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Abstract. We consider centered conditionally Gaussian d-dimensional vectors X with random covariance matrix Ξ
having an arbitrary probability distribution law on the set of nonnegative definite symmetric d × d matrices M+

d . The
paper deals with the evaluation problem of mean values E[

∏2n
i=1(ci, X)] for ci ∈ Rd, i = 1, . . . , 2n, extending the

Wick theorem for a wide class of non-Gaussian distributions. We discuss in more detail the cases where the proba-
bility law L(Ξ) is infinitely divisible, the Wishart distribution, or the inverse Wishart distribution. An example with
Ξ =

∑m
j=1 ZjΣj , where random variables Zj , j = 1, . . . ,m, are nonnegative, and Σj ∈ M+

d , j = 1, . . . ,m, are fixed,
includes recent results from Vignat and Bhatnagar, 2008.
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1 INTRODUCTION

Let Md be the Euclidean space of symmetric d× d matrices A with the scalar product 〈A1, A2〉 := tr(A1A2),
A1, A2 ∈ Md, M+

d ⊂ Md be the cone of nonnegative definite matrices, and P(M+
d ) be a class of probability

distributions on M+
d . Here trA denotes the trace of a matrix A.

The probability distribution of a d-dimensional random vector X is said to be the mixture of centered
Gaussian distributions with mixing distribution U ∈ P(M+

d ) (U -mixture for short) if, for all z ∈ Rd,

Eei(z,X) =
∫
M+
d

e−
1
2
(zA,z) U(dA), (1.1)

where (x, y) =
∑d
j=1 xjyj for x, y ∈ Rd.

Distributional properties of infinite divisibility or self-decomposability of subclasses of such mixtures are
well studied (see, e.g., [2, 3] and references therein).
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Let cj = (cj1, . . . , cjd) ∈ Rd, j = 1, . . . , 2n. The paper deals with the evaluation problem of mean
values E[

∏2n
j=1(cj , X)].

Let Π2n be the class of pairings σ on the set I2n = {1, 2, . . . , 2n}, i.e., the partitions of I2n into n disjoint
pairs, implying that cardΠ2n = (2n)!

2nn! . For each σ ∈ Π2n, we define uniquely the subsets I2n\σ ⊂ I2n and
integers σ(j), j ∈ I2n\σ, by

σ =
{(
j, σ(j)

)
, j ∈ I2n\σ

}
.

If U = εΣ is a Dirac measure with fixed Σ ∈ M+
d , i.e., in the Gaussian case, the Wick theorem says (see,

e.g., [8, 14]) that

E

[
2n∏
j=1

(cj , X)

]
=

∑
σ∈Π2n

∏
j∈I2n\σ

(cjΣ, cσ(j)) := m2n(c,Σ). (1.2)

If U = L(Y Σ), where Y is a nonnegative random variable, EY n <∞, and Σ ∈M+
d is fixed, then in [18]

it is checked that

E

[
2n∏
j=1

(cj , X)

]
= EY nm2n(c,Σ).

In Section 2, we shall consider an arbitrary mixing distribution and the case of infinitely divisible mixing
distribution U . In Section 3, several examples are presented, including mixtures with respect to the Wishart
distribution or inverse Wishart distribution.

2 THE EXTENDED WICK THEOREM

Let

φU (Θ) :=
∫
M+
d

e− tr(AΘ) U(dA), Θ ∈M+
d . (2.1)

Recall that, by definition, U is infinitely divisible with characteristics (Σ,V ) if

− log φU (Θ) = tr(ΣΘ) +
∫
M+
d

(
1− e− tr(AΘ))V (dA), (2.2)

where Σ ∈M+
d , V is a measure on M+

d such that∫
M+
d

(
‖A‖ ∧ 1

)
V (dA) <∞,

and ‖A‖ = (trA2)1/2 (see, e.g., [6, 15]).
Theorem 1. The following statements hold:

1. The probability distribution of a d-dimensional random vector X is the U -mixture of centered Gaussian
distributions if and only if

Eei(z,X) = φU

(
1
2
z>z

)
, (2.3)

where z> is the transposed vector z.
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2. If the probability distribution of X is the U -mixture of centered Gaussian distributions and, for
j = 1, . . . , 2n, ∫

M+
d

(cjA, cj)n U(dA) <∞, (2.4)

then

E

[
2n∏
j=1

(cj , X)

]
=

∑
σ∈Π2n

∫
M+
d

mσ
2n(c, A)U(dA), (2.5)

where mσ
2n(c, A) =

∏
j∈I2n\σ(cjA, cσ(j)).

Moreover, if U is infinitely divisible with characteristics (Σ,V ) and, for j = 1, . . . , 2n,∫
M+
d

(cjA, cj)n V (dA) <∞, (2.6)

then (2.5) holds. In particular,

E(c1, X)(c2, X) = (c1Σ, c2) +
∫
M+
d

(c1A, c2)V (dA). (2.7)

Proof. 1. The statement follows from (1.1) and (1.2), noting that, obviously,

tr
((
z>z

)
A
)

= (zA, z).

2. Observe that card I2n\σ = n and, for all σ ∈ Π2n and A ∈M+
d ,

∏
j∈I2n\σ

∣∣(cjA, cσ(j))
∣∣n 6 n−n

( ∑
j∈I2n\σ

∣∣(cjA, cσ(j))
∣∣)n

6 n−1
∑

j∈I2n\σ

∣∣(cjA, cσ(j))
∣∣n

6
2n−1

n

∑
j∈I2n\σ

[
(cjA, cj)n + (cσ(j)A, cσ(j))

n]

=
2n−1

n

2n∑
j=1

(cjA, cj)n. (2.8)

Using (2.8), Eq. (2.5) follows from (1.1), (1.2), and (2.4).
If a mixing distribution U is infinitely divisible with characteristics (Σ,V ), (2.6) is satisfied, and a random

matrix Ξ is such that L(Ξ) = U , then, for each c ∈ Rd, L((cΞ, c)) is infinitely divisible,

E(cΞ, c) = cum1(cΞ, c) = (cΣ, c) +
∫
M+
d

(cA, c)V (dA),
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and, for n > 1,

cumn(cΞ, c) =
∫
M+
d

(cA, c)n V (dA),

where cumn Z is the nth cumulant of Z.
Now it remains to apply the following useful statement.

Lemma 1. (See [16, 18].) Let µk = EZk and κk = cumk Z. If |κn| <∞, then

µk+1 =
k∑
j=0

(
k
j

)
µjκk+1−j , k = 0, 1, . . . , n− 1, (2.9)

and |µn| <∞.

Indeed, it is well known (see, e.g., [7, 10]) that

µk = Γk(κ1, . . . , κk),

where the polynomials

Γk(x1, . . . , xk) = k!
k∑

m=1

∑
r1,...,rm>0

1·r1+···+mrm=k

xr11 · · ·xrmm
(1!)r1r1! · · · (m!)rmrm!

satisfy the recurrence formula (see [17])

Γk+1(x1, . . . , xk+1) =
k∑
j=0

(
k
j

)
Γj(x1, . . . , xj)xk+1−j . ut

Remark 1. If the probability distribution ofX is theU -mixture of centered Gaussian distributions, f : Rd → R1

is an odd function, and E|f(X)| <∞, then, obviously, Ef(X) = 0.

3 EXAMPLES

Example 1 [The extended relativistic α-stable laws]. (Cf. [3, 4].) Let Sd = {A ∈ Md: ‖A‖ = 1} be the
unit sphere of Md, SM +

d = Sd ∩ M+
d , Σ ∈ M+

d , |Σ| := detΣ > 0, and 0 < α < 2. Let U be the
multivariate extension of tempered α-stable law (see [3]), i.e., an infinitely divisible distribution on M+

d with
characteristics (0, V ), where (in the polar representation)

V (dA) =
e−r tr(ΣA0)

r1+α/2
dr ν(dA0), r = ‖A‖, A0 =

1
r
A,

and ν(dA0) is a finite measure on SM +
d .
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We find that, for all n = 1, 2, . . . and j = 1, . . . , 2n,

∫
M+
d

(cjA, cj)n V (dA) =
∫

SM+
d

∞∫
0

rn(cjA0, cj)n
e−r tr(ΣA0)

r1+α/2
dr ν(dA0)

= Γ
(
n− α

2

) ∫
SM+

d

(cjA0, cj)n

(tr(ΣA0))n−α/2
ν(dA0) <∞.

Thus, assumption (2.6) is always satisfied, and, if the law of X is the U -mixture of centered Gaussian
distributions, then, for all n > 1, formula (2.5) holds, and

E(c1, X)(c2, X) = Γ
(

1− α

2

) ∫
SM+

d

(c1A0, c2)
(tr(ΣA0))1−α/2 ν(dA0).

Using (2.3), for z ∈ Rd, we have that

Eei(z,X) = exp
{
−
∫
M+
d

(
1− e−

1
2
(zA,z))V (dA)

}

= exp

{
−
∫

SM+
d

∞∫
0

(
1− e−

r

2
(zA0,z)

)e−r tr(ΣA0)

r1+α/2
dr ν(dA0)

}

= exp
{
−
∣∣∣∣Γ(−α2

)∣∣∣∣ ∫
SM+

d

([
tr(ΣA0) +

1
2

(zA0, z)
]α/2

−
(

tr(ΣA0)
)α/2)

ν(dA0)
}

=: µ̂α,Σ(z).

Remark 2. Let Xα,Σ := {Xα,Σ(t), t > 0} be a Lévy process with

E exp
{
i
(
z,Xα,Σ(1)

)}
= µ̂α,Σ(z), z ∈ Rd, Σ ∈M+

d ; Xα,Σ,h :=
{
h−1/αXα,Σ(ht), t > 0

}
;

and

X ′α,Σ,h :=
{
h−1/2Xα,Σ(ht), t > 0

}
, h > 0.

Similarly to [4], Xα,Σ,h ⇒ Xα,0 as h ↓ 0, and, for |Σ| > 0, X ′α,Σ,h ⇒ Gα,Σ as h → ∞ in the space
D[0,∞)(Rd) of càdlàg functions ω : [0,∞) → Rd equipped with the J1-topology of Skorokhod, where “⇒”
means the weak convergence of stochastic processes, and Gα,Σ is a centered Gaussian Lévy process with the
covariance matrix

Σα := Γ
(

1− α

2

) ∫
SM+

d

(
tr(ΣA0)

)α/2−1
A0 ν(dA0).

Indeed, because, for all z ∈ Rd, we easily find that

E exp
{
i
(
z,Xα,Σ,h(1)

)}
=
[
µ̂α,Σ

(
h1/αz

)]h → µ̂α,0(z) as h ↓ 0
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and

E exp
{
i
(
z,X ′α,Σ,h(1)

)}
=
[
µ̂α,Σ

(
h1/2z

)]h → exp
{
−1

2
(zΣα, z)

}
as h→∞,

it suffices to apply the well-known Skorokhod theorem on weak convergence of Lévy processes.

Example 2 [The Wishart mixtures]. Let Y1, . . . , Yk be i.i.d. d-dimensional centered Gaussian vectors with co-
variance matrix Σ, |Σ| > 0, k > d, and U = L(Wk) := Wd(Σ, k), where Wk =

∑k
j=1 Y

>
j Yj . It is known

(see, e.g., [1, 12]) that Wd(Σ, k), called the Wishart distribution, is a multivariate analogue of χ2
k-distribution

and enjoys the following properties:

∫
M+
d

exp
{
− tr(AΘ)

}
Wd(Σ, k | dA) =

|Σ−1|k/2

|Σ−1 + 2Θ|k/2
, Θ ∈M+

d ,

L
(
(cWk, c)

)
= L

(
(cΣ, c)χ2

k

)
, c ∈ Rd,

and

Wd(Σ, k | dA) = wd(Σ, k | A) dA,

where, for A ∈M+
d ,

wd(Σ, k | A) =


|A|(k−d−1)/2 exp{− 1

2
tr(Σ−1A)}

(2d|Σ|)k/2πd(d−1)/4
∏d

j=1
Γ( k−j+1

2
)

if |A| > 0,

0 otherwise.

If d > 2, the Wishart distribution is not infinitely divisible (see [9, 13]).
We have that, for all c ∈ Rd and n = 1, 2, . . . ,

∫
M+
d

(cA, c)nWd(Σ, k | dA) = (cΣ, c)nE
(
χ2
k

)n =
2nΓ(n+ k

2 )
Γ(k2 )

(cΣ, c)n <∞.

Thus, if the law of X is the Wd(Σ, k)-mixture of centered Gaussian distributions, then, for all n > 1, the
formula (2.5) holds,

E(c1, X)(c2, X) =
2Γ(1 + k

2 )
Γ(k2 )

(c1, Σ, c2) = k(c1Σ, c2),

and, by (2.3), for z ∈ Rd,

Eei(z,X) =
|Σ−1|k/2

|Σ−1 + z>z|k/2
.

Example 3 [The multivariate t-distributions]. Under the assumptions of Example 2, the matrixWk is invertible
with probability 1. In this case, taking U = L(kW−1

k ), it is known that, for all c ∈ Rd (see, e.g., [12]),

L
(
k
(
cW−1

k , c
))

= L
(
k
(
cΣ−1, c

) 1
χ2
k−d+1

)
,
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implying that, for c 6= 0,

∫
M+
d

(cA, c)n U(dA) =

{
kn(cΣ−1, c)nΓ(k−d+1

2 − n) if n < k−d+1
2 ,

∞ if n > k−d+1
2 .

So, if the law of X is the U -mixture of centered Gaussian distributions, then formula (2.5) holds
for n < k−d+1

2 . If k > d+ 1, then

E(c1, X)(c2, X) = k
(
c1Σ

−1, c2
)
Γ
(
k − d− 1

2

)
.

It is also known (see, e.g., [11]) that the law L(X) has the density fX of the multivariate t-distribution:

fX(x) =
Γ(k+d

2 )
(πk)d/2Γ(k/2)|Σ|1/2

(
1 +

(xΣ−1, x)
k

)− k+d
2

, x ∈ Rd.

From (3.3) and [5] we find that

Eei(z,X) =
[k(zΣ, z)]k/4

2k/2−1Γ(k/2)
Kk/2

(√
k(zΣ, z)

)
, z ∈ Rd, (3.1)

where Kν is a modified Bessel function of the third kind, i.e.,

Kν(x) =
1
2

∞∫
0

u−ν−1 exp
{
−1

2
x

(
u+

1
u

)}
du, x > 0, ν ∈ R1.

From (2.3) and (3.1) we derive that, for Θ = 1
2z
>z ∈M+

d , z ∈ Rd,

φU (Θ) = Ee−k tr(W−1
k Θ) =

[2k tr(ΣΘ)]k/4

2k/2−1Γ(k2 )
Kk/2

(√
2k tr(ΣΘ)

)
(3.2)

and conjecture that (3.2) holds true for all Θ ∈M+
d .

Example 4. Let Rm
+ = {x = (x1, . . . , xm): xj > 0, j = 1, . . . ,m}. Suppose that a random vector Z =

(Z1, . . . , Zm) takes its values in Rm
+ , Ξ =

∑m
j=1 ZjΣj , where the matrices Σj ∈ M+

d , j = 1, . . . ,m, are
fixed, and U = L(Ξ).

If φZ(t) := Ee−(Z,t), t ∈ Rm
+ , then

φU (Θ) = Ee− tr(ΞΘ) = Ee−
∑m

j=1
Zj tr(ΣjΘ)

= φZ
(

tr(Σ1Θ), . . . , tr(ΣmΘ)
)
. (3.3)

Obviously, for each c ∈ Rd,

E(cΞ, c)n = E

(
m∑
j=1

Zj(cΣj , c)

)n
<∞
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if and only if

EZnj <∞, j = 1, . . . ,m. (3.4)

If L(X) is the U -mixture of centered Gaussian distributions and if (3.4) is satisfied, then

E

[
2n∏
j=1

(cj , X)

]
=

∑
σ∈Π2n

∫
Rm+

mσ
2n

(
c,

m∑
j=1

xjΣj

)
P (Z ∈ dx). (3.5)

In particular, if EZj <∞, j = 1, . . . ,m, then

E(c1, X)(c2, X) =
m∑
j=1

EZj(c1Σj , c2). (3.6)

Applying (2.3) and (3.3), we find that

Eei(z,X) = φZ

(
1
2

(zΣ1, z), . . . ,
1
2

(zΣm, z)
)
. (3.7)

If L(Z) is infinitely divisible distribution on Rm
+ with characteristics (x0, ν), i.e.,

φZ(t) = exp
{
−
(
x0, t

)
−
∫

Rm+

(
1− e−(x,t)) ν(dx)

}
, (3.8)

where x0 ∈ Rm
+ , ν({0}) = 0, and ∫

Rm+

|x| ∧ 1 ν(dx) <∞,

then L(U) is infinitely divisible distribution on M+
d with

φU (Θ) = exp

{
−

m∑
j=1

x0
j tr(ΣjΘ)−

∫
Rm+

(
1− exp

{
−

m∑
j=1

xj tr(ΣjΘ)

})
ν(dx)

}
, Θ ∈M+

d .

If L(X) is the U -mixture of centered Gaussian distributions and∫
Rm+

xnj ν(dx) <∞, j = 1, . . . ,m, (3.9)

then formula (3.5) holds, and from (3.3), (3.7), and (3.8) it follows that L(X) is an infinitely divisible distri-
bution on Rd with

Eei(z,X) = exp

{
−1

2

m∑
j=1

x0
j (zΣj , z)−

∫
Rm+

(
1− exp

{
−1

2

m∑
j=1

xj(zΣj , z)

})
ν(dx)

}
.

In particular, if (3.9) is satisfied with n = 1, then formula (3.6) holds.
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