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Danutė Krapavickaitė a and Tomas Rudys b
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Abstract. One of the main research trends in contemporary survey sampling and the need to improve the accuracy of
the Lithuanian Labor force survey estimates in small geographic areas have stimulated this study. The aim of the paper
is to compare area level models and estimation methods for the fraction of the unemployed using simulation based on the
Lithuanian Labor Force Survey data. The Fay–Herriot area level model, estimated by empirical best linear unbiased pre-
diction, and the unmatched logit-normal-normal and binomial-logit-normal models, estimated using hierarchical Bayes
analysis, are applied. Bayesian imputation is used for areas without sample data. We suggest the composition of some
model elements.
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1 Introduction

Estimation of the finite-population parameters in areas with small sample size is one of the hottest current
topics in survey sampling. It is not enough to estimate parameters for the whole finite population in real
surveys; estimates for domains are also needed. Accuracy requirements for small domains may be taken into
account at the sampling design construction stage using suitable stratification, avoiding big clusters, and using
compromise sample allocation between proportional allocation and equal allocation [20]. Unfortunately, it is
not always possible to construct a stratified sample design with estimation domains as separate strata having
a predetermined sample size, ensuring the accuracy of parameter estimates needed for these strata, because the
whole sample size may become unacceptably large and a sampling design may become inefficient. Therefore,
a sampling design is being constructed in order to ensure the accuracy of estimates for the whole population
and large domains only. Thus, the design-based estimates of the parameters in domains with a low average
sample size have high variance, despite the fact that they are unbiased or approximately unbiased. A domain
with small average sample size is called a small area if the domain data-based estimator of the parameter has
an unacceptably high variance.

A task for a statistician arises to use other estimators, different from the direct design-based estimators,
and obtain more accurate estimates of the parameters in small areas. These estimators are constructed using
models and auxiliary information about the population elements or data from the neighboring areas and are
called small-area estimators (SAE).

243

0363-1672/15/5502-0243 c© 2015 Springer Science+Business Media New York

DOI 10.1007/s10986-015-9277-9

mailto:danute.krapavickaite@vgtu.lt; tomas.rudys@mii.vu.lt


244 D. Krapavickaitė and T. Rudys

One of the ways to improve accuracy for domain estimates is to use design-based generalized regression
and calibration estimators with implicit use of models. This possibility is reviewed in [15]. For domains with
extremely small sample size or even without sample at all, model-based estimators are constructed. Explicit
models used for SAE may be divided into two main groups, depending on the type of the object for which the
model is constructed: individual element and aggregate of elements (e.g., area). They are called element-level
models and area-level models, respectively. Auxiliary information may be used at the level of the object for
which the model is constructed or at the higher aggregation level for any of these models.

An introduction to model-based small area estimation methods is presented in [11], and their developments
are given in [17].

The basic area level model was suggested by Fay and Herriot [8] in 1979. It is estimated by the best linear
unbiased prediction, and the predictor consists of the weighted sum of the design-based estimator and synthetic
estimator, where data from the outside domain is used. The subsequent developments of the Fay and Herriot
model are reviewed in [3]. For area-level models, and especially for element level models, auxiliary informa-
tion on various aggregation levels and multilevel models may be used, as described in [4]. The most popular
methods used for the estimation of such models are the empirical best linear unbiased predictor (EBLUP) for
a parameter of interest, the empirical Bayes method, and the hierarchical Bayes method for the approximation
of the posterior distribution of the parameter, given data. Many books are devoted to the Bayesian inference in
general, for example, [9], [19], and [10] for Bayesian analysis in finite populations.

The Labor Force Survey small-area parameter estimation problem attracted attention of many statisti-
cians. When analyzing Labor Force Survey data, a categorical variable indicating individual’s participation
in the labor market (employed, unemployed, not in the labor force) may be resolved into three bivariate
study variables. For example, a variable defining the unemployment status obtains the value 1 for an in-
dividual unemployed according to the survey definition and the value 0 otherwise. The finite-population
parameter of interest is usually total, meaning the number of the unemployed in the population or its do-
main; mean, meaning the unemployment fraction in the population or in the domain; and ratio of two totals:
the size of the unemployed population and the size of the labor force, expressing the unemployment rate.
The main types of area-level and element-level models for a bivariate study variable are presented in the
book [17].

A number of statisticians were using area-level models for Labor Force Survey data in their studies. Torelli
and Trevisani [23] have applied the hierarchical Bayesian estimation method to the area-level model for the
area parameters of the Italian Labor Force data. They were estimating domain parameters for the bivariate
study variable and adding a synthetic estimator as a covariate to the linking linear regression model. The same
authors in their paper [22] have made an overview of the methods and models used for labor force survey
estimates for small geographical domains of Italy. They also support the use of a spatial component in the
model estimated by the hierarchical Bayes estimation method.

Application of area-level models and the hierarchical Bayes estimation method for the estimation of the
unemployment size for small areas in Poland is presented in [14].

A comprehensive study of municipal unemployment fractions is made by Boonstra et al. [2]. They have
used estimators based on several different versions of the area-level model and also estimators based on an
element-level logistic regression model for binary data and estimated sampling variances. The estimators are
applied to the data set based on the Dutch Labor Force Survey. The authors in their paper [1] discuss issues
concerning the model choice, including the use of linear (mixed) models for binary variables and the use of
posterior means instead of maximum likelihood estimates.

Another direction of studies is connectedwith the use of element-level models. Datta et al. [5] used element-
level models to estimate unemployment rates for United States small areas. Farrell [7] has estimated local
labor force participation rates using the element level model with both area-level and element-level covariates
estimated using the hierarchical Bayes methodology and applied it to the data set, based on the 1950 United
States Census data.
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A rotating sample design is usually used for the Labor Force Survey, and each individual is participating
repeatedly in repetitive surveys. Therefore, the models for the estimation of unemployment rates are being
generalized including the time series approach and spatial components. This generalization is used in the
papers of Datta et al. [5], You, Rao, and Gambino [25], Fabrizi [6], Klimanek [12], and others.

The aim of the paper

The area-level models with the area-level covariates are being studied with the aim to find a suitable estimation
method for a fraction of the unemployed for the Lithuanian Labor Force Survey by simulation. Empirical
best linear unbiased prediction and hierarchical Bayes analysis is used for estimation. The reason for this is
the attractiveness of the Bayesian method, popularity of this method among statisticians when solving the
small area estimation problem, and an impression that any model can be estimated by this method. We refer
to [2, 24] for the estimation of sampling variance and to [23] for the inclusion of the synthetic estimator in
the linear regression model. The authors compose some of the mentioned model elements and propose their
solution to the problem, including imputation in the case of missing data in a small area. The R package
LaplacesDemon [21] is used to carry out the simulation study.

2 Notation

Let us denote a finite population by U = {1, 2, . . . , N}, indicating population elements by their labels. Let y
be a study variable with values y1, y2, . . . , yN in the population. Suppose that our study variable is bivariate
and

yk =

{
1 if k is unemployed,
0 otherwise,

k = 1, 2, . . . , N . Let U be divided into M nonintersecting big domains Uj: U = U1 ∪ U2 ∪ · · · ∪ UM ,
Ul ∩ Uj = ∅, l �= j, of sizeMj , j = 1, 2, . . . ,M , M1 + · · · +MM = N .

Let Di denote the nonintersecting small areas of size Ni, i = 1, 2, . . . ,D, such that their unions coincide
with the large domains:

U1 = D1 ∪ · · · ∪ DD1
,

U2 = DD1+1 ∪ · · · ∪ DD1+D2
,

· · ·
UM = DD1+···+DM−1+1 ∪ · · · ∪ DD1+D2+···+DM

.

We see that U1 consists ofD1 small areas, U2 consists ofD2 small areas, . . . , UM consists of DM small areas,
U = D1 ∪ D2 ∪ · · · ∪ DD, D1 + · · · +DM = D, N1 + · · ·+ND = N .

Let qj = (1/Mj)
∑

k∈ Uj
yk be the fraction of the unemployed for a big domain Uj , j = 1, 2, . . . ,M , and

θi = (1/Ni)
∑

k∈Di
yk be the fraction of the unemployed for a small area Di, i = 1, 2, . . . ,D. It will be the

parameter of interest in this study. Attention has to be paid to the fact that the fraction of the unemployed is
a different parameter from the unemployment rate according to the International Labor Organization definition,
usually estimated in national statistical agencies.

Let us suppose that s ⊂ U is an n size sample, drawn from the finite population according to the simple
random sampling design, with the random sample sizes ni in the small domains, n1 + · · · + nD = n, and
sample sizesmi in the big domains,m1 + · · ·+mM = n.

Let us denote by q̂i, θ̂i the Horvitz–Thompson estimators for the fractions of the unemployed in big domains
and small domains, respectively:

q̂j =
1

mj

∑
k∈Uj∩s

yk, θ̂i =
1

ni

∑
k∈Di∩s

yk;
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their variances, called sampling variances, are

Var(q̂j) =

(
E

(
1

mj

∣∣∣ mj > 0

)
− 1

Mj

)
s
(1)2
j , s

(1)2
j =

1

Mj − 1

∑
k∈Uj

(yk − qj)
2,

Var(θ̂i) =

(
E

(
1

ni

∣∣∣ ni > 0

)
− 1

Ni

)
s
(2)2
i , s

(2)2
i =

1

Ni − 1

∑
k∈Di

(yk − θi)
2,

and

V̂ar(θ̂i) =

(
1− ni

Ni

)
ŝ
(2)2
i

ni
, ŝ

(2)2
i =

1

ni − 1

∑
k∈Di∩s

(yk − θ̂i)
2, (2.1)

j = 1, . . .M , i = 1, . . . ,D, is used as an estimator of Var(θ̂i). Let us suppose that the variances Var(q̂j),
j = 1, 2, . . . ,M , are low enough, and the variances Var(θ̂i), i = 1, 2, . . . ,D, are unacceptably high.

The parameters θi, i = 1, 2, . . . ,D, are the objects of estimation of the current study, using the small-area
estimation methods.

3 Models

We introduce the area-level models to estimate unemployment fractions in small areas.

3.1 Fay–Herriot model

Let X = (X1,X2, . . . ,XD)
′ denote a matrix of area-level L auxiliary variables with vectorial values Xi =

(xi1, xi2, . . . , xiL)
′ as information for the area Ui for i = 1, 2, . . . ,D.

Let θ̂1, . . . , θ̂D be the design-based Horvitz–Thompson estimators for small areas. The basic small-area
model, introduced by Fay and Herriot [8] in 1979, consists of two equations, sampling model (3.1) and linking
model (3.2):

θ̂i = θi + ei, (3.1)
θi = X ′

iβ + vi, i = 1, 2, . . . ,D. (3.2)

We assume sampling errors ei to be independently distributed with mean Ep(ei | θi) = 0 and variances
Varp(ei | θi) = ψi (expectations are taken with respect to the sampling design p); due to the central limit
theorem, sampling model (3.1) errors ei, i = 1, 2, . . . ,D, may be considered normally distributed. The param-
eters θi are related to area-specific auxiliary data X through a linear linking model. Here β = (β1, . . . , βL)

′
is an L-dimensional vector of linear regression model parameters, area-specific random effects vi are indepen-
dent, identically distributed, with means Emvi = 0 and variances Varm vi = σ2

v with respect to the model
distribution m; we suppose that vi are normally distributed.

The sampling variances ψi, i = 1, . . . ,D, are unknown, they have been estimated, as suggested in [2], by

ψ̂i =

(
1− ni

Ni

)
σ̂2
e

ni
,

with the pooled population variance σ2
e estimated for unbalanced data by

σ̂2
e =

1

n−D

D∑
i=1

∑
k∈Di∩s

(yk − θ̂i)
2,

where n is the number of elements in the sample.
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Considering ψ̂i as known sampling variances, the empirical best linear unbiased predictor of θi is obtained
in [8]:

θ̂FH
i (σ̂2

v) = γ̂iθ̂i + (1− γ̂i)X
′
iβ̂(σ̂

2
v), i = 1, 2, . . . ,D,

with

γ̂i =
σ̂2
v

ψ̂i + σ̂2
v

, β̂(σ̂2
v) =

(
D∑

k=1

γ̂kXkX
′
k

)−1( D∑
k=1

γ̂kXkθ̂k

)
.

Its mean square error is estimated by

̂MSE
(
θ̂FH
i

(
σ̂2
v

))
= g1i

(
σ̂2
v

)− B̂
(
σ̂2
v

)
(1− γ̂i)

2 + g2i
(
σ̂2
v

)
+ g3i

(
σ̂2
v

)
, (3.3)

g1i
(
σ̂2
v

)
= γ̂iψ̂i,

B̂
(
σ̂2
v

)
= 2σ̂2

v

D
∑D

k=1 γ̂
2
k − (

∑D
k=1 γ̂k)

2

(
∑D

k=1 γ̂k)
3

,

g2i
(
σ̂2
v

)
= (1− γ̂i)

2X ′
i

(
D∑

k=1

1

σ̂2
v + ψ̂k

XkX
′
k

)−1

Xi,

g3i
(
σ̂2
v

)
=

2Dψ̂2
i

(σ̂2
v + ψ̂i)3

(
D∑

k=1

1

σ̂2
v + ψ̂k

)−2

.

This is a widely used accuracy estimator, applied before also in [13]. It underestimates the mean square error
because the estimation of sampling variances ψi is ignored and the variability of ψ̂i is not taken into account.

3.2 Logit-normal-normal linear area-level model

The basic area-level model (3.1), (3.2) does not allow a straightforward application of the hierarchical Bayes
estimation method in our case because the fraction of the unemployed θi is a bounded value, θi ∈ (0, 1), but
the distribution of the sampling error ei is unbounded. The logit transformation for the parameter θi is used:

zi = logit(θi) = ln
θi

1− θi
, i = 1, 2, . . . ,D.

The sampling model (3.1) is transformed to the following one:

ẑi = logit(θ̂i) = zi + e′i, (3.4)

assuming that the sampling errors e′i are independent with Ep(e
′
i | zi) = 0, Varp(e′i | zi) = σ2

i , i = 1, . . . ,D,
with the modified version of the basic area-level model and the linking model

zi = X ′
iβ + δi, (3.5)

assuming that area specific random effects δi are independent and Emδi = 0, Varm δi = σ2
v with respect to the

linking model.
Here we have an unmatched sampling and linking area-level model with unknown variances σ2

i of errors e
′
i

in the new sampling model (3.4). The hierarchical Bayes approach takes account of the uncertainties associated
with unknown parameters in the model, as it has been done in [24].

Lith. Math. J., 55(2):243–254, 2015.
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For Bayesian analysis, we have to supplement the model (3.4), (3.5) with the assumptions about prior
distributions of the parameters. Let β and σ2

v be independent, and β, σ2
v , σ

2
i , i = 1, 2, . . . ,D, have prior

distributions close to “flat” distributions:

βl ∼ N (0, 1000), l = 1, 2, . . . , L,

σ−2
v ∼ Γ (a0, b0), a0 > 0, b0 > 0, (3.6)

σ−2
i ∼ Γ (ai, bi), ai > 0, bi > 0, i = 1, 2, . . . ,D.

The values of the inverse gamma distribution parameters used here are a0 = b0 = 0.01, ai = bi = 0.01,
i = 1, 2, . . . ,D.

For any domain, it may happen that there is no sample in it. Let us use Bayes imputation:

ẑi → ẑi imputed =

{
ẑi for ẑi present,

α ∼ N (α0, α1) for ẑi missing,
(3.7)

with random parameters α0, α1 independent of β, σ2
v , σ

2
1, . . . , σ

2
D. The parameters α0, α1 of the random

variable α will be estimated in Bayesian analysis with their prior distributions N (0, 1000).

3.2.1 Application of hierarchical Bayes analysis

The aim of Bayesian analysis is to obtain the posterior distribution f(θi | θ̂i) of small-area parameters, given
the Horvitz–Thompson estimator θ̂i of this area, called here “data,” and the subjective prior distribution f(λ)
of model parameters for λ = (β, σ2

1 , . . . , σ
2
D, σ

2
v , α1, α2).

Applying the Bayes theorem, we obtain the joint density of estimation parameters and model parame-
ters [19]:

f(θ, λ | θ̂) = f(θ̂, θ |λ)f(λ)
f1(θ̂)

for θ = (θ1, . . . , θD)
′ and θ̂ = (θ̂1, . . . , θ̂D)

′ with a marginal density of θ̂ in the denominator:

f1(θ̂) =

∫
f(θ̂, θ |λ)f(λ) dθ dλ.

The desired posterior density is obtained as

f(θ | θ̂) =
∫

f(θ, λ | θ̂) dλ =

∫
f(θ | θ̂, λ)f(λ | θ̂) dλ, (3.8)

from which we find E(θ | θ̂) and Var(θ | θ̂), and they are considered as estimates of the parameters of interest
and the estimates of their variances, respectively.

Because of difficulties in the integration of (3.8), this integral is approximated using the Markov chain
Monte Carlo method. The essence of the method is the construction of a Markov chain such that its univariate
distribution converges to a unique stationary distribution, the density of which equals f(θ | θ̂).

For easier realization of the Markov chain, a Gibbs sampler is used, which means a process of iterative
conditional sampling of parameters from the joint distribution of parameters λ. Difficulties in this sampling
are circumvented by a griddy Gibbs sampler. Its essence is that, instead of sampling from the conditional
distribution performing the Gibbs sampler, the conditional distribution density functions of parameters f(λ | θ̂)
are evaluated on a sequence of grid points, and an approximation to the conditional distribution by a discrete
empirical distribution function is obtained.
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The griddy Gibbs sampler for hierarchical Bayes analysis is introduced in [18]. This procedure is also
described in detail in [7] when analyzing the element-level model for proportion; it has been also used in [16].

The hierarchical Bayes method is used to estimate unmatched model (3.4)–(3.7) for ẑi = logit(θ̂i).
Let θi1, . . . , θiK , i = 1, 2, . . . ,D, denote K independent draws from the posterior distribution f(θ | θ̂), ob-
tained by hierarchical Bayesian analysis. The posterior mean E(θ | θ̂) and posterior variance Var(θ | θ̂) are
estimated by

θ̄i =
1

K

K∑
k=1

θik and V̂ar(θi) =
1

K − 1

K∑
k=1

(θik − θ̄i)
2, (3.9)

respectively, i = 1, 2, . . . ,D, and they are used as estimates of small-area parameters and accuracy measures
of estimates.

3.2.2 Logit-normal-normal area-level model with the synthetic estimator as covariate

If a small area Di is a subset of a large area Uj , then it may be expected that a fraction θi should be around
the value qj . Considering the estimate q̂j as accurate enough, let us add the term logit(q̂j) to the mean of the
distribution of zi = logit(θi) in a linking model (3.5) and obtain the new model:

ẑi | θi ∼ N (
zi, σ

2
i

)
, zi |β, σ2

v ∼ N (
logit(q̂j) +X ′

iβ, σ
2
v

)
,

βl ∼ N (0, 1000), l = 1, 2, . . . , L,

σ−2
v ∼ Γ (a0, b0), σ−2

i ∼ Γ (ai, bi), a0, b0, ai, bi > 0,

ẑi → ẑi imputed =

{
ẑi for ẑi present,
α ∼ N (α0, α1) for ẑi missing,

for the ith small area (municipality) belonging to the jth larger domain (county), i = 1, 2, . . . ,D, j =
1, 2, . . . ,M .

The parameters σ2
1 , . . . , σ

2
D , β, σ2

v , α0, α1 are supposed to be independent, with prior distribution
N (0, 1000) for α0, α1. The Markov chain Monte Carlo algorithm and the griddy Gibbs sampler, as before,
are used for the approximation of the posterior distribution f(θ | θ̂).

3.3 Binomial-logit-normal model

The number of the unemployed belonging to the sampled part of a small domainDi may be expressed as a sum
of values of variable y:

ti =
∑

k∈Di∩s
yk, i = 1, 2, . . . ,D.

The random variable ti is distributed according to the binomial distribution with unknown parameter θi. For
this parameter, we assume a linear regression model to be a linking model with area-specific random effects δi
independent and identically normally distributed. Assumptions concerning prior distributions are made, and
the model is as follows:

ti | θi ∼ binomial(ni, θi),

zi = logit(θi) = X ′
iβ + δi, (3.10)

δi ∼ N (0, σ2
v), βl ∼ N (0, 1000),

σ−2
v ∼ Γ (a, b), a > 0, b > 0,

where β and σ2
v are assumed to be mutually independent, i = 1, 2, . . . ,D, l = 1, 2, . . . , L.

Lith. Math. J., 55(2):243–254, 2015.
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Imputation is applied, if needed:

ẑi → ẑi imputed =

{
ẑi for ẑi present,
logit(q̂j) for ẑi missing,

for ith small area belonging to the jth larger domain. The model is estimated by the same method: Markov
chain Monte Carlo and griddy Gibbs sampler.

Binomial-logit-normal model with synthetic estimates included among covariates

Here the model of Section 3.3 is used with the linking model (3.10) replaced by

zi = logit(θi) = logit(q̂j) +X ′
iβ + δi

for ith small area belonging to the larger domain Uj , in the same way as it has been done in Section 3.2.2.

4 Accuracy measures

In order to compare the accuracy of the models suggested, R samples are drawn from the finite population,
and estimates of the fraction of the unemployed are calculated according to all the models described.

Let θ̄ir, i = 1, 2, . . . ,D, denote the small-area estimates θ̄i (3.9) in the rth simulation run, r = 1, 2, . . . , R.
The following accuracy measures are used:

1. Root mean square error

rmsei =

√√√√ 1

R

R∑
r=1

(θ̄ir − θi)2, rmse =
1

D

m∑
i=1

rmsei.

2. Relative root mean square error

rmseRELi =
rmsei
θi

, rmseREL =
1

D

D∑
i=1

rmseRELi.

3. Simulation standard error

seSIMi =

√√√√ 1

R− 1

R∑
r=1

(
θ̄ir − 1

R

R∑
k=1

θ̄ik

)2

, seSIM =
1

D

D∑
i=1

seSIMi.

4. Simulation bias

biasSIMi =
1

R

R∑
r=1

θ̄ir − θi, biasSIM =
1

D

D∑
i=1

biasSIMi.

5. Root mean simulation mean squared error estimates or posterior variances

seESTi =

√√√√ 1

R

R∑
r=1

V̂arr(θi), seEST =
1

D

D∑
i=1

seESTi.

Here V̂arr(θi) denotes the estimate of variance (2.1) in the case of Horvitz–Thompson estimator, the
estimate of mean squared error (3.3) in the case of Fay–Herriot model based estimate, and the estimate
of posterior variance (3.9) in the case of Bayes analysis in the rth simulation run.

The estimates presented are compared with respect to these measures.
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5 Simulation study

Lithuanian Labor Force Survey data of the 4th quarter of 2012 is used for simulation.
The population consists of N = 22382 individuals, 15–74 years old. The sample size used is n = 2000

individuals. Auxiliary variables selected for a fraction of the unemployed by stepwise regression are small-area
fractions of

– registered unemployed individuals,
– males,
– urban population,
– 55–74 year old population.

They are considered as known. The linear regression model for the Horvitz–Thompson estimates of the frac-
tion of the unemployed on the population level, based on the auxiliary variables mentioned, explains 34% of
the total sum of squares. The population is divided into M = 10 big domains, counties, and counties are
divided into D = 57 small domains, municipalities.

Notation for estimators of small-area fractions θi, i = 1, 2, . . . ,D:

HT – Horvitz–Thompson estimator,
FH – EBLUP Fay–Herriot model-based estimator,

LNN1 – unmatched logit-normal-normal model-based estimator,
LNN2 – unmatched logit-normal-normal with synthetic covariate model-based estimator,
BLN1 – binomial-logit-normal model-based estimator,
BLN2 – binomial-logit-normal with synthetic covariate model-based estimator.

R = 30 simulation runs are implemented in a design-based simulation study. Some of the estimates ob-
tained are presented in Fig. 1. We can observe a smoothing effect of the Fay–Herriot model-based estimates.

The small areas are classified into three classes, each consisting of 19 areas, by their size. The domain
size intervals and corresponding sample size intervals, obtained by simulation, are presented in Table 1. The
behavior of accuracy measures of estimates depending on the domain size shown in Table 2. The summary of
accuracy measures for all domains is presented in Table 3.

A computer program LaplacesDemon [21] is used for estimation. Unfortunately, the use of the griddy
Gibbs sampler increases the simulation time dramatically. Estimation of variances in sampling model by the
hierarchical Bayes method makes estimation process extremely time consuming.

Figure 1. Estimates for the fraction of the unemployed.
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Table 1. Construction of area size classes

Domain size class Domain size Sample size

Small (25, 185) (3, 17)
Average (188, 289) (18, 26)
Large (293, 3617) (27, 324)

Table 2. Accuracy measures of the estimates by area size classes

Domain
size class

Estimator

HT FH LNN1 LNN2 BLN1 BLN2
rmse

Small 0.0108 0.0015 0.0029 0.0032 0.0022 0.0026
Average 0.0042 0.0019 0.0020 0.0024 0.0018 0.0021
Large 0.0019 0.0006 0.0009 0.0016 0.0004 0.0008

rmseREL

Small 1.3781 0.6912 1.1356 1.1008 0.9594 1.0298
Average 0.6417 0.3795 0.4791 0.5088 0.3987 0.4456
Large 0.5179 0.3120 0.3891 0.4949 0.2365 0.3469

seSIM

Small 0.0922 0.0277 0.0250 0.0347 0.0163 0.0293
Average 0.0624 0.0276 0.0220 0.0290 0.0119 0.0271
Large 0.0405 0.0230 0.0162 0.0258 0.0082 0.0219

biasSIM

Small 0.0085 −0.0031 0.0310 0.0328 0.0236 0.0218
Average 0.0003 −0.0214 0.0128 0.0094 0.0000 0.0005
Large −0.0019 −0.0029 0.0214 0.0225 0.0104 0.0082

seEST

Small 0.0071 0.0018 0.0059 0.0069 0.0041 0.0042
Average 0.0044 0.0012 0.0051 0.0059 0.0030 0.0032
Large 0.0015 0.0007 0.0032 0.0043 0.0011 0.0014

Table 3. Average accuracy measures of the estimates

Estimator HT FH LNN1 LNN2 BLN1 BLN2

rmse 0.0056 0.0014 0.0019 0.0024 0.0015 0.0018
rmseREL 0.8459 0.4609 0.6680 0.7015 0.5316 0.6075
seSIM 0.0650 0.0261 0.0211 0.0299 0.0121 0.0261
biasSIM 0.0023 −0.0091 0.0217 0.0215 0.0113 0.0102
seEST 0.0043 0.0012 0.0047 0.0057 0.0027 0.0029

Conclusions. Simulation results show that:

• All accuracy measures of all estimators are increasing with decreasing domain size and sample size.
• All accuracy measures of the estimates, except of simulated bias obtained by modeling and small-area
estimation methods, are lower than in the case of the Horvitz–Thompson estimator.

• Model-based estimates may have some simulation bias, which is sometimes higher than that for the
Horvitz–Thompson estimator. The bias is usually higher for small areas than for large areas.

• The Fay–Herriot model estimated using empirical best linear unbiased prediction has the smallest relative
root mean squared error and simulation standard error.
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• The relative root mean square error is higher for the log-normal-normal model than for the Fay–Herriot
model because of the estimation of sampling variances for the first one.

• The inclusion of a synthetic component in the models increases the root mean square error for the logit-
normal-normal model and for the binomial-logit-normal model.

Comparison of accuracy of model-based estimators and model-assisted estimators [15] for the fraction of
the unemployed in small areas should be done by simulation in future.

6 Discussion

Attention has to be paid to the fact that the mean square error of the Fay–Herriot model is underestimated be-
cause the estimated sampling variance is kept there as known and the variation of sampling variance estimates
is not taken into account. One has to be cautious in giving priority to this estimator. You and Chapman [24]
have shown that the underestimation of the mean squared error MSE(θ̂) for the Fay–Herriot model may be
significant in the case of a small domain sample size and insignificant for a high domain sample size.

Usually, estimates in small areas have to add up to higher aggregation level estimates in official statistics.
It will not be so for model-based estimates. Therefore, the sum of small-area estimates has to be benchmarked
in some way. It may change the values of some accuracy measures a little, but this step is unavoidable if the
harmonized system of estimates is needed.

Usually, for the surveys of national statistical agencies, the usage of a common weighting system for all
estimates is needed. Actually, it is important only for big domain estimates, which are used for government
needs and international comparison. Calibration estimators and regression estimators may be used to improve
the accuracy of those design-based estimates. For small-area estimates that are obtained for local needs, care-
fully chosen model-based estimators and benchmarking may be used if assumptions for model application are
satisfied.

Sample designers should establish the desired degree of precision not only for national level estimates but
also for domains of interest. Design-based model-assisted and especially model-based estimators are efficient
and may reduce the sampling error if good auxiliary variables are available. Bias of the estimates is possible
if model assumptions are not satisfied. Model-based estimators should be used with caution even if they have
significantly smaller coefficients of variation.
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