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Abstract
The added value of candidate predictors for risk modeling is routinely evaluated by 
comparing the performance of models with or without including candidate predic-
tors. Such comparison is most meaningful when the estimated risk by the two mod-
els are both unbiased in the target population. Very often data for candidate pre-
dictors are sourced from nonrepresentative convenience samples. Updating the base 
model using the study data without acknowledging the discrepancy between the 
underlying distribution of the study data and that in the target population can lead 
to biased risk estimates and therefore an unfair evaluation of candidate predictors. 
To address this issue assuming access to a well-calibrated base model, we propose 
a semiparametric method for model fitting that enforces good calibration. The cen-
tral idea is to calibrate the fitted model against the base model by enforcing suitable 
constraints in maximizing the likelihood function. This approach enables unbiased 
assessment of model improvement offered by candidate predictors without requiring 
a representative sample from the target population, thus overcoming a significant 
practical challenge. We study theoretical properties for model parameter estimates, 
and demonstrate improvement in model calibration via extensive simulation stud-
ies. Finally, we apply the proposed method to data extracted from Penn Medicine 
Biobank to inform the added value of breast density for breast cancer risk assess-
ment in the Caucasian woman population.
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1 Introduction

To evaluate the value of new predictors for improving risk assessment, the stand-
ard approach is to compare the performance of models with or without including 
the new predictors. However, this practice assumes that the study sample is rep-
resentative of the target population of prediction. When data for new predictors is 
obtained from convenience samples, there may be differences in the distribution 
of risk predictors, outcome prevalence, and the relationship between outcomes 
and predictors when compared to the target population (Debray et al. 2015; Stey-
erberg 2019). Ignoring such discrepancies could lead to biased evaluations of the 
usefulness of these new predictors. For example, the evaluation of breast imaging 
biomarkers and polygenic risk scores for breast cancer risk assessment in Penn 
Biobank may not accurately inform the value of these new predictors in the U.S. 
Caucasian woman population.

To ensure proper performance comparison in the target population, ideally, the 
models should be calibrated to eliminate possible bias in risk estimates when the 
training data may follow a different distribution (Dalton 2013; Vergouwe et  al. 
2010; Ankerst et al. 2016; Pfeiffer et al. 2022). When the risk estimates are used 
to identify individuals at high risk, it is important to ensure calibration in the 
upper tail of the risk distribution (Song et  al. 2015). However, the availability 
of independent testing data from the target population is often limited, posing 
a significant challenge for model evaluation and comparison. When the goal of 
model comparison is to inform the added value of new predictors, often the base 
model with conventional predictors has been extensively validated in the target 
population. For example, the Breast Cancer Risk Assessment Tool (“BCRAT”; 
Gail et al. 1989) was validated in multiple cohorts for projecting individualized 
risk for the U.S. Caucasian women (Bondy et  al. 1994; Costantino et  al. 1999; 
Rockhill et al. 2001). To evaluate the potential improvement that breast imaging 
biomarkers and polygenic risk score can make on BCRAT, the data made avail-
able from Penn Medicine Biobank tends to have stronger family history.

In this work, assuming access to a well-calibrated base model with only con-
ventional predictors, we develop a novel semiparametric method for fitting a 
logistic regression model for predicting binary outcomes that include both con-
ventional and new risk predictors. A key feature of our approach is that we allow 
the distribution of the study data to differ from that in the target population, 
while ensuring that the resulting model exhibits a similar level of calibration as 
the base model. Our method therefore facilitates proper evaluation on the added 
value of new predictors, but bypasses the need of independent validation sample. 
The effectiveness of our method relies on two important requirements. Firstly, we 
assume that the distribution of conventional risk predictors is known in the target 
population. Secondly, we require that the relationship between the new and con-
ventional predictors remains identical in both the study and target populations. 
These assumptions ensure the feasibility of our method and pave the way for 
accurate model evaluation without relying on an independent validation dataset.
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The central idea of the proposed method is to calibrate the fitted model against 
the base model by enforcing suitable constraints in maximizing the likelihood func-
tion. Since the base model is well-calibrated in the target population, the imposed 
constraints are constructed to ensure that the predicted risk by the fitted model is 
also reasonably unbiased. This work is closely related to recent literature on utilizing 
summary level information to enhance the statistical efficiency in estimating regres-
sion parameters (Chatterjee et al. 2016; Zheng et al. 2022a, b; Zhai and Han 2022). 
For instance, in the context of fitting a logistic regression model, a novel constrained 
semiparametric maximum likelihood approach (Chatterjee et al. 2016) leveraged an 
established regression relationship between the outcome and a subset of covariates, 
resulting in improved efficiency when estimating odds ratio association parameters. 
However, these methods assume a correctly specified model for the relationship 
between the outcome and covariates, and they also require the probability distribu-
tion of the outcome and covariates to be identical in both populations. To improve 
calibration of models for predicting time-to-event outcomes, a constrained empirical 
likelihood method (Zheng et al. 2022a, b) was recently proposed to adjust the dis-
crepancy in baseline hazard rates, assuming that the study source and target popula-
tions share the same hazard ratio parameters. Notably, these works require randomly 
sampled data from the target population, and the external information was leveraged 
to increase statistical efficiency (Zhai and Han 2022). In contrast, our method spe-
cifically aims to reduce bias in risk estimation when the study sample is not repre-
sentative of the target population.

The rest of the article is organized as follows. We present a constrained maximum 
likelihood (“cML”) method in Sect. 2 and study its theoretical properties, with tech-
nical details provided in Appendix. In Sect. 3, we apply cML method to a dataset 
assembled from Penn Medicine Biobank to assess whether percent mammographic 
density can potentially improve prediction of 5-year breast cancer risk in the U.S. 
Caucasian women. We report results from extensive simulation studies in Sect. 4. 
Some discussions are given in Sect. 5.

2  Method

2.1  Notation and likelihood function

Let Y denote the binary outcome of interest ( Y = 1 : case; Y = 0 : control), 
X =

(
X1,… ,Xp

)T denote the p dimensional conventional risk predictors, and 
Z =

(
Z1,… , Zq

)T denote the q dimensional new candidate predictors. Data for 
(Y ,X,Z) is observed for a random sample of N subjects, (Yi,X

T
i
,ZT

i
) , i = 1…N , 

selected from a population PS , where the subscript “S” indicates “the study source 
population”. The probability and expectation of random variables on PS are denoted 
as PrS and ES , respectively. Denote the target population of prediction and correspond-
ing probability and expectation as P , Pr and E. The two populations P and PS may 
be different but are related. For example, Caucasian woman patients in Penn Medicine 
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Biobank ( PS ) represent a subset of the U.S. Caucasian woman population ( P ). Let �(X) 
denote the base model with conventional risk predictors X , which is well-calibrated in 
population P and has been evaluated across strata defined by X.

Our goal is to develop a well-calibrated model, P(Y = 1|X,Z) , for predicting the risk 
of Y using both conventional risk predictors, X , and new candidate predictors, Z , within 
the target population P . The probability distribution of X in P , �(x) ≡ Pr(X = x) , is 
known from external sources. For example, �(x) for conventional risk predictors in 
BCRAT can be estimated from the National Health Interview Survey. We allow dif-
ference between �(x) and the distribution of X in the source population, denoted as 
�(x) ≡ PrS(X = x) . Our goal is to fit a logistic regression working model for predicting 
Y with (XT ,ZT )T,

where � = (�0, �
T
X
, �T

Z
)T are the unknown regression parameters, that cali-

brates well in P . We assume that the conditional distribution of Z given X 
is the same in P and PS and follows a parametric model f� (z|x) . That is, 
Pr(Z = z ∣ X = x;�) = PrS(Z = z ∣ X = x;�) = f� (z|x) , where � is a vector of Euclid-
ean parameters. Below we propose a constrained maximum likelihood method for 
fitting model (1) with data 

(
Yi,Xi,Zi

)
 , i = 1…N from the study source population. 

The fitted model P�̂(Y = 1|X = x,Z = z) is guaranteed to calibrate similarly well as 
model �(X) in the target population P despite that the data is obtained from PS.

2.2  Constrained maximum likelihood method (“cML”)

The log-likelihood function for the observed data 
(
Yi,Xi,Zi

)
 , i = 1…N , can be written 

as

where the marginal distribution of X is ignored. The model fitted via direct maximi-
zation of likelihood function (2), denoted as g(�̂s

;x, z) , is expected to calibrate well 
in the source population PS but not necessarily in the target population P if these two 
populations differ. The superscript “s” in g(�̂s

;x, z) indicates that it was fitted solely 
using the source data. To address calibration in the target population P , we propose 
that maximization of likelihood function (2) under the constraints that the predicted 
risk by P�̂(Y = 1|X = x,Z = z) aligns closely with that by �(X) within risk intervals 
defined by X . The constraint is formally constructed as follows. We first categorize 
the predicted risk by �(X) into I intervals (ar, br) , r = 1,… I , with a1 = min{�(X)} 
and bI = max{�(X)} . Note that no specific functional form is required for �(X) . The 
averaged risk in P by �(X) in (ar, br) , r = 1,… I can be written as

(1)P�(Y = 1|X = x,Z = z) = g(�;x, z) ≡
exp

(
�0 + �T

X
x + �T

Z
z
)

1 + exp
(
�0 + �T

X
x + �T

Z
z
) ,

(2)l(�) ≡
N∑
i=1

log

[
exp

{
Yi
(
�0 + �T

X
Xi + �T

Z
Zi

)}

1 + exp
(
�0 + �T

X
Xi + �T

Z
Zi

) f�
(
Zi ∣ Xi

)]
,
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The proposed constraints enforce that the difference between the averaged risk by 
the fitted model g(�̂;x, z) and that by �(X) be small in the target population. Let 
d =

(
d1,… , dI

)
 denote a vector of positive numbers for the tolerance of difference. 

The constraints are formally expressed as

r = 1,… , I . Estimates of parameters (�T , �T )T , denoted as (�̂T
, �̂T )T , can then be 

obtained by maximizing the likelihood function (2) under constraints (3).
The tolerance vector d is pre-specified, where smaller values enforce stronger 

reliance on external information summarized in Pe
r
, r = 1,… , I , in model fitting. 

A large value for dr can be specified to disable the constraint in the rth interval. 
Ideally, the selection of calibration intervals (ar, br) should align with that used for 
assessing calibration of �(X) , and they can be adjusted to allow for more relaxed 
or tighter constraints. For example, when the fitted model g(�̂;x, z) is intended to 
be used for identifying high-risk patients, multiple calibration intervals can be 
placed in the high-risk region. The constraints (3) require that Pe

r
 provide accurate 

estimates of the average risk in interval (ar, br) . However, this may not always 
be the case. For example, BCRAT generally overestimates breast cancer risk in 
the high-risk region (Pal Choudhury et al. 2020). When the observed-to-expected 
ratio deviates from one in the validation of �(X) , Pe

r
 can be adjusted by multiply-

ing this ratio. This flexibility is particularly attractive given that mis-calibration 
frequently occurs in the low- or high-risk regions.

2.3  Computation of the cML estimator

Our proposed procedures for obtaining cML estimates is summarized as follows: 

1. Choose risk intervals {(ar, br), r = 1,… I} as defined by �(X) , and set the toler-
ance values dr.

2. Obtain the distribution of conventional predictors X , �(x) , in the target population 
P.

3. Maximize likelihood function (2) subject to the constraints (3)

In step 3, we apply the Lagrangian method based on Karush–Kuhn–Tucher 
(KKT) conditions (Deng et al. 2018; Nocedal and Wright 1999) to accommodate 
inequality in constraints (3). Let � =

(
�T , �T

)T . Define two functions C+
r
(�) and 

C−
r
(�) , r = 1,… , I , as

Pe
r
≡

∫
ar<𝜑(x)≤br

𝜑(x)𝛿(x)dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
, r = 1, ..., I.

(3)
||||||

∫
ar<𝜑(x)≤br

∫
z�
g(�;x, z�)𝛿(x)f�

(
z� ∣ x

)
dz�dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
− Pe

r

||||||
≤ dr ⋅ P

e
r
,
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Let � ⊆ ℝ
1+p+q+|�| denote the parameter space for � with |�| being the length of 

� . We assume that � is bounded and connected. Let �C denote the feasible region 
(Moore et al. 2008) that contains all points � ∈ � that satisfy constraints (3). C+

r
 and 

C−
r
 indicate the upper bound and lower bound of the inequality constraint (3), cor-

respondingly. Then the cML estimates can be obtained as

2.4  Asymptotic properties of �̂ and g( ̂̌ ;x, z)

The proposed constraints (3) enforce requirements on the parameter space 
� . We first study the asymptotic properties of � . Denote the true under-
lying model for (Y ,X,Z) in PrS as PrS(Y = 1 ∣ X = x,Z = z) = h(x, z) , 
PrS(Z = z ∣ X = x) = f�0 (z ∣ x) , and PrS(X = x) = �0(x) , where the function h(x, z) 
is unspecified and allowed to differ from the working model (1). The true condi-
tional density function of (Y , Z) given X can be written as

cML does not require an explicit model for (Y|X,Z) in the target population P , and 
is obtained by maximizing the following working likelihood function

subject to constraints (3). Assume the standard regularity condition that 
ES

[
log

{
PrS(Y ,Z ∣ X)

}]
 and ES

[
log

{
p�(Y ,Z ∣ X)

}]
 exist for all � ∈ � , and define 

the Kullback-Liebler Information Criterion (KLIC) as

The consistency of �̂ is established as follows.

Theorem  1 Assume that � is connected and bounded and that I
(
PrS ∶ p�

)
 has a 

unique minimum at �∗ ∈ �C . The cML estimator �̂ is consistent, �̂
p
−→�∗.

C+
r
(�)

≡
∫
ar<𝜑(x)≤br

∫
z�
g(�;x, z�)𝛿(x)f�

(
z� ∣ x

)
dz�dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
− (1 + dr)P

e
r
,

C−
r
(�)

≡ (1 − dr)P
e
r
−

∫
ar<𝜑(x)≤br

∫
z�
g(�;x, z�)𝛿(x)f�

(
z� ∣ x

)
dz�dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
.

(4)
�̂ = argmax

�
l(�)

subject to C+
r
(�) ≤ 0, C−

r
(�) ≤ 0, r = 1, ..., I.

(5)PrS(Y = y,Z = z ∣ X = x) = h(x, z)y{1 − h(x, z)}1−yf�0(z ∣ x).

p�(y, z ∣ x) = g(�;x, z)y{1 − g(�;x, z)}1−yf� (z ∣ x),

(6)I
(
PrS ∶ p�

)
=∶ ES

[
log

{
PrS(Y ,Z ∣ X)∕p�(Y ,Z ∣ X)

}]
.
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The inequality constraint C+
r
(�) ≤ 0 or C−

r
(�) ≤ 0 is active at a feasible point 

� ∈ �C only if C+
r
(�) = 0 or C−

r
(�) = 0 . Let C⊕(�) represent the active constraints at 

� . That is, the vector C⊕(�) consists of {C+
i
(�), i ∈ K+(�)} ∪ {C−

j
(�), j ∈ K−(�)} , 

where K+(�), K−(�) ⊂ {1,… , I} , K+(�) ∩ K−(�) = � , C+
i
(�) = 0 if i ∈ K+(�) , 

C+
i
(�) < 0 otherwise, and C−

j
(�) = 0 if j ∈ K−(�) , C−

j
(�) < 0 , otherwise. Define 

Ξ(�) as a matrix whose columns form an orthonormal basis for the null space of 
𝜕C⊕(�)∕𝜕� , namely,

Assume that �∗ is a regular point of the active constraints, that is, the gradient matrix 
of 𝜕C⊕

(
�∗
)T
∕𝜕� has full row rank |||K+

(
�∗
)||| +

|||K−
(
�∗
)||| . Define 

I(�) ∶= ES

[
{𝜕l1(�)∕𝜕�}

⊗2
]
 , where l1(�) denotes the first summand in l(�) , namely, 

l1(�) = log
{
p�
(
Y1,Z1 ∣ X1

)}
. We derive the large sample distribution of �̂ and 

show the consistency of individual risk estimates in Theorem 2.

Theorem  2 Assume the same regularity conditions as Theorem  1, and further 
assume that Ξ

(
�∗
)T
ES{

�2l1(�∗)
����T

}Ξ
(
�∗
)
 is nonsingular. We can show that �̂ is asymp-

totically normally distributed,

where V
(
�∗
)
 is expressed as

Corollary 1 (Consistency of individual risk estimates) We make the same assumptions 
as Theorems 1 and 2. Further we assume that the link function g satisfies 
inf
x∈ℝ

g�(x) ≥ 0 , sup
x∈ℝ

g�(x) < M , and sup
x∈ℝ

g��(x) < M , where M is a positive constant. 

Suppose unew =
(
xT
new

, zT
new

)T is sub-Gaussian random vector satisfying 
sup
‖v‖=1

vTE
�
unewu

T
new

�
v ≤ �max where �max is a positive constant. The following result 

holds,

2.5  Further considerations on �∗

We consider two special cases to provide insights on �∗ . In the first case, the tar-
get population P is identical to the source population PS , and the model (1) is cor-
rectly specified. Then �∗ is the true parameter value in the target population. cML 
is expected to be more efficient than the unconstrained ML estimator. This result 

Ξ(�)T𝜕C⊕(�)
T∕𝜕� = 0, and Ξ(�)TΞ(�) = I.

√
N
�
�̂ − �∗

� D
−→V

�
�∗
�
I
�
�∗
�
V
�
�∗
�T
,

V
(
�∗
)
= Ξ

(
�∗
)[

Ξ
(
�∗
)T
ES

{
�2l1

(
�∗
)

����T

}
Ξ
(
�∗
)]−1

Ξ
(
�∗
)T
.

(7)g
(
uT
new

�̂
)
− g

(
uT
new

�∗
)
= Op

(‖‖‖�̂ − �∗‖‖‖
)
= op(1).
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aligns with the literature on integrating external summary data to increase statistical 
efficiency (Chatterjee et al. 2016; Zheng et al. 2022a, b; Zhai and Han 2022) men-
tioned earlier. In the second case, the target population P is different from the study 
source population PS , but model (1) holds in both P and PS with different parameter 
values �S and �T . If PS is not too far away P , namely, ‖‖�T − �S

‖‖ < 𝜂 for some small 
𝜂 > 0 , we can show that cML parameter �∗ can be approximately obtained as fol-
lows. Let p�T denote Pr(Y = y,Z = z ∣ X = x) , p�S denote PrS(Y = y,Z = z ∣ X = x) , 
and g1(�;x, z) denote g(�;x, z)f� (x ∣ z) . Then by applying Taylor’s series expansion, 
and assuming that �(X) is very close to Pr(Y = 1 ∣ X) , we can show that the cML 
parameter �∗ can be approximately obtained by maximizing the following approxi-
mate objective function

subject to constraints

Denote �̃∗ be the corresponding solution. It is reasonable to expect that under suit-
able regularity conditions, �̃∗ approximately converges to �∗ . To get further insight 
into �∗ , we draw the elliptical contours of the function (8) by the full curves in 
Fig. 1, which are centered at �S . The constrained region is the quadrangle centered at 
�T . �̃∗ is the first point that the contours touch the quadrangle.

An interesting question arises from Fig.  1. If �S =
(
�S0, �

T
SX
, �T

SZ
, �T

S

)T 
and �T =

(
�T0, �

T
TX
, �T

TZ
, �T

T

)T only differ in the first coordinate, and consider 
𝛽S0 < 𝛽T0 without loss of generality. One may hope that �∗ would lie between �S 
and �T , that is, �∗ =

(
�∗
0
, �∗

X
, �∗

Z
, �∗

)
 can satisfy conditions �S0 ≤ �∗

0
≤ �T0 and (

�∗T
X
, �∗T

Z
, �∗T

)T
=
(
�T
SX
, �T

SZ
, �T

S

)T . But Fig. 1 indicates that this is not necessarily the 
case.

3  Breast cancer risk prediction using data from Penn Medicine 
Biobank

We applied the proposed method to analyze data from Penn Medicine Biobank 
(McCarthy et al. 2021) to assess the added value of breast density (“BD”), as meas-
ured by percent mammographic density, for predicting the 5-year risk of breast 

(8)

�
� − �S

�T
ES

⎡
⎢⎢⎢⎣

� log
�
p�S (Y , Z ∣ X)

�

��

⎤
⎥⎥⎥⎦

+
�
� − �S

�T
ES

⎡
⎢⎢⎢⎣

�2 log
�
p�S (Y , Z ∣ X)

�

����T

⎤
⎥⎥⎥⎦

�
� − �S

�

|||||||

(
� − �T

)T
∫
ar<𝜑(x)≤br

{
𝜕g1

(
�T ;x, z

)
∕𝜕�

}
𝛿(x)dzdx

∫
ar<𝜑(x)≤br

𝛿(x)dx

|||||||
≤ drP

e
r
, r = 1,… , I.
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cancer following a negative screening mammogram. The study cohort consisted of 
11, 370 Caucasian women in the age range of 40 ∼ 84 years who did not have prior 
history of breast cancer but underwent screening mammography in the University of 
Pennsylvania health system between years 2006 and 2015. Women who developed 
invasive breast cancer within 5 years of the screening mammogram were consid-
ered cases ( n = 209 ). We used the same numerical coding as in BCRAT for conven-
tional predictors, including age at first live birth (“Ageflb"), age at menarche (“Age-
men”), number of previous breast biopsies (“Nbiops”) and number of first-degree 
relatives (“Numrel”) who had breast cancer. Compared to women in the National 
Health Interview Survey (NHIS) who are representative of the general US female 
population, the women in the Penn Biobank tended to have a stronger family history 
of breast cancer, underwent more frequent biopsy examinations, and had their first 
live child at an older age (Table 1). Because BCRAT has been extensively validated 
(Bondy et al. 1994; Costantino et al. 1999; Rockhill et al. 2001) for estimating the 
absolute breast cancer risk within a specified age period, we used it to derive a base 
model. Subsequently, we applied the proposed method to Penn Biobank data for 
Caucasian women to develop a model that use both conventional predictors and BD 
to predict 5-year risk. This newly developed model is expected to calibrate similarly 
as BCRAT in the U.S. woman population.

Let (T1, T2) denote the 5-year age interval with T2 − T1 = 5 and T1 and T2 being inte-
gers, and X denote Ageflb, Agemen, Nbiops, and Numrel. We constructed the con-
straints based on 5-year absolute risks of breast cancer estimated from BCRAT on the 
website https:// dceg. cancer. gov/ tools/ risk- asses sment/ bcra (Gail et  al. 1989), denoted 
as �̃�(T1, T2;X) . We calculated �(X) as the weighted average of the estimated risk for 
all 5-year intervals with T1 ∈ (25, 70) , 

∑
T1∈(25,70)

�̃�(T1, T2;X)Pr([T1, T2]) where 
Pr([T1, T2]) , the proportion of women in age interval [T1, T2] , was estimated from 
NHIS. We chose quartiles of �(X) as the endpoints of four constraint intervals (3) and 

Fig. 1  The elliptical contours of the objective functon (8) are shown by full curves, which are centered at 
�
S
 . The constrained region is the quadrangle centered at �

T
 . �̃∗ is the first position that the contours touch 

the quadrangle

https://dceg.cancer.gov/tools/risk-assessment/bcra
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calculated Pe
r
, r = 1, 2, 3, 4 . Moreover, the distribution of X was estimated from NHIS 

and was treated as fixed quantities in the current analyses. The averaged 5-year risk 
within each of the four risk intervals is obtained as

where we set dr = 0.1, r = 1,… , 4 so that the tolerance thresholds equaled 
{0.1 ∗ P̂e

r
, r = 1,… , 4} . Let A denote age. We assumed that the distribution of BD 

(“Z”), f� (Z = z|X = x,A = a) , was the same in the Penn Biobank and U.S. woman 
population. In our analysis, based on the observations of breast density Z in (0, 1), 
we used the truncated log-normal distribution with constant variance for BD, 
where logZ ∼ N(u, �2) truncated on (−∞, 0) , with u = (�mean)

T (1,XT ,A)T . Here 
� = (�T

mean
, �)T . In the logistic regression model (1), we included an ordinal vari-

able Zc instead of Z, which was created by assigning integer values 0 ∼ 9 to the 10 
intervals of Z, (0, 0.1], (0.1, 0.2],… , (0.8, 0.9], (0.9, 1) , respectively.

We conducted four sets of analyses to fit model (1). The first is standard logistic 
regression analyses with both X and Z that included all 11, 370 women, referred to 
as “Standard” Model. The maximum likelihood analysis was applied to fit model 
f (z|x, a) , which was needed for model evaluation. The expected number of cases based 
on the Standard model was calculated as

{P̂e
r
, r = 1,… , 4} = {P̂r(Y = 1|�(X) ∈ (ar, br]), r = 1,… , 4}

= {1.1%, 2.1%, 3.4%, 5.3%},

Table 1  Estimated marginal 
distributions of predictors in 
Penn Biobank and NHIS

Penn 
Biobank (%)

NHIS (%)

Age at screening (A) < 40 0 10
40–49 22.4 28.6
⩾ 50 77.6 61.4

Ageflb ( X1) < 20 3.9 19.8
20–24 16.1 35.6
25–29 or nul-

liparous
56.5 34.0

⩾ 30 23.5 10.6
Agemen ( X2) ⩾14 23.2 28.3

12–13 58.5 55.1
< 12 18.3 16.6

Nbiops ( X3) 0 70.6 85.3
1 21.4 10.7
⩾ 2 8.0 4.0

Numrel ( X4) 0 78.2 88.2
1 19.6 10.8
⩾ 2 2.2 1.0
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The averaged risks by the Standard Model and those in the U.S. Caucasian woman 
population differed by 16% and 29% in the two high-risk calibration intervals, indi-
cating lack of calibration of the Standard Model in the U.S. Caucasian woman popu-
lation. This discrepancy can be partially explained by the difference in the distribu-
tion of predictors between Penn Biobank data and the NHIS as shown in Table 1, 
primarily in the distribution of Nbiops ( X3 ) and Numrel ( X4 ). Next, we applied cML 
considering two sets of constraints, the quartiles or (50%, 70%, 90%) percentiles of 
�(X) . Note that the latter imposed finer constraints in the tail of the risk distribution 
to ensure improved calibration in the high risk region. Lastly, to explore the perfor-
mance of the proposed method when the source data is further away from the target 
population, we repeated the above analyses in a subset of the data that contained all 
cases and 90% of the women whose BCRAT risk was above 1.67%.

The results are presented in Table  2. The log odds ratio parameter estimates 
obtained by the proposed method using quartiles (“cML1 ”) or the 50%, 70%, and 
90% percentiles (“cML2 ”) of �(X) as constraints can be quite different from those 
by the standard methods (“Standard”). For example, the Standard log odds ratio 

∑
x∶ar<𝜑(x)≤br

∑
z

∑
a P�̂(Y = 1�X = x,Z = z)𝛿

x
f�̂ (z ∣ x, a)Pr(A = a)

∑
x∶ar<𝜑(x)≤br

𝛿
x

.

Table 2  Estimated log odds ratio parameters

“Standard”: estimates obtained by maximizing log-likelihood (2); cML
1 : estimates by the proposed 

method using quartiles of 5-year BCRAT risk �(x) to define the constraints; cML
2 : the same as cML

1 but 
using (50%, 70%, 90%) percentiles of �(x) to define the constraints

Penn (N=11,370) Penn subsample (N=7,089)

Standard 
model

cMLE
1(SD) cMLE

2(SD) Standard 
model

cMLE
1(SD) cMLE

2(SD)

�0 − 5.162 (0.271) − 4.733 (0.222) − 4.863 (0.128) − 4.389 (0.271) − 4.805 (0.135) − 4.717 
(0.156)

�
X1

0.264 (0.101) 0.071 (0.072) 0.066 (0.010) 0.210 (0.100) 0.134 (0.015) 0.024 (0.032)
�
X2

0.143 (0.110) 0.110 (0.114) 0.153 (0.117) 0.127 (0.111) 0.139 (0.134) 0.170 (0.139)
�
X3

0.462 (0.094) 0.257 (0.071) 0.334 (0.009) 0.297 (0.093) 0.171 (0.010) 0.318 (0.087)
�
X4

0.563 (0.117) 0.657 (0.074) 0.659 (0.004) 0.234 (0.121) 0.697 (0.004) 0.621 (0.085)
�
Zc 0.081 (0.058) 0.079 (0.060) 0.078 (0.062) 0.073 (0.059) 0.061 (0.071) 0.061 (0.071)
�mean_0 − 1.878 (0.023) − 1.879 (0.023) − 1.879 (0.023) − 1.868 (0.030) − 1.869 (0.030) − 1.868 

(0.030)
�mean_X1

0.081 (0.008) 0.081 (0.008) 0.081 (0.008) 0.076 (0.010) 0.076 (0.010) 0.076 (0.010)
�mean_X2

− 0.098 (0.009) − 0.098 (0.009) − 0.098 (0.009) − 0.085 (0.011) − 0.085 (0.011) − 0.085 
(0.011)

�mean_X3
0.074 (0.009) 0.075 (0.009) 0.074 (0.009) 0.065 (0.010) 0.065 (0.010) 0.065 (0.010)

�mean_X4
0.033 (0.012) 0.034 (0.012) 0.034 (0.012) 0.032 (0.013) 0.032 (0.013) 0.032 (0.013)

�mean_A − 0.066 (0.003) − 0.066 (0.003) − 0.066 (0.003) − 0.065 (0.004) − 0.065 (0.004) − 0.065 
(0.004)

� 0.593 (0.004) 0.593 (0.004) 0.593 (0.004) 0.595 (0.005) 0.595 (0.005) 0.595 (0.005)
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parameter estimate for Nbiops was 0.462 but became 0.257 by cML1 . The differ-
ence between cML1 and cML2 was somewhat larger with the full data than with 
the subsample. Interestingly, both cML1 and cML2 were similar in the analyses 
with the full data or subsample, even when the Standard estimates differed sub-
stantially. The parameter estimates for BD and those in the truncated log-normal 
distribution were similar, although there was minor difference when comparing 
the full data and subsample results. By the Wald test, Nbiops ( X3 ) and Numrel 
( X4 ) were significant in all analyses, Ageflb ( X1 ) was significant by cML1 in the 
full data analysis and by cML2 in the subsample analysis. BD was not significant 
in any analyses.

To show that the fitted model by the proposed method indeed led to improved 
calibration, we computed the expected number of cases per 100, 000 women based 
on risk estimates from different models in various woman subgroups. We used the 
expected numbers from �(X) as benchmark. In the analysis of the selected subset 
(“Subsample”), at the benchmark of 1, 263, the expected number was 2, 212 from 
the Standard Model, which decreased to 1, 396 by cML1 and 1, 370 by cML2 . There-
fore, although all three models over-predicted the number of cases, cML1 and cML2 
were very close to the benchmark. Figure 2 displays calibration plots indicating the 
expected events vs observed events of invasive breast cancer cases in each decile of 
risk. In the absence of independent validation data, the expected number of events 
for �(X) were used as the “observed” number. The Standard model appeared to be 
ill-calibrated, particularly in the high risk region. The models fitted using the pro-
posed method achieved improved calibration. When the analyses were repeated in 
the subsample, model cML1 under-predicted the number of cases in the high risk 
interval, whereas cML2 showed much improved calibration due to finer constraints 
in this region (Table 3).  

Table 3  Expected number of breast cancer cases per 100,  000 women based on predictions from 
BCRAT, “Standard”, cML

1 and cML
2

Full Data (N=11,370) Subsample (N=7,089)

BCRAT Standard cML
1

cML
2 BCRAT Standard cML

1
cML

2

All women 1263 1285 1378 1277 1263 2212 1396 1370
Nbiops

   0 1187 1141 1293 1173 1187 2072 1340 1265
   1 1522 1825 1706 1670 1522 2783 1617 1769
   ⩾ 2 2190 2908 2317 2439 2190 3671 2005 2531

Numrel
   0 1108 1160 1220 1128 1108 2134 1226 1222
   1 2204 2076 2365 2201 2204 2732 2459 2289
   ⩾ 2 4709 3779 4622 4375 4709 3507 4843 4377
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4  Simulation studies

We conducted extensive simulation studies to evaluate the finite sample performance 
of the proposed methods. We first define a target population through the distribution 
of (Y ,X, Z) , which was then distorted for use to generate study data for model devel-
opment. The data generation scheme for X is summarized in Table 4. Parameters for 
the target population were chosen to be similar to those observed in the NHIS. We 
generated Z from the log-normal distribution logZ ∼ N(�, �2) truncated on (−∞, 0) , 
where � = (�mean)

T (1,XT )T with �mean = (−2, 0.1,−0.1, 0.1, 0.1) and � = 0.6 . Here 
� = (�T

mean
, �)T . A categorized version of Z, denoted as Zc , was created to take inte-

ger values 0 ∼ 9 corresponding to the 10 intervals (0.1t, 0.1(t + 1)] , t = 0,… , 9 . Data 
for the outcome variable Y was generated from model (1) using predictors X and Zc , 
with the corresponding parameter values set at (−0.5, 0.4, 0.3, 0.65, 0.1) . The inter-
cept parameter �0 was chosen to achieve the outcome prevalence Pr(Y = 1) = 0.1.

We generated a large dataset to fit a logistic regression model for Y given X to use 
as �(X) . We chose the quartiles of �(X) to set the constraints when applying cML. 
The data generating distribution of X in the target population, �(x) , was assumed 
known in the analyses. The calibration benchmark Pe

r
 , r = 1,… 4 , was calculated 

as 
∑m

i=1
I{yi = 1, ar ≤ �(xi) ≤ br}∕

∑m

i=1
I{ar ≤ �(xi) ≤ br} from a cross-sectional 

sample of size m = 50, 000 that was randomly drawn from the target population. The 
tolerance threshold in (3) was set at d = 0.1.

We generated three sets of study data of size N = 2000 . “Scenario I” data was 
generated from the same distribution as the target population. This scenario was 
designed to assess the performance of cML when the target and source populations 

Fig. 2  Calibration plots for models fitted using Standard, cML
1 and cML

2 methods, with BCRAT as the 
Benchmark
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are identical. For “Scenario II” data, (X, Z) was generated using different parameter 
values, and Y was generated from the same model except that the intercept param-
eter was adjusted so that the prevalence of Y in the source population, PrS(Y = 1) , 
was 1.5 times higher than that in the target population. This scenario was designed 
to mimic a setting where the source data was a biased sample. “Scenario III” data 
was generated using the same predictor distribution as Scenario II, but Y was gener-
ated from a different model for Y that was re-calibrated from that for Scenario II. 
The model takes the form logit{PrS(Y = 1|x, z)} = a + b(� + �T

X
x + �T

Z
z) , where � 

was the intercept parameter used for generating the Scenario II data. We considered 
different values for (a, b), a ≠ 0 and b ≠ 1 . For each dataset, we conducted three sets 
of analyses, the “Standard” method that directly maximizes the likelihood function 
(2) with truncated log-normal distribution for Z, and the cML method as specified 
above. We repeated the simulation 1, 000 times.

Results on the estimation of regression coefficients are summarized in Tables 5 
and 6. Comparison between Standard and cML estimates can help reveal the effect 
of constraints on model fitting. With Scenario I data, both cML and Standard esti-
mates for X were close to the true parameter values, with cML having slightly 
smaller variance. cML can have larger efficiency gain when the tolerance threshold 
in the constraint is lower (data unreported). With Scenario II data, all cML esti-
mates for X are more or less away from the true values, while Standard estimates 
are nearly identical to the true values except for the intercept parameter as expected. 
Notably, the estimate of the intercept parameter by cML is −2.44 which is close to 
the true value −2.40 . With Scenario III data, the cML estimates for X became fur-
ther away from the true values. The Standard estimates all differed from the truth as 
well. Interestingly, with a = −0.5 and b = 1.2 , the difference between the cML and 
true values became much larger and in the opposite direction compared to that for 
Standard estimates. In all scenarios, the averaged cML and Standard estimates were 
similar for �Zc , and for parameters � = (�T

mean
, �)T in the model for Z. In all simu-

lation scenarios, the averaged standard error (“ASE”) estimates were close to the 
empirical standard errors (“SE”) for cML in all three scenarios.

Figure 3 displays calibration plots for all three scenarios. The X-axis represents 
the “expected” proportion of cases calculated in risk intervals defined by the final 
fitted model, and Y-axis represents the observed probability of cases. The expected 
and observed numbers of cases agreed closely for the model fitted by the cML meth-
ods across all scenarios. In contrast, the model fitted by the Standard method over-
predicted the risk in Scenario II across all risk levels, over-predicted in the high 
risk region in Scenario III with a = 0.5 and b = 1.2 , and severely under-predicted 
the risk in Scenario III with a = −0.5 and b = 1.2 . These results showed that the 
proposed constraints effectively improved calibration, which was achieved through 
revising parameter estimates as shown in Tables 5 and 6.
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Fig. 3  Model calibration using standard and cML methods
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5  Discussion

To build a new model upon an existing one by incorporating new predictors, the 
proposed constrained maximum likelihood estimation effectively enforces the new 
model to use the existing model as the “template” for prediction. The calibration of 
the new model is assured during model development when the existing one is well-
calibrated. We assume that the distribution of conventional risk predictors is known 
in the target population, and impose a parametric model for the new predictors con-
ditional on the conventional predictors. Then in the absence of an independent data-
set from the target population, the utility of the new predictors can be more assessed. 
Importantly, our method does not require either the new or existing model perfectly 
capture the true relationship between the outcome and predictors, nor does it require 
an explicit functional form for the existing model. When the model is intended to be 
used for identifying population subgroups who have high risk, model calibration can 
be specifically emphasized in these interest risk regions through appropriate con-
struction of constraints. Looser constraints can then be used in moderate risk regions 
to allow data to better inform model building. The effectiveness of such flexibility 
was demonstrated in numerical studies.

A question remains for our method is to what extent the data distribution for 
the source and target populations can differ. Theoretically, this was quantified by 
the concept of the feasible region, which contains the limit of cML estimates by 
Theorem 1. Practically, the source data that has a distribution more similar to that 
in the target population allows more informative model building. In the analy-
sis of Penn Biobank data (Table 1), the subsample differed more from the NHIS 
than the full dataset. Comparing cML1 using the two sets of data, Nbiops ( X3 ) 
and Numrel ( X4 ) were significant by Wald test in the full sample, but only Num-
rel remained significant in the subsample. With cML2 , Ageflb ( X1 ), Nbiops and 
Numrel were significant in the full data, but only Nbiops and Numrel remained 
significant in the subsample. We interpret the loss of significance of some vari-
ables in the subsample as information loss due to larger difference between the 
source and target populations.

The proposed approach requires a parametric model for the new predictors which 
is assumed identical in the source and target populations. This necessity arises when 
no information is assumed available on the new predictors in the target population, 
so the relationship between the new and standard predictors needs to be inferred 
from the study data. Mis-specification of this model may negatively affect the cali-
bration of the new model. Parametric modeling for multiple predictors is generally 
challenging, and it is largely infeasible to consider nonparametric distribution due to 
the curse of dimensionality. It may be plausible to adopt more flexible model forms. 
When the new predictors are newly identified biomarkers, the relationship between 
the new and standard predictors may have already been studied at the discovery 
stage. Such prior information can then be incorporated into the proposed constraints. 
It is straightforward to adapt our method along this line.
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Appendix

Proof of theoretical results

Proof of Theorem 1.

Proof Let �̂ be the solution to the optimization problem (4). That is

According to the law of large numbers, it is known that N−1l(�) converges in prob-
ability to ES

{
N−1(�)

}
 . Then in �C , we have

Hence, applying Theorem 5.7 in Van der Vaart AW (2000), we have

  ◻

Proof of Theorem 2

Proof The inequality constraints can be treated as equality constraints with the intro-
duction of “slack” parameters. Let � =

(

�+1 ,… , �+I , �
−
1 ,… , �−I

)T  be a comfortable vector of 
slack parameters, and � =

(

�T , �T
)T ∈ ℝ1+p+q+2I  . Denote

and

r = 1,… , I . We can replace inequality constraints (4) with equality constraints 
(Luenberger et al. 1984; Boyd et al. 2004) and consider the equivalent optimization 
problem, minimizing

�̂ = argmax�∈�C
N−1l(�).

sup
�∈�C

|||N
−1l(�) − ES

{
N−1l(�)

}||| ≤ sup
�∈�

|||N
−1l(�) − ES

{
N−1l(�)

}|||
P
−→0.

�̂
P
−→�∗.

F+
r
(�)

≡
∫
ar<𝜑(x)≤br

∫
z�
P�(Y = 1|X = x,Z = z�)𝛿(x)f�

(
z� ∣ x

)
dz�dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
− (1 + dr)P

e
r
+ 𝜉+

r

2
,

F−
r
(�)

≡ (1 − dr)P
e
r
−

∫
ar<𝜑(x)≤br

∫
z�
P�(Y = 1|X = x,Z = z�)𝛿(x)f�

(
z� ∣ x

)
dz�dx

∫
ar<𝜑(x)≤br

𝛿(x)dx
+ 𝜉−

r
2,
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Define l(�) ∶= l(�) , and F(�) =
(
F+
1
(�),… ,F+

I
(�),F−

1
(�),… ,F−

I
(�)

)T be the equal-
ity constraints. The constrained maximization problem discussed above can be con-
cisely and equivalently written as maximizing, with respect to �,

According to the existence and uniqueness of �∗ , there exists a unique 
�∗ =

(
�∗T , �∗T

)T such that F(�∗) = 0 , and

The corresponding Lagrangian function is

where � is the set of Langrage multipliers. Based on the KKT conditions, we obtain 
�̂n by solving the equation

where �l
(
�̂
)
∕�� ∈ ℝ

|�| , �F
(
�̂
)T
∕�� ∈ ℝ

|�|×|F| , |�| is the length of � and |F| is the 
number of equality constraints. Indeed, (10) implies that 𝜕l(�̂)∕𝜕� is in the column 
space of 𝜕F(�̂)T∕𝜕� . Thus, as long as |�| > |F| , we have a differentiable function 
U(�) ∶ ℝ

|�|
→ ℝ

|�|×(|�|−|F|) , such that UT (�)�F(�)T∕�� = 0 , UT (�)U(�) = I for any 
� . And we will automatically have

For sufficiently large N, taking Taylor expansion of (11) about �̂ at �∗gives us

(9)
l(�, �) =

N∑
i=1

log

[
exp

{
Yi
(
�0 + �T

x
Xi + �T

z
Zi

)}

1 + exp
(
�0 + �T

x
Xi + �T

z
Zi

) f�
(
Zi ∣ Xi

)]

subject to F+
r
(�) = 0; F−

r
(�) = 0, r = 1, ..., I.

l(�) subject to F(�) = 0.

E
{
N−1l(�∗)

}
= max

�∶F(�)=0
E
{
N−1l(�)

}
.

l(�) + F(�)T�,

(10)
�l
(
�̂
)

��
+

{
�F

(
�̂
)

��

}T

� = 0,

(11)U(�̂)T
𝜕l(�̂)

𝜕�
= 0.
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Following the theories in Crowder (1984); Stoica and CN (1998); Moore et  al. 
(2008), let �(t) ∶ ℝ → ℝ

|�| be a continuous differentiable map representing the fea-
sible arc and �(0) = �∗ , 𝜓(1∕N) = �̂ for any N. Then we have

for some 0 < 1∕n� < 1∕N . Note that C{�(t)} = 0 for all t. Therefore 
C
{
�
(
1∕n�

)}
= 0 and

This implies that d�
(
1∕n�

)
∕dt isin the column space of U

(
�′
)
 , where �� = �

(
1∕n�

)
 , 

i.e., d�
(
1∕n�

)
∕dt = U

(
��
)
QN for some QN ∈ ℝ

|�|−|F| . Hence

Inserting (13) into (12), we have

Thus

(12)

0 =UT (�̂)

�
1√
N

𝜕l(�∗)

𝜕�T
+

1

N

𝜕2l(�∗)

𝜕�𝜕�T

√
N(�̂ − �∗) + Op

�√
N‖�̂ − �∗‖2

��

=UT (�̂)
1√
N

𝜕l(�∗)

𝜕�T
+ U(�̂)T

1

N

𝜕2l(�∗)

𝜕�𝜕�T

√
N(�̂ − �∗) + op

�√
N(�̂ − �∗)

�

=UT (�̂)
1√
N

𝜕l(�∗)

𝜕�T
+

�
U

T (�∗) + (�̂ − �∗)T
𝜕UT (�∗)

𝜕�

�
1

N

𝜕2l(�∗)

𝜕�𝜕�T

√
N(�̂ − �∗)

+ op

�√
N(�̂ − �∗)

�

=UT (�̂)
1√
N

𝜕l(�∗)

𝜕�T
+ U

T (�∗)
1

N

𝜕2l(�∗)

𝜕�𝜕�T

√
N(�̂ − �∗) + op

�√
N(�̂ − �∗)

�
.

�̂ − �∗ = 𝜓(1∕N) − 𝜓(0) =
1

n

d𝜓(t)

dt

||||t=1∕n� ,

0 =
�C{�(t)}

�t

||||t=1∕n� =
�C{�(t)}

��

d�(t)

dt

||||t=1∕n� .

(13)�̂ − �∗ =
1

N
U
(
��
)
QN .

0 =UT (�̂)
1√
N

𝜕l(�∗)

𝜕�T
+

1

N
U

T (�∗)
1

N

𝜕2l(�∗)
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√
NU

�
��
�
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+ op
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�
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(14)
QN =

�
−

1√
N
U

T (�∗)
𝜕2

1

N
l(�∗)

𝜕�𝜕�T
U
�
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��−

U
T (�̂)

1√
N
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𝜕�T

+ op{N(�̂ − �∗)},
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where A− denotes the Moore-Penrose inverse of matrix A. Combining (13) and (14), 
we have

When N → ∞ , we have U(�̂) → U(�∗) and U
(
��
)
→ U{�(0)} = U(�∗) by consist-

ency of �̂ and continuity of U . Further, N−1∕2𝜕l(�∗)∕𝜕� → N
{
0, Ĩ(�∗)

}
 in distribu-

tion by the central limit theorem, where ̃(�∗) ≡ ES

[

{

�l1(�∗)∕��
}⊗2

] , and we use l1(�∗) to 

denote the first summand in l(�∗) . Thus, 
√
N(�̂ − �∗) converges to a normal distribu-

tion with mean zero and variance Ṽ(�∗)Ĩ(�∗)Ṽ(�∗)T , where

Therefore, we know that 
√
N
�
�̂ − �∗

�
 converges to a normal distribution with mean 

zero and variance AT
|�|
[
Ṽ(�∗)Ĩ(�∗)Ṽ(�∗)T

]
A|�| , where

Simple algebra calculation yields that

This completed the proof.   ◻

Proof of Corollary  1

Proof Under the assumptions in Corollary 1, we have

Since unew is sub-Gaussian satisfying the conditions in corollary, we have

where D is the data we used to estimate �̂ . Combining (15) and (16), we have

Hence,

√
N(�̂ − �∗) =U

�
��
��

−
1√
N
U

T (�∗)
𝜕2

1

N
l(�∗)

𝜕�𝜕�T
U
�
��
��−

U
T (�̂)

1√
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𝜕�T

+ op

�√
N(�̂ − �∗)

�
.
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[
U
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𝜕�𝜕�T
}U(�)

]−
U

T (�∗).

A|�| =
[
I|�|×|�|
02I×|�|

]
.

AT
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Ṽ(�∗)Ĩ(�∗)Ṽ(�∗)T

}
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(
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)
I
(
�∗
)
V
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(
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)
.
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||||g
(
uT
new
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− g

(
uT
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�∗
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||||u
T
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(
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(16)P

�����u
T
new

�
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����� ≥ t ∣ D

�
≤ 2 exp
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−t
√
2∕
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��
,

P
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�
uT
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�
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�
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