean absolute deviation in the presence of outliers in the sample data. Gini’s mean difference
(GMD) statistic is, in a sense, similar to the latter statistic. This estimator, its properties, connections, and
comparisons with the sample variance is the aim of our paper.

We consider the GMD statistic as an alternative to the empirical variance in the setting of finite population
t1, . . . , Nu of elements with the corresponding set of real values X “ tx1, . . . , xNu of the variable x under
investigation and for the simple random sample t1, . . . , nu of size n ă N drawn without replacement from the
population with measurements X “ tX1, . . . ,Xnu of the variable x. In particular, the population parameters

G “
ˆ
N

2

˙́ 1 ÿ
1ďiăjďN

|xi ´ xj | (1.1)

and

V “
ˆ
N

2

˙́ 1 ÿ
1ďiăjďN

pxi ´ xjq2
2

(1.2)

are two candidates to measure the scale of X ; the latter seems more natural since VarX1 “ pN ´ 1qV {N .
The corresponding unbiased estimators of these parameters are the GMD statistic

UG “
ˆ
n

2

˙́ 1 ÿ
1ďiăjďn

|Xi ´ Xj | (1.3)

and the empirical variance

UV “
ˆ
n

2

˙́ 1 ÿ
1ďiăjďn

pXi ´ Xjq2
2

. (1.4)

As an alternative to (1.4), the GMD statistic, known better since Gini [18], is widely used in economics. Now
it is an ordinary measure of dispersion of income distribution and in cases of variables similar to income; see
the monograph of Yitzhaki and Schechtman [31], where, following the words of the authors, the commonly
used variance-based analysis is “translated” into the Gini-based one. The use of GMD is not restricted to
the measurements of economic inequality. Just like in the problems of economists, where data deviate from
the normality, the parameter G and its estimator UG can be used as dispersion measures for many kinds
of statistical data. Our choice of the finite-population setting also has an economic motivation because, in
economic surveys, the numberN of surveyed objects or subjects is not necessarily that large (compared to the
sample size) as to ignore the dependence between the observations in the set X.

In Section 2, we consider three strategies of estimation of the finite-population scale related to the alterna-
tive UG. We exploit two assumptions that are usually possible in the finite-population context: the so-called
superpopulation assumption and availability of an auxiliary information on the population elements. We also
carry out simulation experiments, where we analyze advantages and disadvantages of the strategies and com-
pare them under populations without and with outliers.

The GMD statistic is one of several well-known universal estimators that are less sensitive to outliers
than the empirical variance. The other ones are, for instance, the median absolute deviation (MAD) and the
interquartile range (IQR), known as highly robust statistics, and the mean absolute deviation, which is of a sim-
ilar sensitivity to outliers as GMD. The statistics MAD and IQR are efficient where data contain large outliers
or/and the proportion of outliers is large, but they are relatively inefficient in the opposite case. Recently, it has
been demonstrated by Gerstenberger and Vogel [17] that the GMD statistic combines advantages of the sample
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variance and the absolute mean deviation in the i.i.d. case. In particular, at heavy-tailed distributions, GMD
is, along with the absolute mean deviation, substantially more efficient than the standard deviation. However,
looking from the point of the robust estimation theory, if we can link data to a parametric population model,
then, in particular situations, there are more effective robust estimators of scale than the universal ones; see
Huber [23]. On the other hand, we focus here on a unified improvement of the empirical variance.

An additional premium to be paid is a relatively complex access to the properties of the GMD statistic.
On the other hand, in these problems, UG is more attractive than the other mentioned examples of universal
estimators because of its smoothness (in a certain sense) or that it uses the complete sample information. In
Section 3, an asymptotic analysis of distributions of the statistics UG and UV shows that their properties are
similarly simple. To explain that, we apply an available theory of U - and L-statistics in the case of samples
without replacement. In particular, statistics (1.3) and (1.4) are likely the most popular U -statistics of degree
two, and (1.3) is also the L-statistic; see Serfling [30]. As the L-statistic, UG is smooth in the sense that its
weight function is smooth; see the same reference.

To be consistent with already known results, we first notice that expressions of the variance of UG and its
approximations are known since Nair [27] and Lomnicki [26] in the case of i.i.d. observations and since Glasser
[19] for the simple random samples without replacement. Second, an efficient method to study variances and
the asymptotic normality of the statistics UG and UV is Hoeffding’s [22] decomposition for U -statistics. Much
later, Zhao and Chen [32] used an analogous decomposition in the case of finite population. Third, similarly,
the second-order approximation theory for samples without replacement has been realized following the case
of i.i.d. observations: Kokic and Weber [25] and Bloznelis and Götze [7] follow Bickel et al. [3] on one-term
Edgeworth approximations to the distributions of standardized U -statistics; the papers of Bloznelis [5, 6] on
a one-term Edgeworth expansion for Studentized U -statistics and bootstrap approximations appeared after
Helmers [21].

Since the true values of variances of the statistics are almost always unknown, we prefer considering the
asymptotic normality, one-term Edgeworth expansions, and bootstrap approximations for Studentized versions
of the statistics UG and UV . A basis for such a study is the general theory of Bloznelis and Götze [8] and
Bloznelis [5, 6] (with the without-replacement bootstrap, of Booth et al. [9]), where, to ensure the validity of
approximations, quite general smoothness conditions are imposed on parts of the Hoeffding decomposition of
U -statistics. Theorems of Section 3 allow us to compare distributional properties of UG and UV much easier.

A successful application of the one-term Edgeworth expansion requires having good estimators (in the sense
of an asymptotic consistency or a small mean square error) of the expansion parameters. In the case of sym-
metric statistics (symmetric functions of observations), including U -statistics, jackknife techniques are used to
estimate these parameters; see Putter and van Zwet [29] and Bloznelis [4]. In particular cases of statistics, for
example, UG and UV , there are more ways to construct estimators of the Edgeworth expansion parameters. For
example, for L-statistics, including UG, the bootstrap was used by Čiginas [14], and, assuming that the auxil-
iary information is available, calibration methods were applied by Pumputis and Čiginas [28]. In Section 4, we
propose simple and efficient estimators of the parameters without any auxiliary information as well as using
it. Similar estimators of the variances of UG and UV are considered as well. In Section 5, we discuss empirical
Edgeworth expansions, based on the estimators of parameters, and bootstrap approximations. In Section 6, we
compare the obtained estimation results for both statistics of interest in the simulation study. Here we are also
interested in the role of outliers in populations. Conclusions of the paper are given in Section 7. Proofs of the
theorems are given in the appendices.

2 Estimation of a scale

2.1 Outliers and estimation strategies

In the i.i.d. setup, for many common parametric populationmodels, the sample variance is an efficient estimator
under ideal or close to ideal conditions. However, if some of the sample data differ substantially from the other,
then the GMD statistic can be a better choice because it puts smaller weights on extreme observations and thus
lowers their impact on the estimation.
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In the finite-population case, outliers are also less influential in case UG is applied. To see this, let us write
parameters (1.1) and (1.2) in a different form. Here and further, without loss of generality, we assume that
x1 ď ¨ ¨ ¨ ď xN and denoteΔi “ xi`1 ´ xi, i “ 1, . . . , N ´ 1. Then, taking xj ´ xi “ řj´1

k“i Δk, we obtain

G2 “ 4

N2pN ´ 1q2
«

N´1ÿ
i“1

i2pN ´ iq2Δ2
i ` 2

ÿ
1ďiăjďN´1

ijpN ´ iqpN ´ jqΔiΔj

ff

and

V “ 1

NpN ´ 1q

«
N´1ÿ
i“1

ipN ´ iqΔ2
i ` 2

ÿ
1ďiăjďN´1

ipN ´ jqΔiΔj

ff
.

These expressions are connected via the system of equations

Δ1
iΔ

1
j “ 4jpN ´ iq

NpN ´ 1qΔiΔj, 1 ď i ď j ď N ´ 1, (2.1)

whereΔ1
i “ x1

i`1´x1
i, i “ 1, . . . , N ´1, with the numbers x1

1, . . . , x
1
N as its solution givenX . However, there

is no solution, except in cases of very simple X . Therefore, (2.1) can be viewed as a formal transformation
only, which explains the assertion.

Model of outliers. For simple random samples without replacement, we assume the existence of so-called
representative outliers. This notion was introduced by Chambers [10]. It means the assumptions that: outlying
observations are not measurement errors; the unsampled population part should contain outliers too. Other
types of outliers, together with their various modeling mechanisms, are also considered in the literature; see,
for example, Chambers et al. [11], Béguin and Hulliger [2], and Alqallaf et al. [1], but their treatment is usually
related to editing and imputation of survey data. Therefore, due to our focus on estimation, we consider the
representative outliers only.

More formally, denote by 0 ď p ď N the number of outliers in the population. Assume that the population
elements ti1, . . . , ipu Ď t1, . . . , Nu belong to a different population, but this phenomenon is not known until
the sample X has not been obtained. Then the corresponding values from the sequence x1, . . . , xN are treated
as outliers. In the random sample X, the number of outliers is random and equals the number of elements in
the set ti1, . . . , ipu X t1, . . . , nu.

The proportion p{N of outliers can be restricted without a significant loss of generality. In particular, as
it is pointed by Huber [23], a part of gross errors (outliers) in samples usually is not larger than 10%. An
interesting note on this issue is given by Chhikara and Feiveson [12]: “. . . it is reasonable to consider three
potential outliers in a data set of 10 observations, but it is unrealistic to expect 30 outliers out of a data set
of 100 observations. In the latter case, the outlier detection problem becomes one of discrimination between
two or more classes of data.” Similarly, for finite populations, if a large portion of outliers is expected in
the population, they are typically neutralized (with the help of auxiliary information) by applying stratified
sampling designs, that is, collecting potential outliers into a separate stratum. Another but similar solution in
this case is postratification.

Estimation strategies. For a finite population, we consider the following specific ways of applying the GMD
statistic as the alternative to the sample variance.

(S1) Assume that the fixed numbers x1, . . . , xN are realizations of the i.i.d. random variables X1̊ , . . . ,XN̊
(superpopulation model) from a parametric family of distributions with the scale parameter that is a one-
argument function of

a
VarX1̊ . Then the scale of X is treated as the same function of

?
V , and the

estimator of the argument
?
V is taken to be of the form aUG, where a ą 0 is a constant compensating

a bias.

Lith. Math. J., 55(2):312–330, 2015.
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(S2) In the presence of the well-correlated and completely known auxiliary variable z with values Z “
tz1, . . . , zNu in the population, the scale measure is

?
V , and its estimator is aUG with the correction

a ą 0 evaluated from the set Z .
(S3) The parameter G itself is treated as the scale of X , and the GMD statistic UG is its estimator.

Case (S1) is close to the parametric statistics. In the i.i.d. setting, the multipliers a, which ensure that aUG

is the unbiased estimator of
?
V , are known for commonly used parametric families, e.g., a “ ?

π{2 for
the normal distributions, and a “ 1 for the exponential distributions. See also Tables 2–3 in [17], for some
other distributions. Therefore, assuming the existence of a superpopulation, we use the same constants for
the estimation in the finite population. If a good auxiliary information Z is available, then these theoretical
a should not differ so much from the corresponding values obtained in case (S2), where a ą 0 is evaluated
from aG “ ?

V , using Z instead of X . If the scatter of X cannot be linked to a family of distributions, for
example, if it is a mixture of two unknown distributions and there is no other additional information, then we
propose strategy (S3).

2.2 Numerical analysis

We compare efficiencies of strategies (S1) and (S2) with respect to the common estimation by
?
UV in the

presence of outliers. We consider two populations with values of the variable x generated respectively from
two different parametric families: the normal distributionsN pμ, σ2q and the gamma distributions Gpk, θq with
shape k and scale θ, where the variance is equal to kθ2. In the case of a gamma distribution, the correction
a “ k´1{2p2 ´ 4I0.5pk ` 1, kqq´1 depends on k, where Itpu, vq is a regularized incomplete Beta function. For
each of these populations, we consecutively increase the part of outliers in the population as follows. First,
we select some particular population elements randomly without replacement. Second, we replace their values
by the new ones generated from the same family of distributions, but with different parameters, and we fix
these values. In the next steps, the set of outlying elements is enlarged by selecting from those that still do not
belong to the outliers.

In particular, the distributions are: N p0, 1q and N p0, 9q, the latter of which is aimed to generate outliers;
Gp3, 1{?

3q (then a “ 8
?
3{15), and Gp3,?

3q, which is also meant for outliers. We takeN “ 1000, n “ 200,
and consecutively construct populations with p “ 0, 20, 40, 60, 80, 100 outliers.

The fixed values of the auxiliary information Z are generated by the linear regression zi “ 3 ` 2xi ` εi,
where εi, i “ 1, . . . , N , are i.i.d. random variables from N p0, ϑ2q. Since the set X is different for different p,
the collections Z are different too.

To better understand the role of the auxiliary information in strategy (S2), we simulate different correlations
ρzx between Z and X . The correlation is controlled by the variance ϑ2 in the linear model. Thus, we choose
the variance in order to have ρzx “ 0.9, 0.7, 0.5, and 0.1 approximately. Tables 1–2 present the comparison of
estimation methods by means of mean square errors and biases.

It is seen in Table 1 that strategy (S1) improves the estimator
?
UV , where the proportion p{N is smaller.

For p{N larger than 0.04, (S1) becomes inefficient (by MSEp¨q) because its bias is large since the fixed cor-
rection a is a too coarse approximation to the mix of the normal distributions. Strategy (S2) is the best under
a strong correlation between x and z because the estimation bias is well corrected. The efficiency of (S2)
decreases with a decrease in the correlation ρzx, but, with the mechanism used to generate Z , the estimation
is not relatively inaccurate even for correlation 0.1. This means a certain robustness of this strategy.

Table 2 shows similar results for the asymmetric gamma distributions. Here outliers affect the estimators
more because the distribution of outliers has a larger mean (location) in addition. Therefore, strategies (S1)
and (S2) are efficient for smaller proportions p{N than in Table 1.

We conclude that strategies (S1) and (S2), and the GMD statistic thereby, are efficient with respect to
?
UV

if there is a small percent of outliers in the population. Moreover, there is no loss in the efficiency of the
strategies if there are no outliers in the population.
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Table 1. N p0, 1q with outliers N p0, 9q. Accuracy according to 10ˆ pBIASp¨q,a
MSEp¨qq

p{N ?
UV (S1) ρzx “ 0.9; (S2) ρzx “ 0.7; (S2) ρzx “ 0.5; (S2) ρzx “ 0.1; (S2)

0.00 p´0.01, 0.48q p´0.06, 0.47q p´0.02, 0.47q p 0.00, 0.47q p´0.05, 0.47q p 0.03, 0.47q
0.02 p´0.03, 0.86q p´0.41, 0.73q p´0.13, 0.63q p´0.32, 0.68q p´0.40, 0.72q p´0.31, 0.65q
0.04 p´0.03, 0.99q p´0.67, 0.97q p´0.16, 0.75q p´0.44, 0.84q p´0.63, 0.95q p´0.47, 0.80q
0.06 p´0.03, 1.10q p´0.92, 1.22q p´0.24, 0.87q p´0.71, 1.07q p´0.86, 1.17q p´0.85, 1.14q
0.08 p´0.03, 1.10q p´0.95, 1.26q p´0.28, 0.91q p´0.58, 1.02q p´0.92, 1.23q p´0.93, 1.24q
0.10 p´0.03, 1.22q p´1.18, 1.48q p´0.21, 0.98q p´0.91, 1.29q p´1.06, 1.39q p´1.01, 1.32q

Table 2. Gp3, 1{?3q with outliers Gp3,?3q. Accuracy according to 10ˆ pBIASp¨q,a
MSEp¨qq

p{N ?
UV (S1) ρzx “ 0.9; (S2) ρzx “ 0.7; (S2) ρzx “ 0.5; (S2) ρzx “ 0.1; (S2)

0.00 p´0.03, 0.71q p´0.18, 0.64q p´0.21, 0.65q p´0.42, 0.73q p´0.60, 0.84q p´0.62, 0.85q
0.02 p´0.09, 1.40q p´1.09, 1.40q p´0.48, 1.04q p´1.05, 1.36q p´1.48, 1.70q p´1.54, 1.75q
0.04 p´0.08, 1.42q p´1.24, 1.55q p´0.66, 1.18q p´1.21, 1.53q p´1.69, 1.91q p´1.73, 1.94q
0.06 p´0.07, 1.47q p´1.56, 1.87q p´0.76, 1.35q p´1.71, 1.99q p´1.98, 2.23q p´2.14, 2.36q
0.08 p´0.12, 1.93q p´2.24, 2.56q p´1.08, 1.71q p´2.06, 2.41q p´2.70, 2.94q p´2.86, 3.10q
0.10 p´0.13, 1.99q p´2.56, 2.89q p´1.31, 1.97q p´2.54, 2.88q p´2.85, 3.14q p´3.03, 3.30q

3 Theoretical properties of the statistics

3.1 Hoeffding’s decompositions and variances

The statistic U “ UnpXq “ ř
1ďiăjďn hpXi,Xjq, where the function h : X ˆ X Ñ R satisfies hpx, yq “

hpy, xq, is called the U -statistic of degree two. For the cases of the GMD statistic UG and the sample vari-
ance UV , we have

hpX1,X2q “
ˆ
n

2

˙´1

|X1 ´ X2|

and

hpX1,X2q “
ˆ
n

2

˙´1 pX1 ´ X2q2
2

,

respectively. Following [5], the Hoeffding decomposition of the U -statistic is

U “ EU ` U1 ` U2, (3.1)

where U1 “ řn
i“1 g1pXiq and U2 “ ř

1ďiăjďn g2pXi,Xjq are centered and uncorrelated linear and quadratic
parts, respectively. Here, for 1 ď k ď N ,

g1pxkq “ pn ´ 1qN ´ 1

N ´ 2
E

`
hpX1,X2q ´ EhpX1,X2q ˇ̌

X1 “ xk
˘

and, for 1 ď k ‰ l ď N ,

g2pxk, xlq “ hpxk, xlq ´ EhpX1,X2q ´ pn ´ 1q´1
`
g1pxkq ` g1pxlq

˘
.

The so-called first- and second-order influence functions g1 and g2 have usually a different impact on the
variance of U -statistic. As in cases of any other linearization techniques, it is expected that the linear part
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in (3.1) dominates the remainder in the sense of variance size. In particular, we consider the structures of
variances of the statistics UG and UV by formula (2.6) in [8]:

VarU “ npN ´ nq
N ´ 1

σ2
1 `

ˆ
n

2

˙ˆ
N ´ n

2

˙ˆ
N ´ 2

2

˙´1

σ2
2 , (3.2)

where σ2
1 “ E g21pX1q and σ2

2 “ E g22pX1,X2q. Let us elaborate the statistics of interest.
GMD statistic. To find the influence functions, we rewrite (1.3) in the alternative form

UG “
ˆ
n

2

˙´1 nÿ
j“1

p2j ´ n ´ 1qXj:n,

where X1:n ď ¨ ¨ ¨ ď Xn:n are order statistics of the observations X, and apply the Hoeffding decomposition
results to the L-statistics from Čiginas [13]. Denote ai “ p2i´Nq{N , 1 ď i ď N ´ 1. Then, for 1 ď k ď N ,

g1pxkq “ ´ 2

n

N

N ´ 2

N´1ÿ
i“1

ˆ
Itiěku ´ i

N

˙
aiΔi,

where It¨u is the indicator function, and, for 1 ď k ă l ď N ,

g2pxk, xlq “ ´ 4

npn ´ 1q
N´1ÿ
i“1

φk,lpiqΔi,

where

φk,lpiq “

$’’&
’’%
ipi ´ 1q{A if 1 ď i ă k,

´pi ´ 1qpN ´ i ´ 1q{A if k ď i ă l,

pN ´ i ´ 1qpN ´ iq{A if l ď i ă N ,

with A “ pN ´ 1qpN ´ 2q. Next, direct calculations yield the following expressions of variance decomposi-
tion (3.2) components:

σ2
1 “ 4

n2

1

pN ´ 2q2
«

N´1ÿ
i“1

ipN ´ iqa2iΔ2
i ` 2

ÿ
1ďiăjďN´1

ipN ´ jqaiajΔiΔj

ff
(3.3)

and

σ2
2 “ 16

n2pn ´ 1q2
1

NpN ´ 1q2pN ´ 2q

«
N´1ÿ
i“1

ipi ´ 1qpN ´ i ´ 1qpN ´ iqΔ2
i

` 2
ÿ

1ďiăjďN´1

ipi ´ 1qpN ´ j ´ 1qpN ´ jqΔiΔj

ff
. (3.4)

Sample variance. Denote the population moments as b1 “ EX1 and μk “ EpX1 ´ b1qk for k “ 2, . . . , 6.
Then, for 1 ď k ď N ,

g1pxkq “ 1

n

N

N ´ 2

“pxk ´ b1q2 ´ μ2

‰
(3.5)
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and, for 1 ď k ă l ď N ,

g2pxk, xlq “ 1

npn ´ 1q
"

pxk ´ xlq2 ` 2N

pN ´ 1qpN ´ 2qμ2 ´ N

N ´ 2

“pxk ´ b1q2 ` pxl ´ b1q2‰*
. (3.6)

After straightforward calculations, we obtain the following formulas:

σ2
1 “ 1

n2

ˆ
N

N ´ 2

˙2`
μ4 ´ μ2

2

˘
(3.7)

and

σ2
2 “ 4

n2pn ´ 1q2
N

pN ´ 1qpN ´ 2q
ˆ
N2 ´ 3N ` 3

N ´ 1
μ2
2 ´ μ4

˙
. (3.8)

In fact, various expressions of VarUV are known in the literature. For comparison, we mention only the
expression that appeared in [24].

3.2 Asymptotic normality

Common inferences about statistics are based on knowledge of their distributions. If exact distributions cannot
be found, then, for samples of quite a large size, the normal approximation to distributions is usually appro-
priate. Here, for the statistics under investigation, we present sufficient and simple conditions under which the
distribution function

FnSpyq “ PtU ´ EU ď ySu (3.9)

of the Studentized U -statistic is asymptotically normal as the sample size increases. Here

S2 “ S2pXq “
ˆ
1 ´ n

N

˙
n ´ 1

n

nÿ
i“1

`
Un´1pXzXiq ´ sU˘2

, where sU “ 1

n

nÿ
i“1

Un´1pXzXiq, (3.10)

is the jackknife estimator of variance for any U -statistic.
In the finite population asymptotics, the population size increases together with the sample size. We denote

n˚ “ mintn,N ´nu, which tends to infinity as n does in the i.i.d. setup. Next, to be correct in the formulation
of asymptotic results, a sequence of values Xr “ txr,1, . . . , xr,Nr

u in the populations withNr Ñ 8 as r Ñ 8
and a sequence of statistics Unr

pXrq, where Xr “ tXr,1, . . . ,Xr,nr
u is a sample drawn without replacement

from Xr, should be considered. Further, we omit the subscript r in these and other quantities for notational
simplicity.

Denote τ2 “ np1 ´ n{Nq for short. The Erdős, Rényi [16], and Hájek [20] Lindeberg-type condition

σ´2
1 E g21pX1qIt|g1pX1q|ąετσ1u “ op1q as n˚ Ñ 8 for every ε ą 0, (3.11)

imposed on the linear part of U -statistic, is necessary for the normality of asymptotically linear statistics with
the growth of size n˚. This condition, together with the moment conditions ensuring the asymptotic linearity,
is sufficient for the statistics UG and UV by the following limit theorem.

Theorem 1. Assume that n˚ Ñ 8. Let (3.11) be satisfied. Assume that for all n˚: (i) EX2
1 ď C1 ă 8 for

UG and (ii) EX4
1 ď C2 ă 8 for UV . Then, for UG and UV , (3.9) tends to the standard normal distribution

function Φpyq for every y P R.
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3.3 True one-term Edgeworth expansions

When the sample size is not large, the normal approximation to (3.9) can be inaccurate. Then the one-term
Edgeworth expansion

HnSpyq “ Φpyq ` p1 ´ 2n{N ` p2 ´ n{Nqy2qα ` 3py2 ` 1qκ
6τ

ϕpyq (3.12)

for the Studentized U -statistics, constructed in [5], can serve as an improvement. Here ϕpyq is the standard
normal density function, and

α “ σ´3
1 E g31pX1q and κ “ σ´3

1 τ2 E g2pX1,X2qg1pX1qg1pX2q
are the population characteristics. Next, we present detailed expressions of these parameters for both statistics
of interest.

GMD statistic. Routine but tedious combinatorial calculations lead to

α “ ´σ´3
1

8

n3

1

pN ´ 2q3
«

N´1ÿ
i“1

ipN ´ 2iqpN ´ iqa3iΔ3
i ` 3

ÿ
1ďiăjďN´1

ipN ´ 2iqpN ´ jqa2i ajΔ2
iΔj

` 3
ÿ

1ďiăjďN´1

ipN ´ 2jqpN ´ jqaia2jΔiΔ
2
j

` 6
ÿ

1ďiăjămďN´1

ipN ´ 2jqpN ´ mqaiajamΔiΔjΔm

ff
(3.13)

and

κ “ ´σ´3
1 τ2

16

n3pn ´ 1q
N

pN ´ 1q2pN ´ 2q3
N´1ÿ
i“1

N´1ÿ
j“1

N´1ÿ
m“1

cijmajamΔiΔjΔm, (3.14)

where

cijm “

$’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

ipi ´ 1qpN ´ mqrN ´ j ´ 1 ` N´1jpm ´ jqs if i ď j ď m,

ipi ´ 1qpN ´ jqrN ´ m ´ 1 ` N´1mpm ´ jqs if i ď m ă j,

jpN ´ mqrpi ´ 1qpN ´ i ´ 1q
`N´1tpN ´ iqpN ´ i ´ 1qpi ´ jq ` ipi ´ 1qpm ´ iqus if j ă i ă m,

mpN ´ jqrpi ´ 1qpN ´ i ´ 1q
`N´1tipi ´ 1qpi ´ jq ` pN ´ i ´ 1qpN ´ iqpm ´ iqus if m ă i ă j,

jpN ´ i ´ 1qpN ´ iqrm ´ 1 ` N´1pN ´ mqpm ´ jqs if j ă m ď i,

mpN ´ i ´ 1qpN ´ iqrj ´ 1 ` N´1pN ´ jqpm ´ jqs if m ď j ď i.

These formulas are new in the literature.

Sample variance. With straightforward calculations we can arrive at the following results:

α “ σ´3
1

1

n3

ˆ
N

N ´ 2

˙3`
2μ3

2 ´ 3μ4μ2 ` μ6

˘
(3.15)
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and

κ “ σ´3
1 τ2

2

n3pn ´ 1q
ˆ

N

N ´ 2

˙3 1

N ´ 1

ˆ
´pN ´ 2qμ2

3 ´ 2N ´ 1

N ´ 1
μ4μ2 ` N

N ´ 1
μ3
2 ` μ6

˙
. (3.16)

Note that (3.16) can be simplified (approximated) by leaving the term with μ2
3 in the brackets only. For

comparison, expressions similar to these can be identified in the Edgeworth approximation given by Kokic and
Weber [25] for the standardized sample variance.

Whereas the error of normal approximation is typically of order Opn´1{2˚ q (see, e.g., [32] for the case
of standardized U -statistics), the error of the true (with known parameters α and κ) one-term Edgeworth
approximation (3.12) is of order opn´1{2

˚ q under certain conditions. The first condition from those is the
asymptotical nonlatticeness of the linear part of the U -statistic: for every ε ą 0 and every B ą 0,

lim inf
n˚Ñ8 sup

εă|t|ăB

ˇ̌
E exp

�
itσ´1

1 g1pX1q(ˇ̌ ă 1; (3.17)

see [8]. This and other specific conditions sufficient for the statistics UG and UV are summarized in the
following theorem.

Theorem 2. Assume that n˚ Ñ 8 and p1´n{Nqτ Ñ 8. Let (3.17) be satisfied. Assume that, for some δ ą 0
and for all n˚: (i) E |X1|6`δ ď C1 ă 8 for UG and (ii) E |X1|12`δ ď C2 ă 8 for UV . Then, we have

sup
yPR

ˇ̌
FnSpyq ´ HnSpyqˇ̌ “ o

`
n

´1{2˚
˘

as n˚ Ñ 8

for UG and UV .

4 Estimation of parameters

4.1 Estimators of variances

The jackknife variance estimator defined by (3.10) is universal for U - and other statistics, but it is not the best
one for particular statistics. In [28], bootstrap and calibrated estimators, constructed for general L-statistics,
are comparatively complex. Here, for both statistics of interest, we have explicit expressions of their variances.
Therefore, more natural and simpler estimators of the variances are possible. We give here, in fact, plug-in
estimators of variances, replacing the population moments by their empirical counterparts in the parameters
σ2
1 and σ2

2 that define variance (3.2).

GMD statistic. DenoteΔi:n “ Xi`1:n ´ Xi:n and Ai “ p2i ´ nq{n for 1 ď i ď n ´ 1. Then the estimators of
the variance components (3.3) and (3.4) are

σ̂2
1G “ 4

n4

ˆ
N

N ´ 2

˙2
«

n´1ÿ
i“1

ipn ´ iqA2
iΔ

2
i:n ` 2

ÿ
1ďiăjďn´1

ipn ´ jqAiAjΔi:nΔj:n

ff
(4.1)

and

σ̂2
2G “ 16

n4pn ´ 1q4
N

N ´ 2

«
n´1ÿ
i“1

ipi ´ 1qpn ´ i ´ 1qpn ´ iqΔ2
i:n

` 2
ÿ

1ďiăjďn´1

ipi ´ 1qpn ´ j ´ 1qpn ´ jqΔi:nΔj:n

ff
. (4.2)

Denote by σ̂2
G the estimator of the variance of UG obtained by plugging (4.1) and (4.2) into (3.2).
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Sample variance. Denote the sample moments by mk “ n´1
řn

i“1pXi ´ n´1
řn

j“1Xjqk for k “ 2, . . . , 6.
Replacing the central moments in (3.7) and (3.8) by the corresponding empirical moments, we get

σ̂2
1V “ 1

n2

ˆ
N

N ´ 2

˙2`
m4 ´ m2

2

˘
(4.3)

and

σ̂2
2V “ 4

n2pn ´ 1q2
N

pN ´ 1qpN ´ 2q
ˆ
N2 ´ 3N ` 3

N ´ 1
m2

2 ´ m4

˙
. (4.4)

Let σ̂2
V denote the estimator of the variance of UV obtained by plugging (4.3) and (4.4) into (3.2).

4.2 Estimators for parameters defining Edgeworth expansions

In order to apply the one-term Edgeworth approximation (3.12) to the distribution functions of statistics, the
parameters α and κ must be evaluated. First, in Case A, analogously to the variance estimation case, we
construct estimators of the parameters directly from the explicit expressions available. Second, in Case B,
we assume that the auxiliary variable z is at our disposal with known values tz1, . . . , zNu for all population
elements. It is expected in this case that z is well correlated with the study variable x. Then the estimators
below are immediately obtained from the true values of parameters.

GMD statistic. Case A. With the notation used for the variance estimator, according to formulas (3.13) and
(3.14), the estimators are

α̂G “ ´σ̂´3
1G

8

n6

ˆ
N

N ´ 2

˙3
«

n´1ÿ
i“1

ipn ´ 2iqpn ´ iqA3
iΔ

3
i:n ` 3

ÿ
1ďiăjďn´1

ipn ´ 2iqpn ´ jqA2
iAjΔ

2
i:nΔj:n

` 3
ÿ

1ďiăjďn´1

ipn ´ 2jqpn ´ jqAiA
2
jΔi:nΔ

2
j:n

` 6
ÿ

1ďiăjămďn´1

ipn ´ 2jqpn ´ mqAiAjAmΔi:nΔj:nΔm:n

ff
(4.5)

and

κ̂G “ ´σ̂´3
1Gτ

2 16

n5pn ´ 1q3
ˆ

N

N ´ 2

˙3 n´1ÿ
i“1

n´1ÿ
j“1

n´1ÿ
m“1

CijmAjAmΔi:nΔj:nΔm:n, (4.6)

with the case function

Cijm “

$’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

ipi ´ 1qpn ´ mqrn ´ j ´ 1 ` n´1jpm ´ jqs if i ď j ď m,

ipi ´ 1qpn ´ jqrn ´ m ´ 1 ` n´1mpm ´ jqs if i ď m ă j,

jpn ´ mqrpi ´ 1qpn ´ i ´ 1q
`n´1tpn ´ iqpn ´ i ´ 1qpi ´ jq ` ipi ´ 1qpm ´ iqus if j ă i ă m,

mpn ´ jqrpi ´ 1qpn ´ i ´ 1q
`n´1tipi ´ 1qpi ´ jq ` pn ´ i ´ 1qpn ´ iqpm ´ iqus if m ă i ă j,

jpn ´ i ´ 1qpn ´ iqrm ´ 1 ` n´1pn ´ mqpm ´ jqs if j ă m ď i,

mpn ´ i ´ 1qpn ´ iqrj ´ 1 ` n´1pn ´ jqpm ´ jqs if m ď j ď i.
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Case B. Having an additional information, the ordered sequence of the values z1, . . . , zN is used instead of
x1 ď ¨ ¨ ¨ ď xN in expressions (3.13) and (3.14) of the true parameters α and κ. Denote the resulting estimates
by zα̂G and zκ̂G.

Sample variance. Case A. From population parameters (3.15) and (3.16) we have the following plug-in esti-
mators:

α̂V “ σ̂´3
1V

1

n3

ˆ
N

N ´ 2

˙3`
2m3

2 ´ 3m4m2 ` m6

˘
(4.7)

and

κ̂V “ σ̂´3
1V τ

2 2

n3pn ´ 1q
ˆ

N

N ´ 2

˙3 1

N ´ 1

ˆ
´pN ´ 2qm2

3 ´ 2N ´ 1

N ´ 1
m4m2 ` N

N ´ 1
m3

2 ` m6

˙
. (4.8)

Case B. In (3.15) and (3.16), the central population moments μk are evaluated using the values z1, . . . , zN .
Then, denote the new estimates by zα̂V and zκ̂V .

5 Empirical Edgeworth and bootstrap approximations

Replacing the population parameters α and κ in Edgeworth expansion (3.12) with their estimators, we obtain
the so-called empirical Edgeworth expansion. If particular estimators of the parameters are asymptotically
consistent, then, under the conditions of Theorem 2, the empirical Edgeworth expansion approximates distri-
bution function (3.9) with an error of the same order, but in probability. Bloznelis [4] constructed consistent
jackknife estimators of the parameters. Bootstrap and calibrated estimators of the parameters were considered
by Čiginas [14] and Pumputis and Čiginas [28], respectively. Here, for each of the statistics UG and UV , we
have two new versions of the empirical Edgeworth expansion.

GMD statistic. By the results in Section 4.2 we have the empirical Edgeworth expansion

pHnSGpyq “ Φpyq ` p1 ´ 2n{N ` p2 ´ n{Nqy2qα̂G ` 3py2 ` 1qκ̂G
6τ

ϕpyq, (5.1)

and, in the case where the auxiliary information is available, the approximation is

z
pHnSGpyq “ Φpyq ` p1 ´ 2n{N ` p2 ´ n{Nqy2qzα̂G ` 3py2 ` 1qzκ̂G

6τ
ϕpyq, (5.2)

which is not a random function because the values of the variable z are treated as fixed in the population.

Sample variance. The corresponding approximations to the distribution function of the Studentized sample
variance are

pHnSV pyq “ Φpyq ` p1 ´ 2n{N ` p2 ´ n{Nqy2qα̂V ` 3py2 ` 1qκ̂V
6τ

ϕpyq (5.3)

and

z
pHnSV pyq “ Φpyq ` p1 ´ 2n{N ` p2 ´ n{Nqy2qzα̂V ` 3py2 ` 1qzκ̂V

6τ
ϕpyq, (5.4)

where the latter does not depend on the sample.
Estimators of the parameters α and κ in expansion (5.3) are asymptotically consistent under the conditions

of Theorem 2. The efficiency of the other empirical Edgeworth expansions is examined in the simulation study
in Section 6.
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It is known that, in general, nonparametric bootstrap approximations to distributions of statistics are usually
of a similar accuracy as one-term Edgeworth expansions. We consider here the finite-population bootstrap
scheme introduced by Booth et al. [9]. We apply the results of Bloznelis [6], where the accuracy of this
bootstrap method is considered for U -statistics.

The bootstrap approximation to distribution (3.9) is constructed as follows. Write N “ kn ` l, where
0 ď l ă n. Then, given the sample X, the empirical population rX of size N is formed by taking k copies of
X and, if l ą 0, adding the remaining l values, which are the simple random sample Y “ tY1, . . . , Ylu drawn
without replacement from the set X. With this particular bootstrap population rX , we can turn already to the
estimator of (3.9), despite that it is only one of

`
n
l

˘
empirical populations. Next, we draw the simple random

sample rX “ t rX1, . . . , rXnu without replacement from rX . Denote by rU “ UnprXq the bootstrap estimator
for the statistic of interest and introduce the corresponding jackknife estimator rS2 “ S2prXq of the variance ofrU under the given population rX . Then the bootstrap approximation to (3.9) is

rFnSpyq “ P
� rU ´ Ep rU | X,Yq ď y rS ˇ̌

X
(
, (5.5)

which averages over all possible empirical populations. The following theorem is on the validity of this ap-
proximation for the statistics UG and UV .

Theorem 3. Assume that the conditions of Theorem 2 are satisfied. Then, we have

sup
yPR

ˇ̌
FnSpyq ´ rFnSpyqˇ̌ “ oP

`
n

´1{2˚
˘

as n˚ Ñ 8
for UG and UV .

Denote by rFnSGpyq and rFnSV pyq the bootstrap approximations for the statistics UG and UV , respectively.

6 Numerical modeling

In this section, we illustrate the theoretical results on the second-order approximations to distribution functions
of the Studentized GMD statistic and the Studentized sample variance by numerical examples according to the
data framework in Section 2.2. Thus, we also consider how outliers affect these approximations.

For the statistics UG and UV , we denote their “exact” distribution functions by FnSGpyq and FnSV pyq, re-
spectively. In the simulation experiments, these functions were evaluated by the Monte Carlo method, drawing
independently 106 samples without replacement from the population and using all the valuesX , as well as their
bootstrap approximations, based on the one (sinceN “ kn) empirical population rX constructed from a partic-
ular sample X. We denote true Edgeworth approximations (3.12) of the statistics by HnSGpyq and HnSV pyq,
respectively. To measure the efficiency of empirical Edgeworth approximations pHnSGpyq and pHnSV pyq and
of the bootstrap approximations rFnSGpyq and rFnSV pyq, 103 samples without replacement were drawn from
the population independently.

More specifically, in Tables 3–10, the “exact” distribution functions of the statistics, their normal ap-
proximations, the true one-term Edgeworth expansions, the corresponding estimated Edgeworth approxima-
tions of two types, and the bootstrap approximations are represented by several commonly used q-quantiles,
q “ 0.01, 0.05, 0.10, 0.90, 0.95, 0.99. For the approximations with the quantiles depending on the sample, we
present two characteristics of the efficiency, the empirical expectations Êp¨q and standard errors Ŝp¨q from the
realizations of these quantiles.

Tables 3–6 present the results of approximations where there are no outliers (the case of p{N “ 0) in
the same underlying populations generated from the normal and gamma distributions in Section 2.2. The
correlation is ρzx “ 0.7.

In Table 3, the true Edgeworth approximation HnSGpyq improves substantially the normal approximation
to FnSGpyq. With the help of the auxiliary information, HnSGpyq is estimated well by z

pHnSGpyq. The bias
of this estimate is small in comparison with a possible error of the estimator pHnSGpyq. But the latter im-
proves the normal approximation to the distribution of UG too. Unlike all other approximations, the bootstrap
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Table 3. Approximations to FnSGpyq under N p0, 1q with 0% outliers from N p0, 9q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSGpqq « ´2.592 ´1.779 ´1.363 1.223 1.546 2.157

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSGpqq « ´2.528 ´1.762 ´1.357 1.214 1.536 2.096

z
pH´1
nSGpqq « ´2.513 ´1.752 ´1.350 1.220 1.545 2.116

Ê pH´1
nSGpqq « ´2.519 ´1.756 ´1.353 1.217 1.541 2.107

Ŝ pH´1
nSGpqq « 0.034 0.023 0.016 0.013 0.021 0.044

Ê rF´1
nSGpqq « ´2.600 ´1.776 ´1.360 1.222 1.555 2.167

Ŝ rF´1
nSGpqq « 0.075 0.038 0.027 0.020 0.026 0.044

Table 4. Approximations to FnSV pyq under N p0, 1q with 0% outliers from N p0, 9q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSV pqq « ´2.918 ´1.962 ´1.477 1.160 1.461 2.008

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSV pqq « ´2.680 ´1.882 ´1.447 1.145 1.432 1.878

z
pH´1
nSV pqq « ´2.658 ´1.864 ´1.433 1.155 1.447 1.910

Ê pH´1
nSV pqq « ´2.653 ´1.861 ´1.431 1.157 1.450 1.917

Ŝ pH´1
nSV pqq « 0.046 0.038 0.029 0.020 0.032 0.068

Ê rF´1
nSV pqq « ´2.914 ´1.932 ´1.460 1.166 1.473 2.027

Ŝ rF´1
nSV pqq « 0.147 0.074 0.046 0.023 0.031 0.050

Table 5. Approximations toFnSGpyq under Gp3, 1{?3qwith 0% outliers from Gp3,?3q, and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSGpqq « ´2.888 ´1.903 ´1.443 1.188 1.503 2.062

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSGpqq « ´2.638 ´1.843 ´1.413 1.172 1.468 1.946

z
pH´1
nSGpqq « ´2.572 ´1.793 ´1.378 1.198 1.510 2.038

Ê pH´1
nSGpqq « ´2.624 ´1.833 ´1.407 1.177 1.476 1.965

Ŝ pH´1
nSGpqq « 0.055 0.045 0.033 0.024 0.037 0.079

Ê rF´1
nSGpqq « ´2.864 ´1.899 ´1.436 1.190 1.506 2.079

Ŝ rF´1
nSGpqq « 0.156 0.077 0.048 0.025 0.035 0.060

Table 6. Approximations to FnSV pyq under Gp3, 1{?3qwith 0% outliers from Gp3,?3q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSV pqq « ´3.744 ´2.310 ´1.699 1.109 1.391 1.876

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSV pqq « ´2.829 ´2.025 ´1.561 1.077 1.324 1.656

z
pH´1
nSV pqq « ´2.796 ´1.991 ´1.533 1.091 1.347 1.704

Ê pH´1
nSV pqq « ´2.788 ´1.985 ´1.529 1.097 1.355 1.719

Ŝ pH´1
nSV pqq « 0.075 0.077 0.067 0.040 0.060 0.114

Ê rF´1
nSV pqq « ´3.642 ´2.267 ´1.655 1.120 1.406 1.909

Ŝ rF´1
nSV pqq « 0.487 0.277 0.166 0.033 0.047 0.082
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Table 7. Approximations to FnSGpyq under N p0, 1q with 6% outliers from N p0, 9q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSGpqq « ´3.133 ´2.061 ´1.553 1.143 1.434 1.953

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSGpqq « ´2.745 ´1.940 ´1.490 1.118 1.388 1.783

z
pH´1
nSGpqq « ´2.602 ´1.816 ´1.395 1.184 1.489 1.996

Ê pH´1
nSGpqq « ´2.713 ´1.913 ´1.470 1.132 1.410 1.831

Ŝ pH´1
nSGpqq « 0.069 0.063 0.050 0.033 0.051 0.103

Ê rF´1
nSGpqq « ´3.124 ´2.039 ´1.524 1.152 1.449 1.982

Ŝ rF´1
nSGpqq « 0.267 0.139 0.087 0.030 0.043 0.076

Table 8. Approximations to FnSV pyq under N p0, 1q with 6% outliers from N p0, 9q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSV pqq « ´4.724 ´2.924 ´2.100 1.037 1.280 1.699

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSV pqq « ´2.985 ´2.207 ´1.740 0.979 1.181 1.415

z
pH´1
nSV pqq « ´2.861 ´2.062 ´1.596 1.054 1.291 1.602

Ê pH´1
nSV pqq « ´2.889 ´2.097 ´1.634 1.036 1.266 1.560

Ŝ pH´1
nSV pqq « 0.086 0.098 0.095 0.050 0.075 0.130

Ê rF´1
nSV pqq « ´4.600 ´2.792 ´1.974 1.069 1.333 1.787

Ŝ rF´1
nSV pqq « 1.064 0.663 0.430 0.042 0.057 0.095

Table 9. Approximations to FnSGpyq under Gp3, 1{?3q with 6% outliers from Gp3,?3q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSGpqq « ´3.224 ´2.068 ´1.546 1.148 1.445 1.966

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSGpqq « ´2.740 ´1.933 ´1.483 1.124 1.395 1.795

z
pH´1
nSGpqq « ´2.601 ´1.815 ´1.394 1.186 1.491 1.997

Ê pH´1
nSGpqq « ´2.717 ´1.915 ´1.470 1.134 1.410 1.827

Ŝ pH´1
nSGpqq « 0.064 0.060 0.049 0.032 0.048 0.097

Ê rF´1
nSGpqq « ´3.213 ´2.057 ´1.531 1.154 1.453 1.990

Ŝ rF´1
nSGpqq « 0.268 0.133 0.083 0.029 0.043 0.075

Table 10. Approximations to FnSV pyq under Gp3, 1{?3qwith 6% outliers from Gp3,?3q and ρzx “ 0.7

q “ 0.01 0.05 0.10 0.90 0.95 0.99

F´1
nSV pqq « ´4.895 ´2.890 ´2.042 1.045 1.296 1.725

Φ´1pqq « ´2.326 ´1.645 ´1.282 1.282 1.645 2.326

H´1
nSV pqq « ´2.978 ´2.198 ´1.728 0.988 1.193 1.430

z
pH´1
nSV pqq « ´2.864 ´2.064 ´1.597 1.055 1.292 1.600

Ê pH´1
nSV pqq « ´2.882 ´2.087 ´1.622 1.045 1.277 1.577

Ŝ pH´1
nSV pqq « 0.083 0.095 0.092 0.050 0.073 0.127

Ê rF´1
nSV pqq « ´4.782 ´2.769 ´1.944 1.079 1.347 1.809

Ŝ rF´1
nSV pqq « 1.184 0.651 0.416 0.041 0.058 0.097
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approximation rFnSGpyq is almost unbiased, but its empirical quantiles have larger standard errors as compared
to the empirical Edgeworth approximation. In Table 4, tendencies of the approximations to the distribution
function of UV are the same. In Tables 5–6, for the population from the gamma distribution, the results are
analogous to those in Tables 3–4, but all the corresponding approximations are less accurate. This is because
of the asymmetry of the gamma distribution.

Let us take the populations of Section 2.2 with p{N “ 0.06. In this case of outliers, the results correspond-
ing to Tables 3–6 are given in Tables 7–10. The behavior of approximations to the distributions is very similar
to that in the case of no outliers, but the errors of the approximations are now greater. We can also notice
that the estimates of the true Edgeworth expansions that use the auxiliary information are much more biased.
This holds for the alternative empirical Edgeworth approximations too, but only in the case of the statistic UV

(Tables 8 and 10). The sensitivity to outliers is the smallest one, as is seen by comparing Table 9 with Table 5.

7 Summary

The estimation strategies for scales are presented for simple random samples without replacement. Strategies
(S1) and (S2) are consistent with the scale measurement by the variance of the population because they com-
bine the use of the GMD statistic and its bias correction, evaluated applying specific assumptions used for
finite populations. It is a known fact, confirmed by the new connection (2.1), that the GMD statistic is less
sensitive to extreme sample observations than the empirical variance. However, the GMD statistic is not the
best robust choice, in general, but the proposed strategies improve upon the sample variance, where the part
of representative outliers is not large in the population. As indicated by the numerical modeling, under the
normal population with no outliers, where the empirical variance is known as the most efficient estimator, the
efficiency of the strategies is not worse. It is an important property of robustness.

Asymptotic properties of the statistics are collected applying recent general results on the U - and L-
statistics. In addition, if to compare conditions sufficient for the asymptotic normality of the statistics UG

and
?
UV , then, by Theorem 1 and analogously to the i.i.d. case, finite EX4

1 should be sufficient for
?
UV , but

it suffices to have boundedEX2
1 in the case of UG. This is one more advantage of the GMD statistic.

Using the detailed decompositions of the statistics, explicit formulas of variances and Edgeworth expansion
parameters of the statistics are derived. These formulas allow us to obtain new estimators of the plug-in type.
The resulting empirical Edgeworth expansions and bootstrap approximations improve the normal approxima-
tion as stated in Theorems 2 and 3 and shown in the simulations.

The paper spotlights the use of the GMD statistic instead of the common empirical variance. In surveys
of finite populations, the estimation of scales is also topical under more complex sampling schemes than
the simple random sampling. However, then analysis of distributional properties of statistics is much more
complicated, even for stratified simple random samples.

Appendix A: Proof of Theorem 1

To be consistent with conditions imposed on symmetric (and thereby U -) statistics by Bloznelis and Götze [8],
consider the normalized versions of the statistics of interest,

?
nUG and

?
nUV . Then the variances of linear

parts of decompositions of these statistics are bounded away from zero and are finite if the corresponding
conditions (i) and (ii) are satisfied. Therefore, in the case of UG, the normality proof follows immediately
from [15, Thm. 1] through [8, Prop. 3]. In the case of UV , by [8, Thm. 1 and Prop. 3], it suffices to verify that
the variance of quadratic part of

?
nUV tends to zero as n˚ Ñ 8. If (ii) is satisfied, then it easily follows from

the explicit formulas of Section 3.1.

Appendix B: Proof of Theorem 2

In the case of UG, the proof is a corollary of Theorem 1 in [5], following the technique in the proof of Theo-
rem 1 in [13]. In particular, by these theorems, the boundedness of the characteristics βs “ σ´s

1 E |g1pX1q|s
and γs “ σ´s

1 τ2sE |g2pX1,X2q|s as n˚ Ñ 8 must be verified for s ą 6 only.
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In the case ofUV , the task is the same. By (3.5), for s ě 1, applying the inequalities |a´b|s ď 2s´1pas`bsq
for a, b ě 0 and μs

2 ď μ2s, we get

E |g1pX1q|s “ 1

N

Nÿ
k“1

ˇ̌
g1pxkqˇ̌s ď 2s´1

ns

ˆ
N

N ´ 2

˙s 1

N

Nÿ
k“1

`pxk ´ b1q2s ` μs
2

˘

ď
ˆ

2N

npN ´ 2q
˙s

μ2s. (B.1)

By (3.6), for 1 ď k ă l ď N , applying pxk ´ xlq2 ď 2ppxk ´ b1q2 ` pxl ´ b1q2q, we obtain
ˇ̌
g2pxk, xlq

ˇ̌ ď 1

npn ´ 1q
ˆ
3N ´ 4

N ´ 2

`pxk ´ b1q2 ` pxl ´ b1q2˘ ` 2N

pN ´ 1qpN ´ 2qμ2

˙

ď 3

npn ´ 1q
N

N ´ 2

`pxk ´ b1q2 ` pxl ´ b1q2 ` μ2

˘
.

Then, for s ě 1, similarly as in (B.1), applying pa ` bqs ď 2s´1pas ` bsq for a, b ě 0 twice and noting thatř
1ďkălďN ppxk ´ b1q2s ` pxl ´ b1q2sq “ NpN ´ 1qμ2s, we obtain

E
ˇ̌
g2pX1,X2qˇ̌s “

ˆ
N

2

˙´1 ÿ
1ďkălďN

|g2pxk, xlq|s

ď 3s

nspn ´ 1qs
ˆ

N

N ´ 2

˙sˆ
N

2

˙´1 ÿ
1ďkălďN

`pxk ´ b1q2 ` pxl ´ b1q2 ` μ2

˘s

ď 3s2s´1

nspn ´ 1qs
ˆ

N

N ´ 2

˙sˆ
N

2

˙´1 ÿ
1ďkălďN

`
2s´1

`pxk ´ b1q2s ` pxl ´ b1q2s˘ ` μs
2

˘

ď 3s2s´1p2s ` 1q
nspn ´ 1qs

ˆ
N

N ´ 2

˙s

μ2s. (B.2)

Then we derive from (B.1), (B.2), and (3.7) that

βs ď 2sμ2s

pμ4 ´ μ2
2qs{2 and γs ď 3s22s´1

`
2s ` 1

˘ˆ
1 ´ n

N

˙s μ2s

pμ4 ´ μ2
2qs{2 .

The proof is completed.

Appendix C: Proof of Theorem 3

It follows from condition (8) in [6] that it suffices to verify that, for the statistics UG and UV , the moments
EpX1 ´ X2q6 and EpX1 ´ X2q12 are bounded for all n˚, respectively. By the conditions of the theorem, this
requirement holds.
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