
Lithuanian Mathematical Journal, Vol. 52, No. 2, April, 2012, pp. 196–213

PROBABILITIES OF HIGH EXCURSIONS OF GAUSSIAN FIELDS∗

Rimantas Rudzkis and Aleksej Bakshaev

Institute of Mathematics and Informatics, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
(e-mail: rimantas.rudzkis@mii.vu.lt; aleksej.bakshaev@gmail.com)

Received November 30, 2011; revised February 29, 2012

Abstract. Let {ξ(t), t ∈ T} be a differentiable (in the mean-square sense) Gaussian random field with Eξ(t) ≡ 0,
Dξ(t) ≡ 1, and continuous trajectories defined on the m-dimensional interval T ⊂ R

m. The paper is devoted to
the problem of large excursions of the random field ξ. In particular, the asymptotic properties of the probability P =
P{−v(t) < ξ(t) < u(t), t ∈ T}, when, for all t ∈ T , u(t), v(t) � χ, χ → ∞, are investigated. The work is a
continuation of Rudzkis research started in [R. Rudzkis, Probabilities of large excursions of empirical processes and
fields, Sov. Math., Dokl., 45(1):226–228, 1992]. It is shown that if the random field ξ satisfies certain smoothness and
regularity conditions, then P = e−Q +Qo(1), where Q is a certain constructive functional depending on u, v, T , and the
matrix function R(t) = cov(ξ′(t), ξ′(t)).

MSC: 60G70, 60G60

Keywords: Gaussian fields, high excursions

1 INTRODUCTION

Let ξ(t), t ∈ T ⊂ R
m, be a smooth Gaussian random field defined on the m-dimensional interval T , and

ζ(T ) = supt∈T ξ(t) be its supremum. The study of the probability distribution of the random variable ζ,
i.e., the probability P (u) = P{ζ(T ) < u} is a classical problem in probability theory of random fields, first
arising in the theoretical radio engineering. In 1945, Rice [12] derived his famous formula for the average
number of excursions of a random signal above a certain level used just for the purpose of approximating the
probability of achieving this level by the signal. Since that time, a great number of publications has appeared,
devoted mostly to the univariate case of Gaussian random functions. Under different assumptions on the
process, a review of the methods for studying the behavior of P (u) can be found in [4, 7, 9] and references
therein.

During the last twenty years, several new methods have been introduced to obtain more precise results
and extend the theory to the multivariate case of Gaussian random fields, which are the objective of this
paper. Some examples of these contributions are the double-sum method by Piterbarg [10], the Euler–Poincaré
characteristic approximation by Taylor et al. [19] and Adler and Taylor [2], the tube method by Sun [18],
and the well-known Rice method, revisited by Azaïs and Delmas [3], Azaïs and Wschebor [4, 5, 6], and
∗ The research is partially supported by the European Union Structural Funds project “Postdoctoral Fellowship Implementation in
Lithuania” within the framework of the Measure for Enhancing Mobility of Scholars and Other Researchers and the Promotion of
Student Research (VP1-3.1-ŁMM-01) of the Program of Human Resources Development Action Plan.
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Piterbarg [11]. A short review of the methods listed above can be also found in [1]. The majority of the cases
studied before deal mostly with homogeneous Gaussian random fields and constant by t level u, which is not
always justified in some applicative problems. In this work, all these conditions are not assumed.

In this paper, the problem of large excursions of Gaussian field ξ(t), t ∈ T , is investigated. In particular, the
behavior of the probability P = P{−v(t) < ξ(t) < u(t), t ∈ T}, where u(t) and v(t) are smooth functions,
when, for all t ∈ T , u(t), v(t) � χ, χ → ∞, is considered. The work is a continuation of Rudzkis research
started in [13, 14, 15, 17], where a new method for investigating the distribution of the maximum of Gaussian
processes was introduced. We tried here to generalize it to the case of random fields. The main result of this
paper without proof was presented in [16].

2 MAIN RESULTS

Let {ξ(t), t ∈ R
m} be a differentiable (in the mean-square sense) Gaussian random field with continuous

trajectories, and ξ′(t) be its gradient (vector-row). To simplify the formulation of the results, assume that

Eξ(t) ≡ 0, Dξ(t) ≡ 1, ∀x, t ∈ R
m,

∥∥R(t)x
∥∥ > ‖x‖, (2.1)

where R(t) = cov(ξ′(t), ξ′(t)), and ‖ · ‖ is the Euclidean norm in R
m.

Consider the asymptotics of the probabilities of the form

P := P
{−v(t) < ξ(t) < u(t), t ∈ T

}
(2.2)

when

∀t ∈ T, u(t), v(t) � χ, χ→∞, (2.3)

and the set T = T (χ) is an m-dimensional interval:

T =
{
t = (t1, . . . , tm)�: ai � ti � bi, i = 1,m

}
, a(·) < b(·). (2.4)

For a certain functional Q = QR(v, u, T ), which is defined below, the following relationship is proved:

P = e−Q +Qo(1). (2.5)

To define the functional Q, let us introduce some additional notation. Let M = {1, . . . ,m}. For any set
D ⊂ R, let δx(D) = 1{x∈D},

μT (dt) =
∏
i∈M

μi(dti) := μ1(dt1)× · · · × μm(dtm),

where μi(dti) = dti + δai
(dti) + δbi(dti),

J = Jt = {i: ai < ti < bi, i ∈M},

Yi,t =

⎧⎪⎨
⎪⎩
{0}, i ∈ J,

[0,∞), ti = bi,

(−∞, 0], ti = ai,

Yt = Y1,t × · · · × Ym,t, μ∗
t (dy) =

∏
i∈M\J

dyi,

and μ∗
t (Yt) = 1 if J = M .

Lith. Math. J., 52(2):196–213, 2012.
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Then QR(v, u, T ) = QR(v, T ) +QR(u, T ), where

QR(u, T ) =

∫
T

μT (dt)

∫
Yt

μ∗
t (dy)

∞∫
u(t)

φ(x)φ
(
u′(t) + y

∣∣R(t)
)
det
(
xR(t)

)
J
dx. (2.6)

Hereinafter, for an arbitrary m-dimensional matrix B = [Bi,j ], denote BJ = [Bi,j ]i,j∈J and B∅ = 1; by
φ(·) and φ(·|R) we denote the probability density functions of normal distributions N(0, 1) and N(0, R),
respectively. The next theorem is the main result of the paper.

Theorem 1. Let conditions (2.1)–(2.4) be satisfied, and, for fixed functions ω(·) and ρ(·) and any t, s ∈ R
m,

the following conditions be fulfilled:

max
{
E
∥∥ξ′(t)− ξ′(s)

∥∥, ∥∥u′(t)− u′(s)
∥∥, ∥∥v′(t)− v′(s)

∥∥} � ω
(‖t− s‖), lim

x→0
ω(x) = 0, (2.7)∣∣Eξ(t)ξ(s)

∣∣ � ρ
(‖t− s‖), lim

x→∞ ρ(x) log(x) = 0, max
x>δ

ρ(x) < 1 ∀δ > 0. (2.8)

Then asymptotic equality (2.5) holds with uniform convergence with respect to ξ, v, u, T for which the above-
mentioned conditions are satisfied.

From Theorem 1 we get the following well-known result [3, 8].

Corollary 1. Let the random field ξ satisfy the conditions of Theorem 1, and matrixR(t) be constant,R(t) ≡ R.
Then, for any fixed δ > 0,

P
{
ξ(t) < χ, t ∈ T

}
= e− ˜Q + Q̃o(1), χ→∞,

uniformly for all m-dimensional intervals T for which bi − ai � δ, i = 1,m. Here

Q̃ = |T |(detR)1/2(2π)−m/2χm−1φ(χ), |T | :=
∫
T

dt.

In particular, we have that, for any x ∈ R,

P

{
ξ(t) <

(
2 log |T |)1/2 + [m− 1

2
log
(
2 log |T |)+ log

(detR)1/2

(2π)(m+1)/2
+ x

](
2 log |T |)−1/2

}

= exp
(− exp(−x))+ o(1) as |T | → ∞.

3 AUXILIARY LEMMAS

In this section, we use the above-mentioned notation and definitions, except condition (2.1), which can be
waived; the letters u and v are used to denote univariate variables, but not functions. We assume that the
random field ξ is twice continuously differentiable and

ξ′i(t) =
∂

∂ti
ξ(t), ξ′′i,j(t) =

∂2

∂ti∂tj
ξ(t), ξ′′(t) =

[
ξ′′i,j(t)

]
i,j=1,m

.

For an arbitrary matrix B = [Bi,j ], we denote by vecB a vector-row, consisting of the elements Bi,j under
condition i � j, |B| = maxi,j Bi,j . In case z ∈ R

k, |z| = maxi |zi|. We denote by fX the distribution density
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function of an arbitrary random vector X . Further, we denote by Λk the set of quadratic symmetric negative
definite matrices with dimension k and Λ0 = {1}.

Let ζ := ζ(T ) = supt∈T ξ(t). For all u < v, t ∈ T ,{
ζ = ξ(t) ∈ (u, v)

} ⊂ {ξ(t) ∈ (u, v), ξ′(t) ∈ Yt, ξ
′′
J(t) ∈ Λr

}
=: At; (3.1)

hereinafter r = r(t) = card J . Let us introduce the following functions:

πξ(t, x, y, λ) = P
{
ζ = ξ(t)

∣∣ ξ(t) = x, ξ′(t) = y, ξ′′J(t) = λ
}
, (3.2)

ψξ(t, x, y, λ) = fξ(t),ξ′(t)(x, y)|detλ|. (3.3)

We denote by Fξ(· | t, x, y) the conditional distribution of ξ′′J(t) with respect to the random event {ξ(t) = x,
ξ′(t) = y} and

Pξ(u, v, T ) =

∫
T

μT (dt)

∫
Yt

μ∗
t (dy)

v∫
u

dx

∫
Λr

πξ(t, x, y, λ)ψξ(t, x, y, λ)Fξ(dλ | t, x, y). (3.4)

Lemma 1. Let a multivariate Gaussian random field X(t) = (ξ(t), ξ′(t), vec ξ′′(t)) have continuous trajec-
tories on T , and, for all t 
= s, the distribution of the vector (X(t), X(s)) be nondegenerate. Let, for some
α > 0 and C1 <∞, ξ′′ satisfy the condition

∀t, s ∈ T, E
∣∣ξ′′(t)− ξ′′(s)

∣∣ � C1|t− s|α. (3.5)

Then, for all u < v,

P{u < ζ < v} = Pξ(u, v, T ). (3.6)

Further, in case (3.5) is fulfilled, we write ξ′′ ∈ Lipα(C1).

Corollary 2. If all the conditions of Lemma 1 are fulfilled, then the random variable ζ has an absolutely con-
tinuous distribution, and, for almost all u,

fζ(u) �
∫
T

μT (dt)

∫
Yt

μ∗
t (dy)

∫
Λr

ψξ(t, u, y, λ)Fξ(dλ | t, u, y). (3.7)

Remark 1. If all the conditions of Lemma 1 are fulfilled and the set D ⊂ T can be presented in the form of a
union of a finite number of intervals, then, by Corollary 2, the density function of the random variable ζ(D) is
bounded.

For some twice differentiable function g(t), denote ξ(t) = max{ξ(t), g(t) − ξ(t)} and ζ = supt∈T ξ(t).
Let P ξ(·) be defined by formulas (3.2)–(3.4), where the random variable ζ is replaced with ζ.

Lemma 2. Let g′′ ∈ Lipα(C1). Under the conditions of Lemma 1, for v > u > maxt∈T g(t)/2, the following
equality holds:

P{u < ζ < v} = P ξ(u, v, T ) + P g−ξ(u, v, T ). (3.8)

4 PROOFS OF THE LEMMAS

Without loss of generality, assume that T = [0, 1]m. If there are no additional indications, in different places,
we will denote by C different positive finite constants depending only on the covariance of the random field ξ
and parameters m, α, C1. For the proof of Lemma 1, an auxiliary statement is needed.

Lith. Math. J., 52(2):196–213, 2012.



200 R. Rudzkis and A. Bakshaev

Lemma 3. Let ν(t), t ∈ T , be a multivariate Gaussian random field with continuous trajectories, and let
ν ∈ Lipα(C1). Then, for all h > 0 and β ∈ (0, α), the following inequality holds:

P
{

max
s,t∈T, |s−t|�h

∣∣ν(t)− ν(s)
∣∣ > hβ

}
� Ch−m exp

{
− 1

Ch2(α−β)

}
. (4.1)

Proof. For simplicity, assume that n = 1/h is a natural number and denote T (n) = {1/n, 2/n, . . . , 1}m.
For τ ∈ T (n), let us define the random field γτ (·) on T 2 by

γτ (t, s) := C−1
1 h−α

[
ν(τ − ht)− ν(τ − hs)

]
.

We have

E
∣∣γτ (·)∣∣ � 1, E

∣∣γτ (·)− γτ (·+ δ)
∣∣ � 2|δ|α.

Applying to the components of random field γτ Theorem 4.1.1 in [7], we obtain the following estimate:

∀x � 0, P
{

sup
λ∈T 2

∣∣γτ (λ)∣∣ � x
}
� C exp

{
−x2

C

}
, C = C(α,m). (4.2)

Since cardT (n) = nm and

sup
s,t∈T, |s−t|�h

∣∣ν(t)− ν(s)
∣∣ = C1h

α max
τ∈T (n)

sup
λ∈T 2

γτ (λ),

(4.1) follows from (4.2). ��
Proof of Lemma 1. For an arbitrary natural number k and quadratic matrix λ with dimension k, denote
Φk = {z: z ∈ R

k, |z| � 1/2}, λΦk = {λz, z ∈ Φk}, and Φ0 = {1}. For z ∈ R
k and G ⊂ R

k, let
ρ(z,G) = infw∈G |z − w|. Further, let the natural number n → ∞ and h = 1/n. For t ∈ T , denote
St = St(h) = {s: s ∈ T, |s− t| � h/2} and Ht = {ζ(St) = ζ ∈ (u, v)}. Recall that ζ = ζ(T ). We obtain

P{u < ζ < v} �
∑

τ∈T (n)

P{Hτ}. (4.3)

For t ∈ T , let

γi = γi(t) =

⎧⎪⎨
⎪⎩
{0}, i ∈ J,

1, ti = bi,

−1, ti = ai,

ξ′∗(t) =
(
γiξ

′
i(t), i 
∈ J

)
, ξ′J(t) =

(
ξ′i(t), i ∈ J

)
.

Recall that r = card J , J = Jt. Let us define the random event Bt = Bt(h) as

Bt =
{
u < ξ(t) < v, ξ′∗(t) ∈ R

m−r
+ , ξ′′J(t) ∈ Λr, ξ

′
J(t) ∈ hξ′′J(t)Φr

}
, (4.4)

where R+ = [0,∞), R0
+ = {0}, ξ′∗(t) = 0 if r = m, and ξ′J(t) = 0 if r = 0. Let us prove the relation

∑
τ∈T (n)

P(Hτ \Bτ ) = o(1). (4.5)
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For some β ∈ (0, α), denote Qh = {maxt,s∈T, |t−s|�h |ξ′′(t) − ξ′′(s)| � hβ}. Then Lemma 3 yields the
following equality:

P{Qh} = 1− o
(
hm
)
. (4.6)

If random events Qh and Ht took place, then, for some s ∈ St, a random event As defined in (3.1) occurred as
well. In this case, from the Taylor formula we derive:

ρ
(
ξ′′J(t), Λr

)
�
∣∣ξ′′(t)− ξ′′(s)

∣∣ � hβ , (4.7)

ρ
(
ξ′∗(t),Rm−r

+

)
�
∣∣ξ′(t)− ξ′(s)

∣∣ � Ch
(∣∣ξ′′(t)∣∣+ 1

)
, (4.8)∣∣ξ(t)− ξ(s)

∣∣ = ∣∣ξ(t)− ξ(s) + ξ′(s)(s− t)
∣∣ � Ch2

(∣∣ξ′′(t)∣∣+ 1
)
, (4.9)

ρ
(
ξ′J(t), hξ

′′
J(t)Φr

)
�
∣∣ξ′(t)− ξ′(s) + ξ′′(t)(s− t)

∣∣ � Ch1+β
(∣∣ξ′′(t)∣∣+ 1

)
. (4.10)

As the probability density function of the random vectorX(t) is bounded on T , then, denoting Bt = {ξ′J(t) ∈
hξ′′J(t)Φr}, it is easy to obtain the following estimates:

P{Bt} � Chr, (4.11)

P
{
0 < ρ

(
ξ′J(t), hξ

′′
J(t)Φr

)
< Ch1+β

(∣∣ξ′′(t)∣∣+ 1
)}

� Chr+β , (4.12)

P
{
0 < ρ

(
ξ′′J(t), Λr

)
< Chβ , Bt

}
� Chr+β , (4.13)

P
{
0 < ρ

(
ξ(t), (u, v)

)
< Ch2

(
1 +
∣∣ξ′′(t)∣∣), Bt

}
� Chr+2. (4.14)

It follows from (4.6)–(4.14) that, for all t ∈ T ,

P{Ht \Bt} � Chr+β . (4.15)

Note that
∑

t∈T (n) h
r � C and, therefore, (4.15) implies (4.5).

Let us show that ∑
τ∈T (n)

P{HτBτ} = Pξ(u, v, T ) + o(1). (4.16)

For τ ∈ T , let Tτ = {t: γi(t) = γi(τ), i = 1,m}. Denote St = St ∩ Tτ . Under the conditions of Lemma 1,
the probability density function fX(t)(·) is uniformly continuous with respect to t ∈ T . Therefore, uniformly
for τ ∈ T (n) and t ∈ St, we obtain

P{Bτ} = hr
v∫

u

dx

∫
Yt

μ∗
t (dy)

∫
Λr

ψξ(t, x, y, λ)Fξ(dλ | t, x, y)
(
1 + o(1)

)
. (4.17)

Hereinafter, in the proof of (4.16), unless otherwise stated, the notation o(1) means the convergence to zero as
n→∞ uniformly for τ ∈ T (n) and t ∈ Sτ . Note that the statement of Corollary 2 follows from (4.3), (4.5),
and (4.17). To finish the proof of (4.16), we need to show, for all t ∈ St, the following equality:

P{Hτ | Bτ} = P
{
ζ(T ) = ξ(t)

∣∣ At

}
+ o(1). (4.18)
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Let Zt = (ξ(t), ξ′∗(t), vec ξ′′J(t)) and Yt = (Zt, ξ
′
J(t)). From Lemma 3, for the process ξ′′(·|t) = ξ′′(·) −

Eξ′′(·|Yt), we obtain

lim
δ→0

max
t∈T

P
{

max
|s−ν|�δ

∣∣ξ′′(s|t)− ξ′′(ν|t)∣∣ > δα/2
}
= 0. (4.19)

Let us fix δ > 0 and denote Vτ = {s: s ∈ T, |s− τ | � δ}. Then, using (4.19) and the Taylor formula for all
τ ∈ T (n) and t ∈ Sτ , we obtain the estimates

P
{
ζ(Sτ ) > ζ(Vτ \ Sτ )

∣∣ Bτ

}
� 1− ε(δ),

P
{
ξ(t) > ζ(Vτ \ Sτ )

∣∣ At

}
� 1− ε(δ), (4.20)

where limδ→0 ε(δ) = 0.
DenoteDτ = T \Vτ ,Eτ = {ζ(Dτ ) � ζ(Sτ )}, andEτ,t = {ζ(Dτ ) � ξ(t)}. By (4.20) and the arbitrariness

of δ, to prove (4.18), it is enough to show that

P{Eτ | Bτ} −P{Eτ,t | At} = o(1). (4.21)

By Zt denote the set of values of the random vector Zt for which

{Zt ∈ Zt} =
{
ξ(t) ∈ (u, v), ξ′∗(t) ∈ R

m−r
+ , ξ′′(t) ∈ Λr

}
.

We have

P{Eτ,t | At} =
∫
Zτ

P{Eτ,t | Yt = (z, 0)}fYt
(z, 0) dz∫

Zτ
fYt

(z, 0) dz
. (4.22)

For z ∈ Zτ , denote by Wz the set of the values of ξ′J(τ) for which the following relationship takes place:
{ξ′J(τ) ∈Wz} ⇔ Bτ , when Zτ = z. By analogy with (4.22) we get

P{Eτ | Bτ} =
∫
Zτ

dz
∫
Wz

P{Eτ | Yτ = (z, w)}fYτ
(z, w) dw∫

Zτ
dz
∫
Wz

fYτ
(z, w) dw

. (4.23)

For t ∈ Sτ , we have Zt = Zτ , and, taking into account the continuity of the distribution density function
fYt

(y) with respect to t and y, we obtain

∀z ∈ Zτ , max
w∈Wz

∣∣fYτ
(z, w)− fYt

(z, 0)
∣∣ = o(1). (4.24)

Further, let us define the vector-column Ψs,t by the equation

YtΨs,t = E
(
ξ(s)
∣∣ Yt)−E

(
ξ(s)
∣∣ Yt = 0

)
,

and denote η(s|t, y) = ξ(s) + (y − Yt)Ψs,t − y1, where y1 is the first component of the vector y. The random
field η(·|t, y) does not depend on Yt, and the following equality holds:

P{Eτ,t | Yt = y} = P
{
max
s∈Dτ

η(s|t, y) � 0
}
. (4.25)

By means of Lemma 3, for any y, it is easy to get the relationship

P
{
ζ(Sτ )− ξ(t) > h

∣∣ Yτ = y
}
= o(1).
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Then, for a certain 0 � θ � 1, uniformly for y and τ ∈ T (n), we obtain

P{Eτ

∣∣ Yt = y} −P
{
max
s∈Dτ

η(s|τ, y) � θh
}
= o(1), (4.26)

where θ = θ(y, τ). For τ ∈ T (n) and z ∈ Zτ , let Δ(τ, z) = max |η(s|t, y) − η(s|τ, ỹ)|, where y = (z, 0),
ỹ = (z, w), and the maximum is taken by s ∈ K, t ∈ Sτ , w ∈Wz . Since

η(s|t, y)− η(s|τ, ỹ) = (y − Yt)Ψs,t − (ỹ − Yτ )Ψs,t,

from the relationships maxw∈Wz
|w| = o(1), maxE|Yt − Yτ | = o(1), and maxs∈K |Ψs,t − Ψs,τ | = o(1) we

obtain that

∀z ∈ Zτ , EΔ(τ, z) = o(1). (4.27)

For any y, the random field η(·|τ, y) satisfies the conditions of Lemma 1 on the set Dτ , which is the union of
a finite number of intervals. By Remark 1, which follows from the already proved statement of Corollary 2,
for all τ ∈ T (n) and any a < b, we have

P
{
max
s∈Dτ

η(s|τ, y) ∈ (a, b)
}
� C(b− a), (4.28)

where C depends only on δ and the distribution of the random field ξ. By (4.25)–(4.28) we get

∀z ∈ Zτ , max
w∈Wz

∣∣P{Eτ,t

∣∣ Yt = (z, 0)
}−P

{
Eτ

∣∣ Yt = (z, w)
}∣∣ = o(1). (4.29)

From (4.22)–(4.24) and (4.29) the validity of (4.21) follows, which, in turn, implies (4.18) and (4.16). As a
result, letting n→∞, from (4.3), (4.5), and (4.16) we derive the inequality

P{u < ζ < v} � Pξ(u, v, T ). (4.30)

If we denote Ht = {u < ζ(St) < v, ζ(St) > ζ(T \ St)}, then the proofs of Eqs. (4.5) and (4.16) will be still
valid, but, instead of (4.3), we will have the inequality

P{u < ζ < v} �
∑

τ∈T (n)

P{Hτ}.

Thus, inequality (4.30) is also valid with the opposite sign, which implies (3.6) and completes the proof of the
lemma. ��

Proof of Lemma 2. It is analogous to the proof of Lemma 1 with some minor differences. After replacement
of the random variable ζ by ζ in the definition of the event Ht, we obtain an analog of Eq. (4.3) for the
probability P{u < ζ < v}. We denote the events defined in (3.1) and (4.4) by At(ξ) and Bt(ξ), and let
Bt = Bt(ξ) ∪ Bt(g − ξ). Then, under new definitions, we obtain (4.5). Further, At(ξ) ∪ At(g − ξ) = ∅, and
P{Bt(ξ) ∪Bt(g − ξ)} = P(Bt)o(1). Therefore, to get the analog of Eq. (4.16), it suffices to show that

P
{
Hτ

∣∣ Bt(ν)
}
= P
{
ζ = ν(t)

∣∣ At(ν)
}
+ o(1), ν = ξ, g − ξ. (4.31)

The proof of expression (4.31) is the same as that of (4.18) in Lemma 1. Thus,∑
τ∈T (n)

P(HτBτ ) = P ξ(u, v, T ) + P g−ξ(u, v, T ) + o(1). (4.32)
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From (4.32) and newly defined (4.3) and (4.5) an analog of (4.30) follows:

P{u < ζ < v} � P ξ(u, v, T ) + P g−ξ(u, v, T ). (4.33)

Repeating the same arguments as in the end of the proof of Lemma 1, we obtain (3.8). ��

5 PROOF OF THEOREM 1

In the sequel, we will use the notation and definitions introduced in the previous sections. The letters u and v
are reserved to denote the functions depending on t ∈ R

m. In different places, unless stated otherwise, by C
we denote positive finite constants, depending only on m, ω, and ρ. The symbols ∧ and ∨ are used to denote
the minimum and maximum, respectively. Further, we always assume that |θ| � 1, and L denotes a large
enough absolute positive constant. Obviously, it is enough to show that, for any fixed value of L, Eq. (2.5)
holds in the case

Q = QR(v, u, T ) � L, (5.1)

which is assumed hereinafter. Let us first prove (2.5) under the additional condition that the functions u, v and
the random field ξ are three times differentiable and that the second and third derivatives satisfy the condition

∀t ∈ R
m, max

{
E
∣∣ξ(j)(t)∣∣, ∣∣u(j)(t)∣∣, ∣∣v(j)(t)∣∣} � æ min

s: |s−t|�1
ws, j = 2, 3. (5.2)

Here wt = u(t) ∧ v(t), and æ = æ(χ)→ 0 as χ→∞. Without loss of generality, assume that, for all t 
= s,
the distribution of the random vector (X(t), X(s)) is not degenerate. If this condition does not hold, the first
equality (2.5) is proved for the random field ξ̃(t) = (ξ(t) + εξ̂(t))/

√
1 + ε2, then letting ε tend to zero. Here

ξ̂(t) is a random field independent of ξ with zero mean and covariance cov(ξ̂(t), ξ̂(s)) = exp{−‖t− s‖2/2}.
Let ζ = ζ(T ) = maxt∈T (ξ(t) − u(t)) ∨ (−ξ(t) − v(t)). Under the stated assumptions, the random field
η(t) = ξ(t)− u(t) and the function g(t) = −u(t)− v(t) satisfy the conditions of Lemma 2. Denoting

pη(x) =

∫
T

μT (dt)

∫
Yt

μ∗
t (dy)

∫
Λr

πη(t, x, y, λ)ψη(t, x, y, λ)Fη(dλ | t, x, y), (5.3)

where r = r(t), we derive

∀x � 0, fζ(x) = pξ−u(x) + p−ξ−v(x). (5.4)

Since Dξ(t) ≡ 1, the following equalities hold:

cov
(
ξ(t), ξ′(t)

)
= 0, cov

(
ξ(t), ξ′′(t)

)
= −R(t). (5.5)

Therefore, for η = ξ − u, we have

fη(t),η′(t)(x, y) det
(
E
(−ξ′′J(t) ∣∣ η(t) = x

))
= φ
(
u′(t) + y

∣∣R(t)
)
φ
(
u(t) + x

)
det
((
u(t) + x

)
R(t)
)
J
=: qu(t, y, x). (5.6)

Equality (5.6) remains valid even after replacing u by v and taking η = −ξ − v. Let F (x) := P{ζ < x}. By
(2.7) and (5.4) we have

F (x) � Cq(x), q(x) :=

∫
T

μT (dt)

∫
Yt

[
qu(t, y, x) + qv(t, y, x)

]
μ∗
t (dy). (5.7)
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Let us prove that, for all x � 0,

fζ(x) = F (x)q(x)
(
1 + o(1)

)
. (5.8)

Hereinafter, o(1) means such a convergence to zero, as χ → ∞, for which the upper bound estimate of
the convergence speed depends only on m, ρ, and ω. Since P = F (0), QR(u, v, T ) =

∫∞
0 q(x) dx and

d
dx logF (x) = fζ(x)/F (x), from (5.8) we obtain the required equality (2.5). To prove (5.8), let us first show
that, for some constants 0 < C1 � C2 <∞ and the function

q̂(x) :=

∫
T

φt(wt + x)μT (dt), (5.9)

where φt(x) = φ(x)xr, r = r(t), the following estimate is valid:

∀x � 0, C1 �
q(x)

q̂(x)
� C2. (5.10)

Note that by (2.1) and (2.7) we have

1 � detR(·) � C3, (5.11)

where Ci = Ci(m,ω), i = 1, 3. The upper estimate in (5.10) is trivial. Let us prove the lower estimate. It is
easy to see that, for βt = βt(u) := miny∈Yt

|u′(t) + y|, we get

C �
∫
Yt

φ
(
u′(t) + y

∣∣R(t)
)
μ∗
t (dy) �

φ(Cβt)

C
. (5.12)

Next, denote φt = φt(u(t)), αD =
∫
D φt μT (dt). Let us show that, for D = {t: t ∈ T, βt > L},

αD � CαT

L
. (5.13)

For this purpose, denoting βt,i = miny∈YT
(u′i(t) + yi) and Di = {t: t ∈ T, βt,i > L}, we first prove the

inequality

αDi
� CαT

L
. (5.14)

For simplicity, assume that i = 1, t∗ := (t2, . . . , tm). Let us fix t∗, and let us denote t = (t1, t
∗), T1 =

{t1: a1 � t1 � b1, u′1(t) � L/2}, and T2 = {t1: a1 � t1 � b1, u′1(t) � L}. Define l0 = c0 = a1,
lk := max{c: a1 � c � b1, [ck−1, c) ∩ T2 = ∅}, ck := max{c: a1 � c � b1, [lk, c) ∩ T1 = ∅}, and let n be
the smallest natural number for which a1 � l1 � c1 � · · · � ln � cn = b. For 1 � k � n,

u′1(t) �
L

2
, t1 ∈ [lk, ck], u′1(t) � L, t1 ∈ [ck−1, lk]. (5.15)

Denoting uk = u(lk, t
∗), we have

u(t) � uk +
L(t1 − lk)

2
, t1 ∈ [lk, ck]. (5.16)

Assume that lk < b1; in this case, by (2.7), μ1([ck−1, lk]∩ {t1: u(t) � uk}) � C, and, taking into account the
equalities

r(a1, t
∗) = r(b1, t

∗) = r(t)− 1, t1 ∈ (a1, b1),

Lith. Math. J., 52(2):196–213, 2012.



206 R. Rudzkis and A. Bakshaev

from (5.15), (5.16) we derive the inequality

∀L � 1,

∫
[lk,ck]

φt μ1(dt1) �
C
∫
[ck−1,lk]

φt μ1(dt1)

L
, k = 1, . . . , n. (5.17)

Here μi(dti) := dti + δai
(dti) + δbi(dti). Let

Di :=
{
t: t ∈ T, min

y∈Yt

(
u′i(t) + yi

)
> L
}
.

From (5.17) and the arbitrariness of t∗ it follows that∫
Di

φt μT (dt) �
C

L

∫
T

φt μT (dt), i = 1, . . . ,m. (5.18)

Estimate (5.18) remains valid if, in the definition of Di, we replace u′i(t) + yi by −(u′i(t) + yi). Thus, we
obtain (5.14), which implies (5.13). For x � 0, inequalities (5.12) and (5.13) also are valid if we replace the
functions u(·) by u(·) + x or v(·) + x, which implies (5.10).

Further, let us slightly change the functional pη(·) defined in (5.3). Let η = ξ − u. Denote ψη(t, x, y) =
fη(t),η′(t)(x, y) det(xR(t))J ,

Ŷt = Ŷt,η =
{
y: y ∈ Yt,

∣∣Eη′(t)− y
∣∣ � L

}
,

and let Λr be the set of symmetric matrices of dimension r = r(t). By (5.2), (5.5), and (5.11), for x � 0, we
achieve ∫

T

μT (dt)

∫
Yt

μ∗
t (dy)

∫
Λr

∣∣ψη(t, x, y, λ)1λ∈Λr
− ψη(t, x, y)1y∈̂Yt

∣∣Fη(dλ | t, x, y)

� Cq̂(x)
(
æ+ e−L2/C

)
, (5.19)

where ψη(t, x, y, λ) and Fη are defined in (3.3), and r = r(t). In the sequel, we need the following notation:

ut := min
s∈T
(
u(s) + |t− s|). (5.20)

It is obvious that

|ut − uτ | � |t− τ |. (5.21)

Denoting Tη = {t: t ∈ T, u(t) � (4ut) ∧ (v(t) +
√
χ)}, it is easy to show that

∀x � 0,

∫
T\Tη

μT (dt)

∫
̂Yt

ψη(t, x, y)μ
∗
t (dy) = o(1)q̂(x). (5.22)

In particular, one can use inequality (5.54), which is proved below. Finally, it is clear that∫
Λr

πη(t, x, y, λ)Fη(dλ | t, x, y) = P
{
ζ = x

∣∣ η(t) = x, η′(t) = y
}
=: πη(t, x, y). (5.23)
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Denote

p̂η(x) =

∫
T

μT (dt)

∫
̂Yt

πη(t, x, y)ψη(t, x, y)μ
∗
t (dy). (5.24)

From (5.20)–(5.22) we obtain the estimate∣∣fζ(x)− p̂ξ−u(x)− p̂−ξ−v(x)
∣∣ � Cq̂(x)

(
o(1) + e−L2/C

) ∀x � 0. (5.25)

Taking into account (5.10) and the arbitrariness of L, to prove (5.8), it remains to show that∫
T

μT (dt)

∫
Yt

[
F (x)− πη(t, x, y)

]
ψη(t, x, y)μ

∗
t (dy) = C(L)q̂(x)o(1), (5.26)

where C(L) is a finite positive function. Clearly, it suffices to prove (5.26) for x = 0 since if x > 0, instead
of the functions u and v, we can consider the functions u(·) + x and v(·) + x. Let us fix τ ∈ Tη, y ∈ Yτ and
denote t = t−τ , z = (u(τ), u′(τ)+y), Z = (ξ(τ), ξ′(τ)). For some δ > 0, let S = Sτ (δ) = {t: |t| � δ}∩T .
Let us show that

P
{
ζ(S) > 0

∣∣ Z = z
}
= o(1). (5.27)

Denoting ε(t) = η(t)− η(τ)− η′(τ)t =
∫ 1
0 dα

∫ α
0 t

�
η′′(τ + βt)t dβ and using (5.2) and (5.5), we obtain

E
(
ε(t)
∣∣ Z = z

)
= −u(τ)t�R(τ)t

(
1 +

θ

2

)
(5.28)

if χ is large and δ is small enough. Applying Lemma 3 to the matrix random field η̃′′(t) = η′′(t)−E(η′′(t) | Z)
and using (5.2), we obtain the equality

P

{
max
t∈S
∥∥η̃′′(t)∥∥ � u(τ)

3

}
= o(1). (5.29)

From (5.28) and (5.29) we get (5.27). Further, by (5.7) and (5.10) we find

fζ(T )(x) � C

∫
T

φt(wt + x)μT (dt). (5.30)

Replacing in (5.30) the set T by S, we have

P
{
ζ(S) > 0

}
< Cφ(χ)χm−1 = o(1). (5.31)

Denote

ρ0(t) = Eξ(t)ξ(τ), ρ1(t) = Eξ(t)ξ′(τ).

For convenience, assume that, in (2.8), the norm ‖ · ‖ is replaced by | · |. Furthermore, assume that

∀t, τ ∈ T,
∣∣ρ1(t)∣∣ � C

((
ρ
(|t|)wτ

) ∧ 1
)
=: ρ̂1

(|t|). (5.32)

Without loss of generality, assume that the derivative of the function ρ satisfies the inequality

∀x � 0,
∣∣ρ′(x)∣∣ � ρ(x). (5.33)
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Otherwise, we can construct a function ρ̂(·) � ρ(·) satisfying conditions (2.8) and (5.33). We have

E
(
ξ(t)
∣∣ Z) = ρ0(t)ξ(τ) + ρ1(t)R

−1(τ)ξ′�(τ) =: Zγ(t),

E
(
ξ(t)
∣∣ Z = z

)
= zγ(t),

π(τ, 0, y) = P
{−v(t) � ξ(t) + (z − Z)γ(t) � u(t), t ∈ T

}
.

If |Z| � L for t ∈ Tη \ S and all y ∈ Yτ , then∣∣(z − Z)γ(t)
∣∣ � ρ

(|t|)(wτ +
√
χ) + CL

(
ρ
(|t|)wτ ∧ 1

)
=: gτ

(|t|). (5.34)

Let gτ (x) = gτ (δ) for x � δ. Denote

Δu(τ) = P

{
max
t∈T

|ξ(t)− u(t)|
gτ (|t|) � 1

}
.

By (5.27), (5.31), and (5.34), we have

max
y∈Yτ

∣∣F (0)− πη(τ, 0, y)
∣∣ � o(1) +P

{|Z| > L
}
+Δu(τ) +Δv(τ). (5.35)

Taking into account (5.35), the arbitrariness of L, and the estimate

P
{|Z| > L

}
< Cφ

(
L

C

)
,

to finish the proof of (5.26), it remains to obtain the relation∫
Tη

Δu(τ)φτ (wτ )μτ (dτ) = o(1)C(L)q̂(0). (5.36)

To use Lemma 1 for this purpose, we first need to smooth the function g. LetK1 be a three-times continuously
differentiable nonnegative even function satisfying the conditions

∫ 1
−1K1(x) dx = 1 and K1(x) = 0 for

|x| � 1. Denote

a(t) = aτ (t) = ĝτ
(|t| − 1

)
, ĝτ (x) =

1∫
−1

K1(α)gτ (x+ α) dα.

By (5.33) and properties of the kernel K1, the derivatives of the function a(·) satisfy the inequality

∣∣a(j)(t)∣∣ � Ca(t), j = 1, 3, t ∈ T. (5.37)

Since a(t) � gτ (|t|), (5.35) remains true after the replacement of gτ (|t|) by a(t) in the definition of Δu(τ).
By (2.8), for some β = β(δ, ρ) > 0, we have

a(t)

wτ
� (1− β) ∧ (CLρ

(|t− τ | − 1
))

=: α
(|t|). (5.38)
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Applying Corollary 2 to the random field ν(t) = η(t)/a(t), we obtain

Δu(τ) �
∫
T

μT (dt)

1∫
−1

dx

∫
Yt

μ∗
t (dy)

∫
Λr

fν(t),ν′(t)(x, y)|detλ|Fν(dλ | t, x, y). (5.39)

Denoting x̃ = x+ u(t), ỹ = u′(t) + y + xa−1(t)a′(t), and

λ̃ = u′′(t) + λ+ 2a−1(t)a′(t)y� + a−1(t)xa′′(t),

from (5.39) we obtain the estimate

Δu(τ) �
∫
T

μT (dt)

a(t)∫
−a(t)

dx

∫
Yt

μ∗
t (dy)

∫
λ∈Λr

φ(x̃)φ
(
ỹ
∣∣R(t)

)|detλ|Fξ(dλ̃ | t, x̃, ỹ). (5.40)

Recall that Fξ(· | t, x̃, ỹ) is the conditional distribution of ξ′′J(t) with respect to ξ(t) = x̃, ξ′(t) = ỹ. Denoting
q∗τ,t = α(|t|)wτw

r
tφ(wt − α(|t|)wτ ), from (2.1), (5.2), (5.37), (5.38), and (5.40) we derive

Δu(τ) � Cq∗τ,t. (5.41)

Let

qτ,t = α
(|t|)wr+1

t φ
((
1− α

(|t|))wt

)
. (5.42)

Since φτ (wτ )q
∗
τ,t � φτ (wτ )qτ,t + φt(wt)qt,τ , from (5.41) we get the estimate∫

Tη

φτ (wτ )Δu(τ)μT (dτ) � C

∫
T

φτ (wτ )

[ ∫
T

qτ,t μT (dt)

]
μT (dτ).

It remains to show that

max
τ∈T

∫
T

qτ,t μT (dt) = o(1). (5.43)

This relation could, in turn, be derived from (2.3), (5.38), the property limx→∞ ρ(x) log(x) = 0, and the
estimate ∫

T

φt(wt)

wt
μT (dt) � CL, (5.44)

which follows from (5.2) and (5.10).
Let Tτ = {t: wt � 5m log(|t|+ 1)} ∩ T . It is obvious that∫

Tτ

qτ,t μT (dt) = o(1). (5.45)

Further, as |t| → ∞, we have α(|t| = o(1)/ log(|t|)) and, therefore,∫
T\Tτ

qτ,t μT (dt) = o(1)

(
1 +

∫
T\Tτ

φt(wt)

wt
μT (dt)

)
. (5.46)
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From (5.44)–(5.46) we get (5.43). Finally, relation (5.8) is proved, which implies (2.5). Let us prove (2.5)
without conditions (5.2) and (5.32).

To this end, let us smooth the random field ξ and functions u, v. Set K(s) =
∏m

i=1K1(si) and h =
h(t) =

∫
Rm K(t − s)(u−1

s + v−1
s ) ds, where ut is defined in (5.20). Denote ξh(t) :=

∫
Rm K(s)ξ(t + hs) ds,

σ2(t) = Dξh(t), ξ∗(t) = ξh(t)/σ(t), u∗(t) = uh(t)/σ(t), and analogously define v∗. Using condition (2.7)
and properties of the kernel K1, it is easy to obtain the relations

h =

(
1

ut
+

1

vt

)(
1 + o(1)

)
,

∣∣h′(t)∣∣ ∨ ∣∣h′′(t)∣∣ � Ch2, (5.47)

u∗(t)− u(t) = o(1)h, E
∣∣ξ(t)− ξ∗(t)

∣∣ = o(1)h, (5.48)∣∣u′∗(t)− u′(t)
∣∣ = o(1), E

∣∣ξ′(t)− ξ′∗(t)
∣∣ = o(1). (5.49)

It is evident that, after the replacement of ξ, u, v, ω, ρ by ξ∗, u∗, v∗, ω∗, ρ∗, conditions (5.2) and the conditions
of Theorem 1 are fulfilled, where

ω∗(·) � Cω(·), ρ∗(·) � (1 + o(1)
)
ρ
(· − o(1)

)
. (5.50)

Finally, taking into account the equality

ξ′∗(τ) =
(

1

σ(τ)

)′
ξh(τ) +

1

σ(τ)

∫
Rm

d

dτ

[
1

h(τ)
K

(
1

h(τ)
(τ − s)

)]
ξ(s) ds,

we obtain (5.32) by replacing ξ, ρ with ξ∗, ρ∗. Thus, the following equality is valid:

P ∗ = e−Q∗
+Q∗o(1). (5.51)

Hereinafter, the addition symbol “∗” in the notation of P , Q, q means the replacement of the variables ξ, u,
v by ξ∗, u∗, v∗ in the corresponding definitions. Let us show that (5.51) implies (2.5). First, we prove the
relation

Q−Q∗ = Qo(1). (5.52)

Denote Φt(u) = φ(ut)u
r−1
t . By (5.10) we have

Q =

∞∫
0

q(x) dx �
∫
T Φt(w)μT (dt)

C
. (5.53)

By means of (5.47)–(5.49) and the definition of qu in (5.6) we obtain the estimate

∞∫
0

dx

∫
Yt

∣∣qu(t, x, y)− q∗(t, x, y)
∣∣μ∗

t (dy) � o(1)Φt(w) + Cφ

(
L

h

)
. (5.54)

Using inequalities (5.10), (5.53), and (5.54), together with the inequality φ(L/h) � Cφ(Lut/3)+Cφ(Lvt/3),
to obtain relation (5.52), it suffices to show that∫

T

φ(2ut)μT (dt) = o(1)Q. (5.55)
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Denoting by N the set of integers, for k ∈ Nm, let Tk = {t: t ∈ T, ki � ti � ki + 1, i = 1,m} and
Wk = {t: t ∈ T, ut = |t− s|+u(s), s ∈ Tk}. IfWk 
= ∅, then due to (2.7) and the definition of μT , we have

∫
Tk

Φt(u)μT (dt) >
φ(ûk)

Cûk
, ûk := min

t∈Tk

u(t). (5.56)

On the other hand, for all t ∈Wk and fixed s ∈ Tk, we have ut � ûk + |t− s| − 1; therefore,∫
Wk

φ(2ut)μT (dt) � Cφ(2ûk − 1). (5.57)

Since T =
⋃

k Tk =
⋃

k Wk, (5.53), (5.56), and (5.57) imply (5.55). It is obvious that relations (5.54) and
(5.55) will be valid, and, after replacing u by v, Eq. (5.52) is proved. It remains to show that

P − P ∗ = o(1)Q. (5.58)

Let wt = ut ∧ vt, η = ξ − u. For an arbitrary closed set D ⊂ R
m, denote τ = τ(D) = argmint∈D u(t),

h = h(τ), and ηD = maxt∈D η(t). Assume that, for some c = c(D) ∈ R
m, the following conditions are

satisfied:

D =

m∏
i=1

[ci, ci + �i] ⊂ T, �i = �i(D) =

((
1 +

θ

2

)
h

)
∧ (bi − ai), i = 1,m. (5.59)

By (5.47), (5.53), and (5.55), there exists a complex D of sets D of the form (5.59) such that

T =
⋃

D∈D
D,

∑
D∈D

Q̂D � CQ, (5.60)

where Q̂D :=
∫
D[Φt(u) + φ(2wt)]μT (dt). Denote HD = {ηD > 0}Δ{η∗D > 0}. It is obvious that

P(HT ) �
∑
D∈D

P(HD). (5.61)

By (5.60) and (5.61), to obtain the relation

P(HT ) = o(1)Q, (5.62)

it suffices to show that

P(HD) = o(1)Q̂D, D ∈ D. (5.63)

Let us first get a similar estimate for the probability of the event ĤD := {ηD > 0}Δ{η̂D > 0}, where
η̂(t) := η(τ) + η′(τ)�(t− τ). We have

0 � η̂D − η(τ) � ξ̂D − ξ(τ) �
m∑
i=1

∣∣ξ′i(τ)�i∣∣. (5.64)

By (2.1), (5.59), and (5.64), we have

∀α � 0, P
{
η̂D − η(τ) � α

}
� Cφ

(
α

Ch

)
. (5.65)
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Let ν(t) = η(t)− η̂(t). Let us show that

∀α � x � 0, P
{
νD � α

∣∣ ξ(τ) = x
}
� Cφ

(
α− x

Cω(h)h

)
. (5.66)

By (2.1), (2.7), and the Taylor formula we get

E
∣∣ν(t) = ν(s)

∣∣ � Cω
(|t− s|)|t− s|, max

x∈D
∣∣E(ν(t) ∣∣ ξ(τ) = x

)∣∣ � Cω(h)hx. (5.67)

Next, let us estimate the distribution of the random variable νD, where ν(t) = ν(t) − E(ν(t) | ξ(τ)). Let
Dn = {t: t ∈ D, |ti − τi| = �ij/4

n, i = 1,m, j ∈ {1, . . . , 4n}}, D0 = D. For t ∈ D, let t̂(n) =
argmins∈Dn

|t− s|. We have

E
∣∣ν(t)− ν

(
t̂(n)
)∣∣ � Cω(h)h

4n
. (5.68)

Denoting εk = maxt∈Dk
|ν(t)− ν(t̂(k − 1))|, we obtain

∀t ∈ Dn,
∣∣ν(t)∣∣ � n∑

k=1

εk. (5.69)

Taking into account the continuity of the trajectories of ν, (5.68), (5.69), and the inequality cardDk � 2m4k,
we derive

∀α � 0, P{νD � α} �
∞∑
k=1

P

{
εk � α

2k

}
� C

∞∑
k=1

4kφ

(
2kα

Cω(h)h

)
. (5.70)

Finally, from (5.67) and (5.70) we obtain (5.66). Further, by means of (5.47) and the inequality μT (D) �
hm/C, we obtain the inequality

φ(u(τ))

u(τ)
� CQ̂D. (5.71)

Using (5.47), (5.65), (5.66), and (5.71), we have

P
{
ĤD, η(τ) � −Lh

}
� ε(L)Q̂D, (5.72)

where limL→∞ ε(L) = 0.
Then by (5.47), (5.66), and (5.1) we have

P
{
0 � η(τ) � −Lh, νD �

√
ω(h)h

}
= o(1)Q̂D. (5.73)

Finally, taking into account that η̂D − η(τ) is independent of ξ(τ), we get

P
{
0 � η(τ) � −Lh, |η̂D| �

√
ω(h)h

}
= o(1)Q̂D. (5.74)

From (5.72)–(5.74) we have the relation

P{ĤD} = o(1)Q̂D. (5.75)

Denoting Ĥ∗
D = {η∗D > 0}Δ{η̂D > 0} and following the same procedure, we obtain the relation

P
{
Ĥ∗

D

}
= o(1)Q̂D,
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which, together with (5.75), leads to (5.63), which in turn yields (5.62). It is obvious that (5.62) will still be
valid after replacing the random field η(·) by −ξ(·) − v(·) in the definition of Hτ and the function u by v.
Thus, relation (5.58) is proved, and this completes the proof of the theorem.

REFERENCES

1. R. Adler, On excursion sets, tube formulas and maxima of random fields, Ann. Appl. Probab., 10(1):1–74, 2000.

2. R. Adler and J.E. Taylor, Random Fields and Geometry, Springer, New York, 2007.

3. J.M. Azaïs and C. Delmas, Asymptotic expansions for the distribution of the maximum of a Gaussian random fields,
Extremes, 5(2):181–212, 2002.

4. J.M. Azaïs and M. Wschebor, The distribution of the maximum of a Gaussian process: Rice method revisited,
in V. Sidoravicius (Ed.), In and Out of Equilibrium: Probability with a Physical Flavour, Prog. Probab., Vol. 51,
Birkhäuser Boston, Boston, MA, 2002, pp. 321–348.

5. J.M. Azaïs and M. Wschebor, On the distribution of the maximum of a Gaussian field with d parameters, Ann. Appl.
Probab., 15(1):254–278, 2005.

6. J.M. Azaïs and M. Wschebor, A general expression for the distribution of the maximum of a Gaussian field and the
approximation of the tail, arXiv:math/0607041v2, 2007.

7. X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in P.-L. Hennequin (Ed.), École d’Été
de Probabilités de Saint-Flour IV–1974, Lect. Notes Math., Vol. 480, Springer-Verlag, Berlin, Heidelberg, New York,
1975, pp. 1–96 (in French).

8. A.M. Hasofer, The mean number of maxima above high levels in Gaussian random fields, J. Appl. Probab., 13:377–
379, 1976.

9. V.I. Piterbarg, Some directions in the investigation of properties of trajectories of Gaussian random functions, in
Stochastic Processes: Sample Functions and Intersections, Mir, Moscow, 1978, pp. 258–280 (in Russian).

10. V.I. Piterbarg, Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr.,
Vol. 148, Amer. Math. Soc., Providence, RI, 1996.

11. V.I. Piterbarg, Rice method for Gaussian random fields, Fundam. Prikl. Mat., 2(1):187–204, 1996.

12. S.O. Rice, Mathematical analysis of random noice, Bell Syst. Tech. J., 24:409–416, 1945.

13. R. Rudzkis, Probability of a large rejection of a nonstationary Gaussian process. I, Lith. Math. J., 25(1):76–84,
1985.

14. R. Rudzkis, Probability of a large rejection of a nonstationary Gaussian process. II, Lith. Math. J., 25(2):169–179,
1985.

15. R. Rudzkis, Density of the probability of a large rejection of a Gaussian stochastic process. II, Lith. Math. J.,
27(4):339–350, 1987.

16. R. Rudzkis, Probabilities of large excursions of empirical processes and fields, Sov. Math., Dokl., 45(1):226–228,
1992.

17. R. Rudzkis, On the distribution of supremum-type functionals of nonparametric estimates of probability and spectral
densities, Theory Probab. Appl., 37(2):236–249, 1993.

18. J. Sun, Tail probabilities of the maxima of Gaussian random fields, Ann. Probab., 21:34–71, 1993.

19. J.E. Taylor, A. Takemura, and R.J. Adler, Validity of the expected Euler characteristic heuristic, Ann. Probab.,
33(4):1362–1396, 2005.

Lith. Math. J., 52(2):196–213, 2012.


	Abstract
	1 INTRODUCTION
	2 MAIN RESULTS
	3 AUXILIARY LEMMAS
	4 PROOFS OF THE LEMMAS
	5 PROOF OF THEOREM 1
	REFERENCES

