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Abstract. We deal with the stability analysis of difference schemes for a one-dimensional parabolic equation subject to
integral conditions. It is based on the spectral structure of the transition matrix of a difference scheme. The stability
domain is defined by using the hyperbola which is the locus of points where the transition matrix has trivial eigenvalues.
The stability conditions obtained are much more general compared with those known in the literature. We analyze three
separate cases of nonlocal integral conditions and solve an example illustrating the efficiency of the technique.
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1 INTRODUCTION. PROBLEM FORMULATION

We consider the one-dimensional parabolic equation subject to two integral conditions and one initial condi-
tion:

g?:gj;Jrf(x.t), 0<z<1, 0<t<T, (1.1)

u(0,t) = /1 a(@)u(z, t) de + (1), (1.2)
01

u(l, 1) = / B(z)ulz, t) dz + ps(t), (1.3)

u(z, 0) :(:o(x). (1.4)

To solve this problem, we apply the finite-difference method. The main objective of the article is analysis
of the stability conditions for the resulting system of finite-difference equations.

The stability of finite-difference schemes in the case of various one-dimensional parabolic equations sub-
ject to integral conditions (1.2)—(1.3) has been investigated by numerous authors. In [7], a stability and
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convergence analysis is given for both explicit and implicit difference schemes, provided that the conditions

1

1
/|a(x)|d:r <1 and /]ﬁ(m)]dx <1 (1.5)
0

0

are satisfied. In the same article, the convergence of the Crank—Nicolson difference scheme is proved under
the other, more rigorous assumption

1

1
(/|a(az)|2dx)l/2 + (/]6(x)]2dx)1/2 < V3/2. (1.6)
0

0

The case of conditions (1.5) is considered in [3] as well, where the stability of difference schemes is also
analyzed. In [14], the stability of the difference schemes is proved under the condition

1

1
/|a(x)]2dx+/|ﬂ(:r)|2dm <2 (1.7)
0

0

In [8], a theoretical analysis of the discrete Galerkin method for the nonlinear parabolic equation

ou 0 ou
Frie %<a(:v)%) + F(u,z,t)

subject to nonlocal conditions (1.2) and (1.3) is provided under the conditions

1

1
/|a(w)|2dx <1, /]ﬁ(:ﬁ)|2dx <1 (1.8)
0

0

The main goal of our article is the stability analysis of difference schemes, based on a principle different
from those discussed in the above-mentioned articles; namely, the stability is there investigated on the basis
of the spectral structure of the difference operator. The peculiarity of this technique lies in that the difference
operator subject to any nonlocal condition is always nonsymmetric. Moreover, the eigenvalues of this oper-
ator are not necessarily positive or even real. This technique was previously used by the author in [20] for
a(z) = a = const and () = B = const. Analyzing the spectrum of the difference operator, there appears
the opportunity to prove the stability of the difference schemes in the case of much more general conditions,
compared to conditions (1.5), (1.6), (1.7), or (1.8).

The structure of the article is as follows. In Section 2, we develop the difference schemes and relate the
corresponding stability problem to the eigenvalue problem for the difference operator (matrix). In Section 3,
we define the concept of stability of difference schemes by using the spectrum of transition matrix and
give some considerations on the definition. In Section 4, we derive an equation of a hyperbola where the
difference operator has zero eigenvalue on each branch. This hyperbola is taken as a basis to determine the
stability domain of the difference schemes. Sections 5.1 and 5.2 deal with a couple of specific cases of
integral conditions (1.2) and (1.3) where the hyperbola degenerates to a straight line. In Section 5.3, we
present the results of computer modeling in the case of variable coefficients «(x) and () that illustrate the
efficiency of the technique. Section 6 contains some corollaries and possible extensions of the problem.

2 DEVELOPING THE DIFFERENCE SCHEMES

To study stability conditions for a difference scheme, we analyze the spectrum of the transition matrix of the
corresponding system of difference equations. For this purpose, we write the integral conditions of problem
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(1.1)—(1.4) in a slightly different form, introducing new parameters 1, 2. Namely, we write conditions (1.2)
and (1.3) in the form

1
u(0,t) =m /a(m)u(w, t)dz + pi(t), (2.1)

0
u(1,t) —72/6 u(z, t) dx + pa(t). (2.2)

Next, we approximate the differential problem (1.1), (2.1), (2.2), (1.4) by the following difference prob-
lem:

J+1 _ rrg ) )
g c AU 4 (1 — o) AU + f7, (2.3)
Ug“ =y (a, UJH) + M{H, 2.4)
UG = 78,0771 + )t (2.5)
U = ¢, (2.6)

where 0< o <1;i=1,2,...,N—1; j=0,1,...,M —1; h=1/N, 7 = T/M,

Ul —2U] + UYy

AU! = 2 ,
) j+1 j+1  N-—
(a, UIt) :h(aoU J;OC ~NUy Z UJ-H)
=1
4 j+1 j+1  N-1 _
(8,07+1) = (PR VEN 4 37 ).

I
—

i

We rearrange this system of difference equations (2.3)—(2.6) in a different form. To this end, we rewrite
conditions (2.4), (2.5) in the form of a system of two equations with two unknowns Ug“, U ]JVH:

h , h , N-1 A .
(1 .mn 2040>U8+1 . n 2aN UJJV+1 =mh Y aiUij—H + M]1+17
=1 Q2.7)

Y2hBo YehBN Y, Nl i ;
— R0+ (1= B U = e X AU

We solve this system for the unknowns Ug+1, U]{,H with respect to the remaining unknowns. System (2.7)
has a single solution if its determinant is not equal to zero, i.e.,

Yihao  mhayn

1—
D= 2 SR
_22hfBo wehBN

2 2

If the functions «(x) and B(x) in conditions (2.1)—(2.2) are bounded in the interval [0, 1], i.e., if

ma@)| < My < oo, |yeB@) <My <oo, we 0,1,
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and the mesh h < 1/Mj, then

_ Y1hag Y2hBN yhan v2hBo hM;y hM; hM;
D_(l— : )(1— 5 )— 5 2(1— 2)(1— 2)— =1 hMi>0.
Now, we can write the solution of (2.7) in the form
. N-1 , .
U™ =mh 3 aU + ™,
=1 (2.8)

. N—-1 . .
UL = y2h ) bU !+ @t
1=

where

1 (ai B who;ﬁzv N ’Y2h§i0‘N)’

1 mnhBicg  y1hao;Bo
bi= =0 — ;
D (ﬂ 2 + 2 )

g1 1 ( j+1 rRhON 1 'YlhOéNMj+1)

Hr = D 1251 9 1251 9 2

. 1 . hBy han s
—j+1 _ L /og41 2000 41 MNQQ  54q
Hy = D (.UQ 9 151 B I25) )

Now taking ¢ = 1 in system (2.3) and putting the expressions (2.8) for Ug“, U ]]\‘,H into the equations of
the system for ¢ = 1 and ¢ = N — 1, we get the expression

N-1 . . . . .
mh % qUi Tt —2Uit 1 U+ T 2T =1,

gitt i q , , . . .
=5 (U —20i T + UL + 12 =2 N -2, (2.9)

N—-1 . . . . .
12h ¥ nUI T + UL — 203 + i 2, = N1

Defining the square matrix of order (N — 1)

2 — vlhal -1 - ’Ylh(lg *’ylhag e e *’ythLNfl
-1 2 -1 0
0 -1 2 0
A=h2 (2.10)
P 1
—2hb1 —2hbo —y2hbs ... —1—"2hby_2 2—yhby_1

allows us to rewrite the system of difference equations (2.9) on the (j + 1)th level in the vector form
(E + TA) Uit = yi 4 r It 2.11)

where U/*1, U7, and F7*! are vectors of order N — 1, and E is the identity matrix.
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Lemma 1. The eigenvalue problem
AU = \U (2.12)

for the matrix A is equivalent to the difference eigenvalue problem

Ui-1 —2U; + Ui

2 +AU; =0, i=1,2,...,N—1, (2.13)
Uo = Vl(aaU)a (2.14)
Un =7(8,U). (2.15)

Proof. Equation (2.12) directly follows from system (2.13)—(2.15) using the same technique as that used
to get Eq. (2.11) from system (2.3)—(2.5). The inverse procedure, i.e., the derivation of system (2.3)—(2.5)
from problem (2.12), is obvious if we introduce two additional variables

N—-1 N—1
Uop =mh Z a;U;, Un = 72h Z b;Uj.
i=1 i=1

The lemma is proved.

Remark 1. Difference eigenvalue problem (2.13)—(2.15) can be constructed in an ordinary way, applying the
finite-difference method to the differential eigenvalue problem

2
d—Z+Au:0, O<z<l, (2.16)
dz
1
u(0) =7 /a(m)u(:c) dz, (2.17)
0
1
u(l) = 72/5(:6)11(1:) dx. (2.18)
0

In the case of ¢ = 0 (explicit scheme) instead of ¢ = 1 (implicit scheme) in Eq. (2.3), the system of
difference equations (2.3)—(2.5) on the (j + 1)th level can be similarly written in the form

Uit = (E - TA) Ui 4 7F9, (2.19)
where the matrix A and vectors U7t U7, and F7 are defined as in problem (2.11).

3 STABILITY OF DIFFERENCE SCHEMES

A sufficient stability condition for difference scheme of the form
Uit = sui + f4, (3.1

can be written in the form [17]

[SII < 1+ co, (3.2)
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where ¢ is a constant independent of both 7 and h. In the case of symmetric matrix S, we can define

IS = p(8) = | _max [(S)]

where \;(S) are the eigenvalues of S, and p(.S) is the spectral radius of S. Thus, the stability of difference
scheme (3.1) is confirmed by the condition p(S) < 1.

In the case of nonsymmetric matrix S, which is typical for the difference schemes with nonlocal con-
ditions, the sufficient stability condition (3.2) is usually replaced by the necessary von Neumann condition

IN(9)] <1+ e, (3.3)

where c; is a constant independent of both 7 and h (see, e.g., [9], [16]).

In the case where S is a nonsymmetric matrix, the inequality p(S) < 1 is a necessary and sufficient
condition to define a norm ||S||« of the matrix S such that ||S][« < 1 (see [1]). As is noted in ([9],
Section 25.2), if the necessary von Neumann condition (3.3) does not hold, then it is practically impossible
to define the norms of vectors or matrices so that the difference scheme is stable. And vice versa, if
condition (3.3) is true, then one can always succeed in defining norms so that the difference scheme is
stable.

Monograph [18] (Section 2.2.3) gives a method to define a norm ||.S||., under the condition p(S) < 1,
such that inequality ||S||. < 1 + € holds for every sufficiently small positive number £ > 0 given in
advance. We observe that if S is a simple-structured matrix, i.e., the number of linearly independent
eigenvectors is equal to the order of the matrix, then one can define the norm

15[« = p(S).

In this case, the vector norm, compatible to the matrix norm ||S||., is defined by
~1
Ul = [I1P7"U[[3,

where P is a matrix with columns that are linearly independent eigenvectors of the matrix S, and

lolls = (13" o)
=1

This definition of the norm of a nonsymmetric matrix, ||S||. = p(S), was used in [19] to investigate the
iterative methods for the systems of difference equations with nonlocal conditions.

In the following sections, we will use the stability condition p(S) < 1 of the difference scheme. It
is argued in [4] that this condition ensures the step stability of the difference scheme defined by the
inequality

ul|<c, j=12,...,

where the constant C' depends on 7 and h.

4 ANALYSIS OF THE SPECTRUM OF MATRIX A

Here we investigate the spectrum of the matrix A given by (2.10). Simply speaking, we will find,
according to Lemma 1, all the eigenvalues of the difference problem (2.13)—(2.15). For this purpose, we
will apply the same technique as in [2], [6], [15], [21], [22], where the spectrum of both differential and
difference operators was analyzed.

Dealing with the stability of the system of difference equations (2.3)—(2.6), it is important to clearify
the conditions under which the eigenvalue of the matrix A equals zero. First of all, we will answer this
question.
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Lemma 2. The necessary and sufficient condition for the eigenvalue of the difference problem (2.13)—(2.15) to
be zero, A\ = 0, is as follows:

71/72[(a7 Z‘)(ﬂ, 1) - (ﬂ?x)(a7 1)] + /71(0[7 1— JZ‘) + 72(/87 J,') —-1=0. (41)
Proof. For X\ = 0, the general solution of the difference equations (2.13) is
Uy=cith+c, i=0,1,...,N, 4.2)

for any free constants c; and ca. We choose the values of the constants so that solution (4.2) also satisfies
nonlocal conditions (2.14) and (2.15). Therefore, we put solution (4.2) into conditions (2.14), (2.15):

c2 = mei(a,x) + yiea(a, 1),
4.3)

c1 + c2 = yec1(B, ) + y2c2(8, 1).

For A = 0 to be an eigenvalue of the problem (2.13)—(2.15), it is necessary and sufficient that solution
(4.2) be not identically equal to zero, i.e., system (4.3) has a nontrivial solution (¢1,c2). Therefore, the
determinant of the system must be zero:

_’71(04, 'r) 1- 7 (aa 1)

1—(f,z) 1-7(B,1)
This yields (4.1). The lemma is proved.

Equation (4.1) in the coordinate system (71, 72) represents a hyperbola. Depending on the expressions
of a(x) and f(x), the hyperbola (4.1) can degenerate to a straight line. This happens when the coefficient
A = (o,2)(6,1) — (B,2)(a, 1) at the term ~;y2 equals zero. We point out the main cases where the
hyperbola degenerates to a straight line, i.e., A = 0.

Lemma 3. If at least one of the conditions listed below is true, then (4.1) defines a straight line in the coordi-
nate system (y1,72)

1. a(z) =a=const and (x) = = const;
2. a(x) =cf(x), c=const,

3. (a,1)=0, (B8,1)=0;

4. a(z)=0 orp(z)=0.

Now we explain the technique for the stability analysis of difference schemes. Two branches of
hyperbola divide the plane (71, ~2) into three unbounded regions. If hyperbola degenerates to a straight
line, then it divides the plane only into two unbounded parts. One of these regions contains the point
(y1 = 0, 72 = 0). It never belongs to the hyperbola or the straight line and can be located either
somewhere between the branches of the hyperbola or on one side of both branches. The point (vy; =
0, 72 = 0) is significant because the case 73 = 0, 72 = 0 corresponds to the parabolic equation (1.1)
with classical boundary-value conditions (Dirichlet conditions in this case)

w(0) = pa(t), (1) = pa(t).
In the case v; = 0,2 = 0, the following two propositions are important:

Lith. Math. J., 48(3):339-356, 2008.
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1. The matrix A is symmetric, and all of its eigenvalues are distinct and positive:

and the eigenvectors are linearly independent (and orthogonal):

U* = {UF} = {sinkmih}, k=1,2,...,N —1.
2. Implicit difference scheme (2.11) is unconditionally stable for all values of h > 0 and 7 > 0, and
explicit difference scheme (2.19) is conditionally stable for 7/h? < 1/2.

Next, we prove two propositions on relating stability of difference schemes to spectral properties of
the nonsymmetric matrix A defined by (2.10).

Theorem 1. If all eigenvalues of the matrix A are real and positive, then difference scheme (2.11) is uncondi-
tionally stable and explicit difference scheme (2.19) is stable if T < 2/p(A).

Proof. For o =1, we directly derive

1

S = P((B +74) )] = T

which shows that p(S) < 1 for all 7 > 0. For o = 0,
A(S)] = M (B = TA)[ = [1 = TAL(A)].

Thus, p(S) < 1 if
2
m.
The condition p(S) < 1 ensures the stability of difference schemes (2.11) and (2.19).

T <

A more general proposition concerning the complex eigenvalues of matrix A also holds. Denote
)\k(A) = Re )\k(A) + ¢Im )\k(A)

Theorem 2. If Re A\, (A) > 0, then difference scheme (2.11) is unconditionally stable and difference scheme
(2.19) is stable if T is sufficiently small, i.e.,

2Re A, (A)

[Re A (A)]2 + [Im Mg (A)]2° (4.4)

T<

Proof. If A\(A) is a complex number, then (2.11) implies

1 1
L+ TA(A)] |14 TRe Ap(A) +itIm A\ (A)|

Ak (S)]

= ([1+ TRe Ae(A)P? + [rTm Ak(A)]2>_l/ ’
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Therefore, p(S) < 1 for any 7 > 0. Similarly, Eq. (2.19) yields

IM(S) = 1 — 7Ae(A)]? = [1 — TRe A\p(A)]? + [7Im Ay (A)]?
= 7-2((Re Ae(4))? + (Im )\k(A))2> — 27Re \i(A) + 1.

Therefore, the equality p(S) < 1 holds if (4.4) is true.

5 EXAMPLES OF STABILITY ANALYSIS OF DIFFERENCE SCHEMES

5.1 Problem 1: a(z) = const, 3(x) = const.

In this case, one can take «(z) = 1 and f(x) = 1 and express the stability condition of the difference
scheme (2.3)—(2.6) in terms of parameters 7;,y2. By Lemma 3, the hyperbola degenerates to the straight
line 1 4+ 72 = 2. This problem is investigated in [20]. When ~; and ~» satisfy the condition

M+ <2, 5.1

then all eigenvalues of the matrix A are real and positive. Thus, by Theorem 1 we have the stability of
the difference schemes (2.11) and (2.19), and the stability domain is the half-plane ~y; + v2 < 2.

5.2 Problem 2: a(z) =0, f(z) = x.

By Lemma 3, in this case, hyperbola (4.1) also degenerates to the straight line 72 = const. We
investigate this problem in detail. In order to understand fully the spectral structure of the matrix A,
we investigate both the difference eigenvalue problem (2.13)—(2.15) and differential eigenvalue problem
(2.16)—(2.18).

Lemma 4. If o(z) = 0 and B(x) = x, then the number A\ = 0 is an eigenvalue of the differential eigenvalue
problem (2.16)—(2.18) if and only if v2 = 3. The corresponding eigenvector is u(x) = c1x, where ¢y is a free
constant.

Proof. When A = 0, the solution of differential equation (2.16) satisfying condition (2.17) with a(x) =
0 is u(z) = cyz. Putting it into nonlocal condition (2.18), we obtain

1
_ 2
01—01’}/2/.T dx
0

or

61(1—%> =0.

Hence, the condition u(z) # 0 is equivalent to the condition 75 = 3. The lemma is proved.

The following lemma is proved similarly.

Lemma 5. If a(x) = 0 and 3(x) = x, then the number A = 0 is an eigenvalue of the difference eigenvalue
problem (2.13)—(2.15) if and only if

_ 3 3h?
The corresponding eigenvector is U; = Cih, 1 =0,1,..., N.

5.2)

Lith. Math. J., 48(3):339-356, 2008.
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We observe that the proposition of Lemma 5 can be obtained directly by using the equation of
hyperbola (4.1). If a(x) =0 and 3(z) = x, then Eq. (4.1) becomes

(o, 7) =1
or
1 N-1
. 2\
12h(5 + 3 (ih) )=1

which implies condition (5.2).

Lemma 6. If a(z) = 0 and B(x) = =z, then the negative eigenvalues of the differential eigenvalue problem
(2.16)—(2.18), provided that they exist, are given by A\, = — ﬂ,%, where B, > 0 are the solutions of the equation

Y203

tanh 8 = .
anh B2+ 72

(5.3)

Proof. When \ < 0, the solution of (2.16) satisfying condition (2.17) with «(x) =0 is given by
u(x) = cgsinh Sz, [B=+v—-X>0.

Putting this expression for u(z) into integral condition (2.18), we obtain

1
cosinh 8 = cym/xsinh Oz dz.
0

Elementary transformations give

cosh ¢ _ sinh )

cosinh 3 = 0272( 3 7

Hence, ¢z # 0 if

cosh @ B sinh 0 )

sinh g = 72( 3 72

This yields Eq. (5.3).

Lemma 7. Since a(x) = 0 and ((x) = x, the differential eigenvalue problem (2.16)—(2.18) has a single
negative eigenvalue if and only if v > 3.

Proof. The functions f1(3) = tanh 3 and fo(3) = 23/(8% + 2) both are equal to zero at the point
B = 0. Moreover, fi((3) increases over the interval [0,00) from O to 1.

If 79 < 0, then the function fo(3) has an infinite discontinuity at the point 5y = /—72 . Next,
f1(B) < fa2(B) for B € (0,6y) and fo(B) < 0 for 5 € (By,00). Thus, Eq. (5.3) has no solutions in
(0, 00).

If 0 <2 <3, then f1(8) < f2(0) in the interval (0,00), i.e., Eq. (5.3) has no solutions in (0, c0)
as well.

If v2 > 3, then fi(5) > 0 and is continuous in (0,00), and there exists a unique (* such that
f1(B) < f2(B) for g € (0,5*) and f1(B) > fa(B) for B € (%, 00). In this case, Eq. (5.3) has a unique
solution 5* > 0.
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Lemma 8. If a(x) = 0 and B(x) = x, then the differential eigenvalue problem (2.16)—(2.18) has infinitely

many positive eigenvalues for all values of 5.

Proof. When \ > 0, the solution of (2.16) satisfying condition (2.17) with a(x) =0 is given by

u(z) = ecpsinax, a=vVA>0.

Putting this expression for u(x) into condition (2.18), we obtain

1
cosina = coys /xsin ax dx
0

or

cosa  sin a)

cosSina = 0272(— 3

a a
To have u(x) # 0, it is necessary that

. cosa sina
s1noz—72(— o a2)
or
Yoo
tana = 5+
Y2 -«

5.4

This equation has infinitely many solutions o > 0. For each «y, the value A\, = oz,% is an eigenvalue of

differential problem (2.16)—(2.18).

We observe that the question on the existence or nonexistence of complex eigenvalues of problem

(2.16)—(2.18) remains unanswered.

Theorem 3. If a(x) = 0 and ((x) = x, then, depending on the value of 7y, the difference eigenvalue problem

(2.13)—(2.15) has N—1 or N —2 positive eigenvalues.

Proof. We write differential equation (2.13) in the form

U;_1 — 2(1 — )\2}12)[]1 4+ Ui+1 = 0.

We look for the positive eigenvalues A > 0; therefore,

Ah?
1- " <1
5 <

Let us begin with the eigenvalues A > 0 such that

\h?
-2
Denote
\h?2
cosah =1 — 5

Lith. Math. J., 48(3):339-356, 2008.
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Then
A= —sin® —. (5.6)
One can directly check that the equation
Ui—1 —2cosahlU; +U;1 =0
has a solution satisfying condition (2.14) with «(z) = 0, which is given by
U, = cosintah, 1=0,1,..., N. 5.7

Putting this expression into nonlocal condition (2.15) yields

. N-1
cosina = cyyoh(=5— + Y ihsiniah). (5.8)
=1

As usual, we assume that cy # 0. Rearranging the right-hand side of Eq. (5.8), we obtain

. sin o sin o N cos 2]2;1ah
sina = yoh 5 +h 5ok "
2

4 sin 2sin 5
o sina+h sin a N(cosozcos%h—ksinasin%h)
7 o} 4 sin? %h 2sin %h
ol hsin o CoS «
-2 4sin2%h 2tan%h )
Denoting
4 . ,ah 2 ah
A(ah) = oo ST o B(ah) = @tan -
we get
. sin o 1 cosa
sina = g (A(ah) o " Blah) o ) (5.9)

When ah is a sufficiently small positive number, A(ah) ~ 1, B(ah) ~ 1. Thus, when h is a
sufficiently small positive number, the investigation of solutions of Eq. (5.9) does not differ essentially
from that for Eg. (5.4) given in the proof of Lemma 8.

Writing (5.9) in the form

A(ah)

B(ah) 12¢
2 — A(ah)a?
and taking into account Eq. (5.6), we notice that the roots A\, are all distinct as axh/2 varies from 0

to 7/2, and, outside this range, the eigenvalues repeat themselves. Therefore, we seek the solutions of
(5.10) in the interval « € (0, N7) rather that in an infinite one. We denote

tana =

(5.10)

A(ah)

fil@) =tana,  fo(a) = Zrosash/ (02 = Alah)a?)

and investigate separate cases, depending on the value of ~s.



Stability analysis of FDS for parabolic equations subject to non-local conditions 351

Case 1. o < 0. In this case, fa(«) is a positive continuous function over the interval « € (0, N).
Taking into account the properties of the periodic function fi(«), we obtain that (5.10) has exactly
one root ay, in each interval (kmw, kr +7w/2), k=1,2,...,N — 1.

Consequently, since 72 < 0 for the problem (2.13)—(2.15), there exist exactly N—1 positive
eigenvalues:

A = %sin2 aTkh, ay € (km, km + g)

Case 2. 0 < 2 < 3 —3h?/(2+h?). In this case, the function fy(a) has a discontinuity at
a =~ ,/72. It increases over the interval (0,&) from O to oo and increases over the interval (&, N7)
from oo to some negative value. Equation (5.10) has N — 1 solutions, one of which lies in the
interval (0, ), while the remaining belong to the intervals (km — w/2,kw), k=2,...,N — 1, one in
each of them. Consequently, Eq. (5.9) has N — 1 solutions in the interval (0, N7); therefore, there
exist N — 1 positive eigenvalues of problem (2.13)—(2.15).

Case 3. 72 >3 —3h?/(2+ h?). In this case, the function fy(a) has a discontinuity at & ~ /72 as
well. Depending on the value of 2, Eq. (5.10) has a solution in each of N — 2 intervals:

(w,w+g),...,((k_1)7r,(k_1)7r+g);((k+1)7r_g,(k+1)7r)...,((N_1)w_g,(N_1)w);

where k is an integer such that v € (kr — 7/2, kw + 7/2]. Therefore, the total number of solutions of
(5.10) in the interval (0, N7) is N —2, and problem (2.13)—(2.15) has N—2 positive eigenvalues. The
theorem is proved.

Remark 2. The proof of the theorem is based upon the assumption that the number A satisfies the
inequality |1 — Ah?/2| < 1, ie., A € (0,4/h?). Other eigenvalues, )\, > 4/h? do not exist because
we found all of the N — 1 eigenvalues of matrix A. For the values of ~ that yield N—2 positive
eigenvalues, there exist single eigenvalues that are equal to zero or are negative.

Corollary 1. The difference eigenvalue problem (2.13)-(2.15) has no complex eigenvalues.

It is noteworthy that, for the differential problem, we cannot make a similar conclusion without a
deeper investigation.
Lemmas 4-8 and Theorem 3 yield the main result of this section stated as Theorem 4.

Theorem 4. If a(x) = 0, B(x) = x, and v < 3 + O(h?), then difference scheme (2.11) is unconditionally
stable, while difference scheme (2.19) is stable under the additional condition T/ h? <1 /2.

Proof. Since all the eigenvalues of the matrix A are real, taking into account the condition that
72 < 3 —3h%/(2 + h?) is positive, the stability follows from Theorem 1. Along with the Remark
for Theorem 3, we have 0 < ap < 4/h%. Hence, since o = 0, the additional stability condition
7 < 2/p(A) of difference scheme (2.19) can be replaced by 7 < h?/2 or 7/h% < 1/2.

53 Problem3: a(z) =1+z, f(z)=1—=z.

In this case, Eq. (4.1) defines a hyperbola as the locus of points where difference problem (2.13)—
(2.15) has an eigenvalue equal to zero, which does not degenerate to a straight line.

Lemma9. If a(z) = 1 + z and f(x) = 1 — z, then the number X = 0 is the eigenvalue of the difference
eigenvalue problem (2.13)—(2.15) if and only if

Y172(1 + 2h2) + 31 (4 — h?) 4+ 72(1 — h?) — 6 = 0. (5.11)

Lith. Math. J., 48(3):339-356, 2008.
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The proof of the lemma is similar to that of Lemma 4. If we drop terms of order O(h?) in (5.11),
then we get the equation of the hyperbola

Mny2 +4m —r2—6=0. (5.12)

Equation (5.12) can be considered as a necessary and sufficient condition on parameters ~y;,y2 for
A =0 to be an eigenvalue of differential problem (2.16)—(2.18).

Lemma 10. If a(x) = 1 + = and f(x) = 1 — x, then the positive eigenvalues \i, of the difference problem
(2.13)—(2.15) are given by
4 h
A = 72 sin? a%?
where oy, are the solutions of the equation

4AB(cosa — 1 2A%sina 2ACsina A(—=2 4+ cosw Bsina

7172( (a3 )+ o2 - o )+’Yl<( 5 )+ 2 +C’cosa)
A  Bsi

— (£ - 255 - 0) +sina =0 (5.13)
« «

in the interval o € (0, N7), where

272 2
A:%h/tan%h, B:ah

5 ah o h(sin a — sin” «)

1 / sin 5 5

We see that
Ax1, B=1l, C=0

when ah is a sufficiently small number.

Equation (5.13) can be derived similarly to (5.9). If, in (5.13), we drop the terms of order O(h)
and O(h?), we get the following equation with the solutions defining the eigenvalues A\, = aj of
differential problem (2.16)—(2.18):

4(cosax — 1 2sin a —2+4cosa  sina 1 sina
17 ( ( - ) 4 = ) +m( * +— )—72(5—7)+sina20. (5.14)
For the differential problem, Eq. (5.14) has infinitely many solutions in the interval (0,00), i.e.,
problem (2.16)—(2.18) has an infinite set of eigenvalues. However, for the difference problem,
Eq. (5.13) has only a finite number of eigenvalues over the interval (0, N7), which depends on the
values of 71,72 and is not greater than N — 1. Contrary to Problems 1-2 analyzed in Sections 5.1
and 5.2, the present problem possesses complex eigenvalues for some values of vq,72. Therefore,
when investigating the stability of difference schemes (2.11) and (2.19) in the case of complex
eigenvalues, one has to apply Theorem 2, i.e., take into account condition Re \;(A) > 0.

We give a brief explanation of when and how the complex roots do appear. The hyperbola
defined by (5.11) divides the coordinate plane (7;,72) into three unbounded regions Si,S3,Ss3. The
region 57 is located between both branches of the hyperbola, the region Sy is above both branches
in the northeast direction from the origin of coordinates, and the region S3 is below both branches
of the hyperbola in the southwest direction from the origin of coordinates. We define the regions in
the following way. Denote

—1+h?
1+2h2°

"=

6 — ’}/1(4 - h2)
l pr—
)= AT i
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Then

Si={m <9, 22l()U{n =5, 7 <ln)},
SQ = {71 > :)/17 72 > l(ﬂ)/l)}7
Sz ={m <1, v <ln)}

The origin vy = 0, 72 = 0 of the coordinate system belongs to the region S; (for different
expressions of «(x) and (B(z), it can be in any other region). The region S; is separated from
the regions S2 and S3 by the hyperbola, at the points of which problem (2.13)-(2.15) has the zero
eigenvalue A = 0. For the values (v1,72) € S;, | = 2,3, problem (2.13)—(2.15) has a single negative
eigenvalue. Therefore, for the values (v1,72) € S;, [ = 2,3, the difference scheme does not satisfy
the stability condition p(S) < 1. Since all eigenvalues of the matrix A are positive in the origin
(1 =0, 72 =0), ie, p(S) <1, the stability region of difference scheme (2.13)—(2.15) is located in
the vicinity of the origin of coordinates and can be a part of the region S; or even fully coincide
with it. The stability region coincides with S; in the case where problem (2.13)—(2.15) has no
complex eigenvalues in the region S; possessing the property Re A\;(A) < 0.

Computer-aided modeling gives us a lot of complex solutions of Eq. (5.13) in the region Sj.
The complex root of (5.13) appears as the parameters ~;,72 vary so that the point 7;,y2 moves
away from the origin (0,0), and two distinct real roots of (5.13) merge into one real multiple root.

As the parameters <yi,7v2 vary further on, the multiple root of Eq. (5.13) can turn into two
complex conjugate roots Re A\;(A) £ ilm A\x(A). At the beginning, those two roots have the property
ReAp(A) > 0. As the parameters 71,79 vary further on, this property can vanish.

Using computer aided modeling, it is easy to make sure that there are no complex roots in
the rectangle 2 = {—2,64 < v < 1;-3,97 < 72 < 1}. If (y1,72) € £2, then all eigenvalues of the
matrix A are real and positive, except at one point (y; = 1, 72 = 1). At this point, which belongs
to hyperbola (5.11), the matrix A has exactly N — 2 positive eigenvalues and one zero eigenvalue
A=0.

A particular problem was solved applying difference schemes (2.11) and (2.19). When «a(z) =
1+ and §(x) =1—x, the functions f(x,t), pi(t), p2(t), and p(x) in problem (1.1), (2.1), (2.2),
(1.4) were chosen so that

u(z,t) = e* 2

is a solution of the differential problem. Tables 1 and 2 give the results of numerical solution
according to difference scheme (2.19) with h = 0.00625 (N = 160), 7 = h?/2, T = 2. Also the
tables show the maximal absolute value of the approximation error

J _ ( J
e = max |(u(x;t; —U.).
L KiKN-1 (i, t5) i

We note that

max u(x,2) =u(l,2) ~ 148.41,
o<a<l1

min u(z,2) = u(0,2) ~ 54.60.
0<z<1

The numerical results show that the stability region for difference scheme (2.19) approximating
problem (1.1), (2.1), (2.2), (1.4) covers a sufficiently large range of values of parameters ~i,72. A
similar situation was observed in [5], where the difference scheme in the case of a(z) = x and
B(z) = x? is stable for values of 71,72 significantly greater than 1.
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Table 1. Values of €/ for y1 < —2 Table 2. Values of ¢ for 1 > —0.5
Y1 Y1

V2 V2

—10 -5 -2 —-0.5 0 3
1.5 —0.180 —0.253-10"Y —0.258 - 107! 1.5 —0.243 —0.646 - 107! unstable
1.2 —0.768-10"2 —0.858-10"2 —0.108-10"* 12 —0.157-10"% —0.206-107! unstable
1.1 —0.604-10"2 —0.662-10"2 —0.769-1072 1.1 —0.964-10"2 —0.115-1071! unstable
1 —0481-1072 —0.517-1072 —0.574-1072 1 —0.667-10"2 —0.740-10"2 —0.921-1071
0 —0.101-10"2 —0.969-10"% —0.916-1073 0 —0.847-107% —0.793-10"% 0.837-1072
-2 0.201-10"2 0.185-107%2 0.172-1072 -5 0.201-1072 0.160-107%2  0.449-1072
-5  0.256-1072 0.268-10"2 0.226-102 —10  0.206-10"2  0.162-1072  0.439-1072
—10  unstable unstable 0.243-1072 —20  0.246-1072  0.176-10"2  0.436 - 1072
—20  unstable unstable 0.227-1072 —40  0.237-107% 0.185-1072  0.432-107?

—100 0.201-1072 0.188-10"2 0.430-1072

6 CONCLUSIONS AND EXTENSIONS

We propose a new technique for the stability analysis of difference schemes for parabolic equations
subject to integral conditions, which requires investigation of the spectrum of the transition matrix
of the system of difference equations. The characteristic feature of nonlocal problems is that the
transition matrix is always nonsymmetric. Depending on the values of parameters v, 72 included
into the integral conditions, the spectrum of the matrix can be sufficiently intricate: the matrix
can have one negative or trivial eigenvalue, and they can be multiple or complex. The proposed
technique for stability investigation has one important feature: for numerous problems, the stability
conditions it yields are much more general compared to those in [3], [7], [8], [14].

The hyperbola defined so that, at every point of this hyperbola, the transition matrix has
the trivial eigenvalue A = 0 plays an important role in the proposed stability analysis method.
The coefficients of the equation of the hyperbola are calculated in terms of the functionals of
the weight coefficients «(x) and (B(z) of the integral conditions. Having the equation of the
hyperbola, one can determine the values of parameters 7;, <2 such that the difference scheme is
unstable and such that it can be stable.

Numerical experiments showed that this technique of stability analysis of difference schemes is
quite efficient in practice. The values of parameters <, <2 for which the difference scheme is
stable can be sufficiently distant from the origin v; =0, v2 =0.

In the case where the transition matrix of the difference scheme is nonsymmetric, the idea to
use the stability criterion p(S) < 1 related to the vector norm

[ull« = 1P~ U3

(see Section 3), where P is the matrix such that its columns are linearly independent eigenvectors
of the initial matrix, is not new. In [10], [11], [12], [13], quite a similar way of defining the
vector norm using a matrix constructed of eigenvectors and adjoint vectors is exploited. Such a
situation is typical for parabolic equations subject to nonlocal conditions only at the endpoints of
the interval.

The stability analysis technique proposed in this article can naturally be extended to some
two-dimensional parabolic equations subject to integral conditions. As an example, we present the
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following problem:

10.

11.

12.

13.

14.

ou 0%*u  0%u
v _ogu odu D 1 .
ot 8$2+0y2 +f(mayat)7 (’m?y)e {0<£L’< s 0<y< },
u(z,0,t) = pi(x,t), wu(x,1,t) = po(x,t),

1

u(()’ Y, t) =M /a(x)u(x, Y, t) dr + M3(y7 t),
01

u(l,y,t) = 72/5(50)1‘(%%75) dt + pa(y, t),
0

u(z,y,0) = p(z,y).
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