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Abstract
Interval-censored failure time data arise commonly in various scientific studies where
the failure time of interest is only known to lie in a certain time interval rather than
observed exactly. In addition, left truncation on the failure event may occur and can
greatly complicate the statistical analysis. In this paper, we investigate regression
analysis of left-truncated and interval-censored data with the commonly used additive
hazards model. Specifically, we propose a conditional estimating equation approach
for the estimation, and further improve its estimation efficiency by combining the con-
ditional estimating equation and the pairwise pseudo-score-based estimating equation
that can eliminate the nuisance functions from the marginal likelihood of the trunca-
tion times. Asymptotic properties of the proposed estimators are discussed including
the consistency and asymptotic normality. Extensive simulation studies are conducted
to evaluate the empirical performance of the proposed methods, and suggest that the
combined estimating equation approach is obviously more efficient than the condi-
tional estimating equation approach. We then apply the proposed methods to a set of
real data for illustration.

Keywords Additive hazards regression · Estimating equation · Interval censoring ·
Left truncation · Pairwise pseudo-likelihood

1 Introduction

Interval-censored failure time data arise frequently in many scientific studies includ-
ing clinical trials, epidemiological surveys and cancer screening studies, and due to
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the periodical follow-ups in these situations, the failure time of interest cannot be
monitored exactly but is only known to fall into a certain time interval. For example,
in HIV/AIDS studies, urine samples are intermittently provided by the individuals at
their clinical visits to examine the occurrence of the CMV shedding. Therefore, the
CMV shedding time is only known to occur in a time interval formed by dates of the
last negative urine test and the first positive urine test (Goggins and Finkelstein 2000).
Another example of interval-censored data is given by Finkelstein (1986), where the
failure event of interest is the occurrence of breast retraction among early breast cancer
patients.

In practice, one may encounter several types of interval-censored data. One type
of interval-censored data that has been discussed vastly in the literature is called case
I interval-censored data or current status data (Sun 1999; Li et al. 2017, 2021; Ma
et al. 2015). Such data arise when each individual under study is observed only once
at one monitoring time and the failure event of interest is known only to occur before
or after this monitoring time. In other words, the failure time of interest is either left-
or right-censored rather than observed exactly, and the interval containing the failure
time includes either zero or infinity. When there exist two or multiple observation
times for each subject, the obtained data are usually referred to as case II or case K
interval-censored data depending on the number of observations (Sun 2006). In this
situation, the failure time of interest falls into a certain time interval, which may be
given by the half-open interval or the interval with finite endpoints.

In many applications, the failure times of interest are often subject to left truncation
under the cross-sectional sampling scheme, where only individuals that have not expe-
rienced the failure event at the study enrolment are included in the study. Therefore, the
collected data suffer from the biased sampling since they are not representative for the
whole population under study. For the analysis of left-truncated data, a large number
of methods have been proposed under right censoring (Lai and Ying 1991; Wang et al.
1993; Gross and Lai 1996; Shen et al. 2009; Qin and Shen 2010; Huang and Qin 2013;
Shen et al. 2017; Wu et al. 2018). For instance, Wang et al. (1993) proposed a partial
likelihood-based estimation method for the proportional hazards model; Lai and Ying
(1991) developed some rank-based estimators for the censored linear regression; Shen
et al. (2009) assumed that the truncation times satisfy the stationary assumption and
proposed some unbiased estimating equation approaches to estimate the transforma-
tion and accelerated failure time models; Huang and Qin (2013) and Wu et al. (2018)
considered the general left-truncated data and proposed the pairwise likelihood-based
methods for the additive and proportional hazards models, respectively.

Since interval-censored data are often subject to the left truncation in scientific
fields, somemethods have already been developed for their analysis (Pan and Chappell
1998, 2002; Kim 2003; Wang et al. 2015a, b; Gao and Chan 2019; Shen et al. 2019;
Wang et al. 2021). In particular, for the left-truncated and case I interval-censored data,
Kim (2003) and Wang et al. (2015b) proposed the conditional maximum likelihood
estimation approaches for the proportional and additive hazards models, respectively.
With respect to the left-truncated and general interval-censored data, Pan and Chappell
(2002) proposed a marginal likelihood approach as well as a monotone maximum
likelihood approach for the proportional hazards model; Wang et al. (2015a) proposed
a conditional sieve maximum likelihood estimation method for the additive hazards
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model; Shen et al. (2019) developed a conditional likelihood estimation approach for
the general transformation models. It is worth noting that the aforementioned methods
were established without incorporating the marginal distribution information of the
observed truncation times, which may lose some estimation efficiency as anticipated.
Corresponding to this, Gao and Chan (2019) proposed a nonparametric maximum
likelihood estimation approach for the proportional hazardsmodel under the stationary
assumption for the truncation times. Motivated by the work of Huang and Qin (2013);
Wang et al. (2021) further proposed a pairwise likelihood estimation approach for the
proportional hazards model.

This study aims at investigating regression techniques for the left-truncated and
interval-censored data with the additive hazards model. The motivations of consider-
ing the additive hazardsmodel aremainly threefold. Firstly, the additive hazardsmodel
serves as an essential alternative to the commonly adopted proportional hazards model
in survival analysis. This is because that the additive hazards model provides a differ-
ent perspective of covariate effect on the failure time compared with the proportional
hazards model andmay bemore plausible than the latter in some practical applications
(Aranda-Ordaz 1983; Buckley 1984; Lin and Ying 1994; Lin et al. 1998). Secondly,
unlike the proportional hazards model, it is easy to derive a tractable estimating equa-
tion for the additive hazards model under interval censoring by using the counting
process formulations (Lin et al. 1998; Wang et al. 2010). Therefore, one can easily
adapt the established estimating equations to accommodate left truncation. Thirdly,
under the additive hazards model, the interpretation of the estimated covariate effects
can be converted into that of the ratio of the estimated survival probabilities between
different groups at a given time, which does not involve the baseline hazard function.
Therefore, even without estimating the baseline hazard function, the additive hazards
model with only the estimated regression parameters still has appealing interpretations
as commented in the real data analysis of Sect. 6.

A major difficulty in estimating the additive hazards model with left-truncated and
interval-censored data is how to develop a reliable and easily implemented estimation
procedure. The first contribution of this work is to develop a simple conditional esti-
mating equation method through modifying the risk sets of the estimating equation
proposed by Lin et al. (1998) for analyzing the left-truncated and case I interval-
censored data. Since the conditional estimating equation method is found to be very
inefficient, we further improve its estimation efficiency by developing a combined
estimating equation approach with the use of the marginal likelihood of the truncation
times. A desirable feature of the two proposed estimating equations is that they have
simple and tractable form, and do not involve any nuisance functions including the
baseline hazard function in the additive hazards model and the density function of
the truncation time. Therefore, they can be readily solved by the simple and standard
optimization procedure, such as the Newton–Raphson algorithm.

Since the left-truncated and general interval-censored data are also frequently
encountered in many applications and have complicated structure, the second contri-
bution of the work is to develop two easily implemented methods to handle such data.
Specifically, we first derive a conditional estimating equation approach by utilizing
the working independence strategy for interval-censored data (Betensky et al. 2001;
Zhu et al. 2008). Then, as above, a combined estimating equation approach by allow-
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ing for the marginal likelihood of the truncation times is further proposed to improve
the estimation efficiency of the former method. The numerical results obtained from
extensive simulation studies imply that the proposed estimation methods can give reli-
able and stable performance. In particular, by utilizing the distribution information of
the truncation times, the combined estimating equation approach can greatly improve
the estimation efficiency of the conditional estimating equation method.

The rest of this article is arranged as follows. In Sect. 2, we introduce some nota-
tion, the assumed model as well as the data structure. In Sect. 3, we first consider
the left-truncated and case I interval-censored data and develop the conditional and
combined estimating equation approaches for the additive hazards model. In Sect. 4,
we generalize the proposed estimation methods to the situation of left-truncated and
general interval-censored data. In Sect. 5, we conduct extensive simulation studies to
investigate the finite-sample performance of the proposed methods, followed by an
application to a real dataset in Sect. 6. Some discussions and concluding remarks are
given in Sect. 7.

2 Notation, model and data structure

Let T ∗ denote the underlying failure time of interest (i.e. the time to the failure event
of interest), and Z∗ be a p-dimensional vector of covariates in the target population.
Let A∗ denote the underlying left truncation time (i.e. the time to the study enrolment)
that is assumed to be independent of T ∗. When T ∗ suffers from left truncation by A∗,
we know that only subjects with T ∗ ≥ A∗ are collected or sampled in the study. Let T ,
A, and Z be the failure time, truncation time and covariate vector of a sampled subject
(i.e. satisfying T ≥ A), respectively. Then (T , A, Z) has the same joint distribution
as (T ∗, A∗, Z∗) given that T ∗ ≥ A∗. Here it should be noted that the aforementioned
independent assumption between T ∗ and A∗ does not imply the independence between
T and A since subject with larger A would have larger T under the left truncation
scheme (Wu et al. 2018).

To describe the effects of Z∗ on T ∗, we assume that T ∗ follows the additive hazards
model with the conditional hazard function

λ(t | Z∗) = λ(t) + β�Z∗, (1)

where λ(t) is the unknown baseline hazard function and β is a p-dimensional vector
of regression parameters. Thus �(t) = ∫ t

0 λ(s)ds is the cumulative baseline hazard
function of T ∗. Let f and S denote the density and survival functions of T ∗, respec-
tively, and let g be the density function of A∗. Then the joint density function (A, T )
at (a, t) can be expressed as

h(a, t) = g(a) f (t)
∫ ∞
0 S(u)g(u)du

= f (t)

S(a)
× S(a)g(a)

∫ ∞
0 S(u)g(u)du

(0 ≤ a ≤ t)

where f (t)/S(a) is the conditional density of T given A and S(a)g(a)/
∫ ∞
0 S(u)g(u)

du is the marginal density of A (Huang and Qin 2013).
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We first consider the situation of left-truncated and case I interval-censored data, in
which each subject is examined only once for the occurrence of the event of interest at
the observation or censoring time. LetC denote the observation or censoring time after
the study enrolment, and assume that C is conditional independent of (A, T ) given Z.
Under case I interval censoring mechanism, T cannot be observed directly but is only
known to be smaller than A + C or larger than A + C . Define δ = I (A + C ≤ T ),
that is, T is right-censored if δ = 1 and left-censored otherwise. Then the observed
data include n i.i.d. replicates of {C, δ, A, Z}, namely, {Ci , δi , Ai , Zi ; i = 1, . . . , n}.

3 Estimation procedure

In this section, we first develop a conditional estimating equation approach by adapting
the estimating equation proposed by Lin et al. (1998) to account for the left truncation,
and then develop a combined estimating equation approach to improve the estimation
efficiency of the former method.

3.1 Conditional estimating equation approach

For each subject i , let C̃i = Ai +Ci and define the counting process Ni (t) = δi I (C̃i ≤
t), which jumps by one at time t when (i) subject i is monitored at time t , C̃i = t , and
(ii) subject i is still found to be failure-free at this time, that is, Ti ≥ t . The process
Ni (t) can be regarded as right censoring at time t when subject i is monitored, C̃i = t ,
and found to have experienced the failure at this time, δi = 0, since this process always
takes the value of 0 under this situation. By following the arguments given in Lin et al.
(1998), we can derive the intensity model of Ni (t), which takes the form

dHi (t) = Ri (t) exp{−β�Zi t}dH(t), (2)

where Ri (t) = I (Ai ≤ t ≤ C̃i ) is the at-risk process under left truncation, dH(t) =
exp{−�(t)}d�c(t), and �c(t) is the cumulative hazard function of C̃i .

The above expression (2) suggests that

Mi (t) = Ni (t) −
∫ t

0
Ri (s) exp{−β�Zi s}dH(s) (i = 1, . . . , n)

are martingales with respect to the σ -filtration: σ {Ni (s), Ri (s), Zi ; s ≤ t, i =
1, . . . , n}. Thus, one can make inference about β by applying the partial likelihood
approach to (2). Specifically, the partial likelihood score function β is

�(β) =
n∑

i=1

∫ τ

0

{

Zi t − S(1)(β, t)

S(0)(β, t)

}

dNi (t), (3)
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and the observed information matrix for β is

I (β) =
n∑

i=1

∫ τ

0

{
S(2)(β, t)

S(0)(β, t)
− S(1)(β, t)⊗2

S(0)(β, t)2

}

dNi (t), (4)

where

S(k)(β, t) =
n∑

j=1

R j (t) exp{−β�Z j t}(Z j t)
⊗k,

a⊗0 = 1, a⊗1 = a and a⊗2 = aa� for a column vector a, and τ is a prespecified
constant such that P(A + C ≥ τ) > 0.

After normalising, the conditional estimating equation for β is given by

U (β) = 1

n
�(β) = 1

n

n∑

i=1

∫ τ

0

{

Zi t − S(1)(β, t)

S(0)(β, t)

}

dNi (t) = 0. (5)

Solving U (β) = 0 yields the estimate of β, which is denoted by β̂U . Let β0 be the
true value of β. The following theorem shows the asymptotic property of β̂U , and the
proof will be presented in the “Appendix A”.

Theorem 1 Under Conditions (C1)–(C3) given in the “Appendix A”, we have that,
as n → ∞,

√
n(β̂U − β0) converges in distribution to a zero-mean normal random

vector with covariance matrix �(β0)
−1, where �(β0) is the limit of n

−1 I (β0) that
can be consistently estimated by n−1 I (β̂U ).

Note that the conditional estimating function proposed above is anticipated to loss
some estimation efficiency since it does not incorporate the distribution information
of the truncation times. To improve the efficiency, in what follows, we will provide
a combined estimating equation approach by combining the conditional estimating
equation and the pseudo-score-based estimating equation obtained from the pairwise
information of the truncation times.

3.2 Combined estimating equation approach

To allow for the information provided by the truncation times, we adopt the pairwise
likelihoodmethod given in Kalbfleisch (1978) and Liang and Qin (2000). As in Huang
and Qin (2013); Wu et al. (2018) and others, assume that the truncation time A does
not depend on Z and is not degenerate. Note that all observed truncation times satisfy
A < τ in practical situations since we often set τ to be the maximum of the observed
observation times. Note that, for i < j , by conditioning on having observed (Ai , A j )

but without knowing the order of Ai and A j , the pairwise pseudo-likelihood of the
observed (Ai , A j ) conditional on Ai ≤ τ , A j ≤ τ and (Zi , Z j ) is
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S(Ai |Zi )g(Ai )∫ τ
0 S(u|Zi )g(u)du

× S(A j |Z j )g(A j )∫ τ
0 S(u|Z j )g(u)du

S(Ai |Zi )g(Ai )∫ τ
0 S(u|Zi )g(u)du

× S(A j |Z j )g(A j )∫ τ
0 S(u|Z j )g(u)du

+ S(Ai |Z j )g(Ai )∫ τ
0 S(u|Z j )g(u)du

× S(A j |Zi )g(A j )∫ τ
0 S(u|Zi )g(u)du

,

which equals

exp(−β�Zi Ai − β�Z j A j )

exp(−β�Zi Ai − β�Z j A j ) + exp(−β�Z j Ai − β�Zi A j )

= 1

1 + exp{β�(Zi − Z j )(Ai − A j )}
.

It is worth noting that the pairwise pseudo likelihood depends on the regression
parameterβ of the assumed additive hazardsmodel (1) andmay render some additional
information to improve the estimation efficiency. Moreover, as a by-product, the pair-
wise likelihoodmethod used above can enable us to eliminate the nuisance functions in
themarginal distribution of the truncation times, which can greatly facilitate the subse-
quent estimation procedure. Define ρi j = ρ(Ai , Zi , A j , Z j ) = (Zi − Z j )(Ai − A j ).
Then the logarithm of the pairwise pseudo-likelihood and the normalised score func-
tion of β are given by

∑

1≤i< j≤n

− log
{
1 + exp(β�ρi j )

}
,

and

ψ(β) = 2

n(n − 1)

∑

1≤i< j≤n

ψi j (β), (6)

respectively, where

ψi j (β) = ψi j (β; Ai , Zi , A j , Z j ) = −ρi j

1 + exp(−β�ρi j )
.

SinceU (β) andψ(β) both can give consistent estimate of β, the combined estimating
equation proposed is thus defined as

ε(β) = U (β) + ψ(β) = 0. (7)

Denote by β̂ε the estimate of β that solves the equation ε(β) = 0. By following
the lines of Huang and Qin (2013), we have the following theorem on the asymptotic
property of β̂ε , and relegate the proof to the “Appendix A”.

Theorem 2 Under Conditions (C1)–(C3) given in the “Appendix A”, we can conclude
that, as n → ∞,

√
n(β̂ε − β0) converges to a normal distribution with mean zero

and covariance matrix [�(β0) + V2(β0)]−1[�(β0) + V1(β0)][�(β0) + V2(β0)]−1,
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where�(β0) is the limit of n
−1 I (β0), V1(β0) = 4E{ψ12(β0)ψ13(β0)} and V2(β0) =

−E{∂ψ12(β0)/∂β} = E[ρ⊗2
12 exp(−β�

0 ρ12)/{1 + exp(−β�
0 ρ12)

2}]. In particular,

�(β0) can be estimated by n−1 I (β̂ε), and V1(β0) and V2(β0) can be estimated by

4

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1, j 
=i

ψi j (β̂ε)

⎫
⎬

⎭

⊗2

,

and

1

n(n − 1)

∑

i 
= j

ρ⊗2
i j exp(−β̂

�
ε ρi j )

{1 + exp(−β̂
�
ε ρi j )}2

,

respectively (Sen 1960).

4 Generations to the left-truncated and general interval-censored
data

In this section, we extend the proposed methods above to the scenario of the left-
truncated and general interval-censored data. Without loss of generality, assume that
each subject is observed twice after the study enrolment, and the two monitoring
times measured from the study enrolment are denoted by U and V , respectively, with
0 < U < V < ∞. In this situation, we have left-censored T if T − A < U , right-
censored T if T − A ≥ V , and interval-censored T if T − A ≥ U and T − A < V ,
where A is the truncation time as defined above. Define δ(1) = I (A + U ≤ T ) and
δ(2) = I (A + V ≤ T ).

Let {Ui , Vi , δ
(1)
i , δ

(2)
i , Ai , Zi ; i = 1, . . . , n}ben i.i.d. replicates of {U , V , δ(1), δ(2),

A, Z}. Define Ũi = Ai + Ui and Ṽi = Ai + Vi . As in Lin et al. (1998), for each i ,
define the counting process N (1)

i (t) = δ
(1)
i I (Ũi ≤ t) with the intensity model

dH (1)
i (t) = R(1)

i (t) exp{−β�Zi t}dH1(t),

where R(1)
i (t) = I (Ai ≤ t ≤ Ũi ), dH1(t) = exp{−�(t)}d�U (t), and �U (t) is the

cumulative hazard function of Ũi . The above intensity model suggests that

M (1)
i (t) = N (1)

i (t) −
∫ t

0
R(1)
i (s) exp{−β�Zi s}dH1(s) (i = 1, . . . , n)

are martingales with respect to the σ -filtration: σ {N (1)
i (s), R(1)

i (s), Zi ; s ≤ t, i =
1, . . . , n}.
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Similarly, we can also define the counting process related to Ṽi as N (2)
i (t) =

δ
(2)
i I (Ṽi ≤ t), and its intensity model is given by

dH (2)
i (t) = R(2)

i (t) exp{−β�Zi t}dH2(t),

where R(2)
i (t) = I (Ũi ≤ t ≤ Ṽi ), dH2(t) = exp{−�(t)}d�V (t), and �V (t) is the

cumulative hazard function of Ṽi . The above intensity model implies that

M (2)
i (t) = N (2)

i (t) −
∫ t

0
R(2)
i (s) exp{−β�Zi s}dH2(s) (i = 1, . . . , n)

are martingales with respect to the σ -filtration: σ {N (2)
i (s), R(2)

i (s), Zi ; s ≤ t, i =
1, . . . , n}.

In what follows, we derive a conditional estimating equation approach for β under
the conditional independent assumption between the examination and failure times
given the covariates. The proposal below mainly utilizes the idea of working indepen-
dence for interval-censored data (Betensky et al. 2001; Zhu et al. 2008), which treats
the multiple examinations from a subject as the single examinations from different
subjects. Therefore, the partial likelihood score function of β can be expressed as

�(β) =
n∑

i=1

∫ τ

0

{

Zi t − S(1)
1 (β, t)

S(0)
1 (β, t)

}

dN (1)
i (t) +

n∑

i=1

∫ τ

0

{

Zi t − S(1)
2 (β, t)

S(0)
2 (β, t)

}

dN (2)
i (t),

(8)

where

S(k)
1 (β, t) =

n∑

j=1

R(1)
j (t) exp{−β�Z j t}(Z j t)

⊗k,

S(k)
2 (β, t) =

n∑

j=1

R(2)
j (t) exp{−β�Z j t}(Z j t)

⊗k,

a⊗0 = 1, a⊗1 = a and a⊗2 = aa� for a column vector a, and here τ is a prespecified
constant such that P(A +U ≥ τ) > 0 and P(A + V ≥ τ) > 0.

The observed information matrix for β is

I (β) =
n∑

i=1

2∑

k=1

∫ τ

0

{
S(2)
k (β, t)

S(0)
k (β, t)

− S(1)
k (β, t)⊗2

S(0)
k (β, t)2

}

dN (k)
i (t). (9)

For each i , define

ai (β) =
∫ τ

0

{

Zi t − S(1)
1 (β, t)

S(0)
1 (β, t)

}

dM (1)
i (t)

123



Combined estimating equation approaches for the… 681

=
∫ τ

0

{

Zi t − S(1)
1 (β, t)

S(0)
1 (β, t)

}

dN (1)
i (t)

−
∫ τ

0

{

Zi t − S(1)
1 (β, t)

S(0)
1 (β, t)

}
R(1)
i (t) exp{−β�Zi t}

S(0)
1 (β, t)

{
n∑

i=1

dN (1)
i (t)

}

,

and

bi (β) =
∫ τ

0

{

Zi t − S(1)
2 (β, t)

S(0)
2 (β, t)

}

dM (2)
i (t)

=
∫ τ

0

{

Zi t − S(1)
2 (β, t)

S(0)
2 (β, t)

}

dN (2)
i (t)

−
∫ τ

0

{

Zi t − S(1)
2 (β, t)

S(0)
2 (β, t)

}
R(2)
i (t) exp{−β�Zi t}

S(0)
2 (β, t)

{
n∑

i=1

dN (2)
i (t)

}

.

Let β̂U2 denote the estimate of β obtained by solving the normalised conditional
estimating equation

U (β) = 1

n
�(β) = 0. (10)

We establish the asymptotic property of β̂U2 in the following theorem and defer the
detailed proof to the “Appendix B”.

Theorem 3 Under Conditions (C4)–(C6) given in the “Appendix B”, we can conclude
that, as n → ∞,

√
n(β̂U2 − β0) converges in distribution to a zero-mean normal

random vector with covariance matrix �B(β0)
−1�A(β0)�B(β0)

−1, where �A(β0)

is the limit of

1

n

n∑

i=1

[ai (β0) + bi (β0)][ai (β0) + bi (β0)]�,

and �B(β0) is the limit of n−1 I (β0). In particular, �B(β0) can be estimated by
n−1 I (β̂U2), and �A(β0) can be estimated by

1

n

n∑

i=1

[ai (β̂U2) + bi (β̂U2)][ai (β̂U2) + bi (β̂U2)]�.

Under the left-truncated and general interval-censored data, the combined estimat-
ing equation for the additive hazards model can be defined as

ε(β) = U (β) + ψ(β) = 0, (11)
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where U (β) and ψ(β) are given in (10) and (6), respectively. Let β̂ε2 be the estimate
of β obtained by solving the equation ε(β) = 0 (11). By following the arguments
of Huang and Qin (2013), we can derive the following theorem on the asymptotic
property of β̂. The proof will be presented in the “Appendix B”.

Theorem 4 Under Conditions (C4)–(C6) given in the “Appendix B”, we can conclude
that, as n → ∞,

√
n(β̂ε2−β0) converges to a normal distribution with mean zero and

covariance matrix [�B(β0) + V2(β0)]−1[�A(β0) + V1(β0)][�B(β0) + V2(β0)]−1,
where �A(β0) is the limit of

1

n

n∑

i=1

[ai (β0) + bi (β0)][ai (β0) + bi (β0)]�,

�B(β0) is the limit of n−1 I (β0), V1(β0) = 4E{ψ12(β0)ψ13(β0)} and V2(β0) =
−E{∂ψ12(β0)/∂β} = E[ρ⊗2

12 exp(−β�
0 ρ12)/{1 + exp(−β�

0 ρ12)
2}].

In the above, �B(β0) can be estimated by n−1 I (β̂ε2), �A(β0) can be estimated
by 1

n

∑n
i=1[ai (β̂ε2) + bi (β̂ε2)][ai (β̂ε2) + bi (β̂ε2)]�, and V1(β0) and V2(β0) can be

estimated by

4

n − 1

n∑

i=1

⎧
⎨

⎩
1

n − 1

n∑

j=1, j 
=i

ψi j (β̂ε2)

⎫
⎬

⎭

⊗2

,

and

1

n(n − 1)

∑

i 
= j

ρ⊗2
i j exp(−β̂

�
ε2ρi j )

{1 + exp(−β̂
�
ε2ρi j )}2

,

respectively (Sen 1960).

5 Simulation studies

We conduct extensive simulation studies to evaluate the empirical performance of the
proposed methods in finite samples. In the first study, we considered the left-truncated
and case I interval-censored data, and assumed that there existed two covariates Z1 and
Z2, where Z1 follows the Bernoulli distribution with a success probability of 0.5 and
Z2 follows the uniform distribution over (0, 1). The underlying failure time of interest
T ∗ was then generated from the additive hazards model (1) with λ(t) = 1 and the true
values of (β1, β2) being (0.5, 0.5). The underlying truncation time A∗ was assumed
to follow either the exponential distribution with mean 10 or the uniform distribution
over (0, 100). Due to the presence of left truncation, only the pairs satisfying T ∗ ≥ A∗
were kept in the simulated data, and thus T = T ∗ and A = A∗ under this situation.
The censoring time from the study enrolment C was generated from the exponential
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distribution with mean 2/3 and C̃ = C + A, which yielded about 50% right censoring
rates. We set n = 100, 200, 400 or 800 and used 1000 replications. To analyze the
simulated data, we considered the following three competing methods: the combined
estimating equation approach, the conditional estimating equation approach, and the
naivemethod proposed by Lin et al. (1998) that ignores the existence of left truncation.

Tables 1 and 2 present the numerical results corresponding to the situations where
the truncation time follows the exponential and uniform distributions, respectively.
The tables include the estimation bias (Bias) given by the average of the estimates
minus the true value, the sample standard errors (SSE) of the estimates, the average
standard error estimates (SEE) and the 95% empirical coverage probabilities (CP).
One can see from Tables 1 and 2 that the combined estimating equation approach can
give unbiased estimates, the bias decreases when the sample size increases, the cor-
responding standard error estimates match the average standard error estimates well,
and the empirical coverage probabilities are around the nominal value 95%, which
implies that the normal approximation to the distribution of the estimates seems to
be reasonable. As anticipated, the combined estimating equation approach proposed
is much more efficient than the conditional estimating equation approach since the
former utilized the distribution information of truncation times in the estimation pro-
cedure. In addition, it is worth noting that the naive method that ignores the existence
of left truncation produced severely biased estimates. This finding can also be antici-
pated since the obtained left-truncated data are no longer representative for the whole
population under study.

In the second study, we considered the scenario of the left-truncated and general
interval-censored data. For each subject, we assumed that there existed two observa-
tion times Ũ and Ṽ , where we set Ũ = A + U , Ṽ = A + V , U follows uniform
distribution over (0, 0.5) and V follows uniform distribution over (U + 0.3,U + 0.8).
We kept the other simulation specifications being the same as above. Under this con-
figuration, the left and right censoring rates are both approximately 33%. As in the
first simulation study, we performed the analysis with the two proposed estimating
equation approaches, and also considered the naive estimating equation method that
ignores the existence of left truncation, which can be implemented with the proposed
conditional estimating equation approach by setting A = 0. The simulation results
given in Tables 3 and 4 correspond to the situations where the truncation time follows
the exponential and uniform distributions, respectively, from which one can find the
similar conclusions as above.

In the simulation studies above, we also tried to apply the generalized method of
moments (GMM) (Hansen 1982) to further enhance the estimation efficiency. Let
G(β) = (U (β)�, ψ(β)�)� and W be a positive-definite weight function matrix. A
consistent estimator of β can be obtained through minimizing G(β)�W−1G(β), and
the optimal matrix that gives the efficient estimation isW = var{G(β)}. However, the
numerical results (not shown here) indicate that the GMM method does not lead to
higher efficiency comparedwith the proposed combined estimating equation approach.
As commented by Huang and Qin (2013), this phenomenon arises partially because
the optimal weight function involves estimating the second moments of U (β0) and
ψ(β0), which usually needs larger sample size to obtain the superiority of an efficient
GMM estimator.
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Table 5 Analysis results of the
MHCPS data, including the
estimated covariate effect (Est),
the standard error estimate (Std)
and the p-value

Method Est Std p-value

Combined EE 0.00165 0.00009 <0.001

Conditional EE 0.00057 0.00010 <0.001

Ignoring truncation 0.00050 0.00010 <0.001

Note: “Combined EE” denotes the combined estimating equation
approach, “Conditional EE” denotes the conditional estimating equa-
tion approach, and “Ignoring truncation” denotes the estimating
equation approach that ignores the existence of left truncation

6 Real data analysis

We now apply the proposed methods to a set of left-truncated and interval-censored
data arising from the Massachusetts Health Care Panel Study (MHCPS) analyzed by
Pan and Chappell (1998, 2002) and Gao and Chan (2019) and others. In 1975, the
study enrolled individuals over the age of 65 in Massachusetts, and after that, three
subsequent follow-ups were taken at the 1.25, 6, and 10 years after the enrolment to
determine if individuals were still living actively, resulting in the interval-censored
observation on the time to loss of active life. The main objective of the study was
to evaluate the effect of gender (male or female) on the loss of active life for elderly
people. For this, the failure time of interest is defined as the age at loss of active life.
In addition, since only people who were active at the enrolment were included in the
study, the time to the loss of active life was also subject to left truncation with the
truncation time being the age at enrolment (Pan and Chappell 2002). Therefore, we
had the left-truncated and interval-censored data on the time to loss of active life.
After deleting a small proportion of unrealistic records of the raw data, a total of 1025
individuals with the age ranging from 65 to 97.3 were finally included in the current
analysis. The right censoring rate is 45.8%.

In this MHCPS dataset, the data for the failure times of interest were given in
the form of {[Li , Ri ); i = 1, . . . , n} and contained a mixture of interval-censored
and right-censored observations. To implement the proposed methods, we followed
the strategy given in Wang et al. (2010) and made an adjustment: for subject i with
[Li , Ri ), we let Ṽi = Li and Ũi to be the smallest observation time in the study if
Ri = ∞; and we set Ũi = Li and Ṽi = Ri when Li > 0 and Ri < ∞. Define Zi = 1
if the i th subject was male and Zi = 0 if this subject was female.

Table 5 presents the analysis results of theMHCPS data with the combined estimat-
ing equation approach, the conditional estimating equation approach, and the naive
estimating equation method that ignores the existence of left truncation. They include
the estimated covariate effect (Est), the standard error estimate (Std) and the p-value
for testing the covariate effect being zero. One can find from Table 5 that the results
obtained from the combined estimating equation approach suggest that males have
significantly higher risk of losing active life than females, which is in accordance with
the conclusion given by Gao and Chan (2019) under the proportional hazards model.
In addition, one can find from Table 5 that the conditional and the naive estimating
equation approaches give consistent conclusions, and it is apparent that they tend to
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underestimate the covariate effect compared with the combined estimating equation
approach. The attenuated covariate effect estimates obtained by the conditional and
the naive estimating equation approaches may arise because the two approaches either
fail to utilize the distribution information of the truncation times or ignore the exis-
tence of left truncation. In general, they both lead to larger estimation bias compared
with the combined estimating equation approach as shown in the simulation studies.

As discussed before, under the assumed additive hazards model (1), the interpre-
tation of the estimated covariate effect can be converted into that of the ratio of the
estimated survival probabilities between different groups at a given time. For exam-
ple, the estimated ratio of the probabilities of having the active life after 80 years old
between male and female under the combined estimating equation approach is S(80 |
Zi = 1)/S(80 | Zi = 0) = exp{−�(80) − 0.00165 × 80}/ exp{−�(80)} ≈ 0.876.
In contrast, the estimated ratios of the probabilities of having the active life after 80
years old between male and female are about 0.955 and 0.961 under the conditional
and the naive estimating equation approaches, respectively.

7 Concluding remarks

Additive hazards model is an essential alternative to the commonly used proportional
hazardsmodel in failure time data analysis, and assumes an additive covariate effect on
the hazard function of the failure time of interest. In this paper, we studied the additive
hazards regression analysis of the left-truncated and interval-censored failure time
data including the case I and general interval censoring schemes. By utilizing the order
information of the pairwise truncation times, we developed the combined estimating
equation approach for the estimation, which yielded more efficient estimators than the
conditional estimating equation approach. The tractable estimating equations derived
were very easy to solvewith the routine root-findingmethod, such asNewton–Raphson
algorithm. The asymptotic properties of the proposed estimators were established and
numerical studies demonstrated the usefulness of the proposed methodology in finite
samples.

In the preceding sections, we only considered time-independent covariates and it
is apparent that one may encounter time-dependent covariates in some applications.
For the latter case, one needs to redefine the model (1) as λ(t | Z∗(t)) = λ(t) +
β�Z∗(t), where Z∗(t) is a p-dimensional vector of time-dependent covariates, and the
estimation procedures proposed above can be readily adapted to handle this situation.
Note that, in the proposed methods, we assumed that the failure times of interest
are conditionally independent of the observation times given the covariates, which
is usually referred to as non-informative censoring in the literature. However, this
assumption may not hold in some applications, and it is helpful to extend the proposed
methods to the case of informative censoring (Zhang et al. 2005; Ma et al. 2015; Li
et al. 2017). Model checking is often of great interest and Ghosh (2003) proposed
a formal goodness-of-fit test procedure for the additive hazards model under current
status data or case I interval-censored data. Future work will be devoted to generalize
the method proposed by Ghosh (2003) to the situation of left-truncated and interval-
censored data. In addition, left-truncated and multivariate interval-censored failure
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time data can also be encountered in many scientific fields and it is useful to extend
the proposed methods to the analysis of such data.
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Appendix A: Proofs of Theorems 1 and 2

Let S(k)(β, t) = ∑n
j=1 R j (t) exp{−β�Z j t}(Z j t)⊗k for k = 0, 1, 2. For a matrix

A or a vector a, ||A|| = supi, j |ai j | and ||a|| = supi |ai |, where ai j is the (i, j)th
element of A and ai is the i th component of a. For a vector a, |a| = (a�a)1/2. In what
follows, “

P→” and “
D→” denote the convergence in probability and the convergence in

distribution, respectively.
To establish the asymptotic properties of proposed estimators of β under left-

truncated and case I interval-censored data, we need the following regularity
conditions:

(C1) P(T ∗ > A∗ | Z∗) > 0, P(A + C ≥ τ | Z) > 0 and P(R(t) = 1 | Z) > 0 for
all t ∈ [A, τ ], where R(t) = I (A ≤ t ≤ A + C).

(C2) Zi is bounded, and H0(τ ) < ∞, where H0(t) is the true value of H(t).
(C3) The true regression vector β0 lies in the interior of a compact set B and there

exist functions s(k)(β, t) with k = 0, 1, 2 defined on B × (0, τ ] satisfying
(a) supβ∈B,t∈(0,τ ] ||n−1S(k)(β, t) − s(k)(β, t)|| P→ 0 as n → ∞.
(b) s(0)(β, t) is bounded away from 0 for t ∈ (0, τ ].
(c) For k = 0, 1, 2, s(k)(β, t) is a continuous function of β uniformly in t ∈ (0, τ ],

where s(1)(β, t) = ∂s(0)(β, t)/∂β and s(2)(β, t) = ∂2 s(0)(β, t)/∂β∂β�.
(d) For β ∈ B, let v(β, t) = s(2)(β, t)/s(0)(β, t) − e(β, t)e(β, t)� and e(β, t) =

s(1)(β, t)/s(0)(β, t). �(β0) = ∫ τ

0 v(β0, u)s(0)(β0, u)dH0(u) is positive defi-
nite.

Proof of Theorem 1:
To prove the asymptotic properties of β̂U , we mainly follow the arguments given in

Andersen and Gill (1982) and Kalbfleisch and Prentice (2002). Note that the objective
function corresponding to the equation (3) is

l(β) = −
n∑

i=1

∫ τ

0

{
β�Zi u + log[S(0)(β, u)]

}
dNi (u).

123



Combined estimating equation approaches for the… 691

For t ≤ τ , define

l(β, t) = −
n∑

i=1

∫ t

0

{
β�Zi u + log[S(0)(β, u)]

}
dNi (u).

Consider the process

X(β, t) = n−1(l(β, t) − l(β0, t))

= −n−1
n∑

i=1

{∫ t

0
(β − β0)

�Zi u + log

[
S(0)(β, u)

S(0)(β0, u)

]}

dNi (u).

Then the compensator of X(β, t) is

X̃(β, t) = −n−1
∫ t

0

{

(β − β0)
�S(1)(β0, u) + log

[
S(0)(β, u)

S(0)(β0, u)

]

S(0)(β0, u)

}

dH0(u).

Under Conditions (C1)–(C3), we can conclude that X̃(β, τ ) converges to a function
of β denoted as f (β), where

f (β) = −
∫ τ

0

{

(β − β0)
�s(1)(β0, u) + log

[
s(0)(β, u)

s(0)(β0, u)

]

s(0)(β0, u)

}

dH0(u).

The first and second derivatives of f (β) with respect to β are given by

∂ f (β)/∂β = −
∫ τ

0

{

s(1)(β0, u) − s(1)(β, u)
s(0)(β0, u)

s(0)(β, u)

}

dH0(u),

and

∂2 f (β)/∂β∂β� =
∫ τ

0

{

− s(2)(β, u)

s(0)(β, u)
+ s(1)(β, u)⊗2

s(0)(β, u)2

}

s(0)(β0, u)dH0(u)

= −
∫ τ

0
v(β, u)s(0)(β0, u)dH0(u) = −�(β),

respectively.
It is easy to find that ∂ f (β)/∂β|β=β0

= 0, and ∂2 f (β)/∂β∂β� is minus a positive
definite matrix. Therefore, the unique maximum of f (β) is at β = β0. By following
Andersen and Gill (1982), it can be verified that the predictable variation process of
X(β, t) − X̃(β, t) converges to 0 on interval (0, τ ]. Then by using the Lenglart’s

inequality given in Andersen and Gill (1982), we can conclude that X(β, τ )
P→ f (β)

with probability one. Note that β̂U maximizes the function X(β, τ ). Applying the con-
vex analysis to X(β, τ ) and f (β) as Andersen and Gill (1982) leads to the conclusion
that β̂U→β0 with probability one as n → ∞.
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By applying Taylor expansion about β0 to �(β̂U ), we have

0 = n−1/2�(β̂U ) = n−1/2�(β0) − n1/2(β̂U − β0)[n−1 I (β∗)]

where β∗ is between β̂U and β0 and I (β) = −∂2 l(β)/∂β∂β�. Then the asymptotic
distribution of n1/2(β̂U − β0) can be established if we can show the probability limit
of n−1 I (β∗) and the asymptotic distribution of �(β0).

By the consistency of β̂U and the arguments given in (Andersen and Gill 1982), it

can be shown show that n−1 I (β∗) P→ �(β0) for any β∗ that converges in prob-

ability to β0. Next, we prove that n−1/2�(β0)
D→ N [0, �(β0)]. Following Lin

et al. (1998), for each i , we can conclude that Mi (t) is martingale with respect to
the σ -filtration: σ {Ni (s), Ri (s), Zi ; s ≤ t, i = 1, . . . , n}. Under Conditions (C2)
and (C3), we know that n−1/2G(n)

i (u) = n−1/2
{
Zi u − S(1)(β0, u)/S(0)(β0, u)

}
is

a vector of predictable process for each i . Simple algebraic manipulation shows that
n−1/2�(β0, t) = ∑n

i=1

∫ t
0 G

(n)
i (u)dMi (u) is amartingalewith the predictable covari-

ation process

〈n−1/2�(β0)〉(t) =
n∑

i=1

∫ t

0
G(n)

i (u)�G(n)
i (u)Ri (u) exp[−β�

0 Zi u]dH0(u)

=
∫ t

0
V (β0, u)S(0)(β0, u)dH0(u).

Under Condition (C3), we have

〈n−1/2�(β0)〉(t) P→
∫ t

0
v(β0, u)s(0)(β0, u)dH0(u).

Furthermore, note that Conditions (C2) and (C3) are sufficient to imply the Lindeberg
condition of Rebolledo’s Central Limit Theorem (Andersen and Gill 1982). By apply-

ing the Rebolledo’s Central Limit Thoerem, we can conclude that n−1/2�(β0)
D→

N [0, �(β0)]. Thus, n1/2(β̂U − β0)
D→ N (0, �(β0)

−1).
Proof of Theorem 2:

To prove the asymptotic properties of β̂ε obtained by solving (7), we mainly follow
the arguments given inHuang andQin (2013).Note that the pairwise pseudo-likelihood
of the observed (Ai , A j ) conditional on Ai ≤ τ , A j ≤ τ and (Zi , Z j ) is

∑

1≤i< j≤n

− log
{
1 + exp(β�ρi j )

}
,

which achieves the maximum at the true parameter value as n → ∞. By applying the
conditional Kullback–Leibler information inequality (Andersen 1970), the maximum
pairwise pseudo-likelihood estimator β̂ψ converges to β0 with probability one. Note
that ψ(β) is a U-statistic of order two since ψi j (β) is permutation-symmetric in the
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augments (Ai , Zi ) and (A j , Z j ). By Conditions (C2) and Conditions (C3), we know
that E{ψi j (β0)} = 0 and E{ψi j (β0)

⊗2} < ∞. By the projection method proposed
by Hoeffding (1948), we know that n1/2ψ(β0) converges to the normal distribution
with mean zero and covariance matrix V1 = 4E{ψ12(β0)

�ψ13(β0)}. Applying the
delta method, n1/2(β̂ψ −β0) converges to the normal distribution with mean zero and
covariancematrix V2(β0)

−1V1(β0)V2(β0)
−1, where V1(β0) = 4E{ψ12(β0)ψ13(β0)}

and V2(β0) = −E{∂ψ12(β0)/∂β} = E[ρ⊗2
12 exp(−β�

0 ρ12)/{1 + exp(−β�
0 ρ12)

2}].
Because U (β) is linear of β, the consistency of β̂ε follows directly from the con-

sistency of β̂ψ . Since we have shown that β̂U and β̂ψ are asymptotic normal, the

asymptotic normality of β̂ε follows from the asymptotic independence of U (β) and
ψ(β) (van der Vaart and Wellner 1996). Because E[dMi (t) | Ai , Zi ] = 0 and
ψi j (β0) only involves (Ai , Zi ) and (A j , Z j ), by double expectation we have that
E[U (β0)

�ψ(β0)] = 0 and var[ε(β0)] = var[U (β0)] + var[ψ(β0)]. By the central
limit theorem for U-statistics, n1/2ε(β0) converges in distribution to a normal distri-
bution with mean zero and covariance matrix var[n1/2U (β0)] + var[n1/2ψ(β0)] =
�(β0) + V1(β0). Applying the Taylor expansion to ε(β), we can conclude that, as
n → ∞,

√
n(β̂ε −β0) converges to a normal distribution with mean zero and covari-

ance matrix [�(β0) + V2(β0)]−1[�(β0) + V1(β0)][�(β0) + V2(β0)]−1.

Appendix B: Proofs of Theorems 3 and 4

Define

S(k)
1 (β, t) =

n∑

j=1

R(1)
j (t) exp{−β�Z j t}(Z j t)

⊗k,

and

S(k)
2 (β, t) =

n∑

j=1

R(2)
j (t) exp{−β�Z j t}(Z j t)

⊗k,

for k = 0, 1, 2. To establish the asymptotic properties of the proposed estimators
of β under left-truncated and general interval-censored data, we need the following
regularity conditions:

(C4) P(T ∗ > A∗ | Z∗) > 0, P(A + U ≥ τ | Z) > 0, P(A + V ≥ τ | Z) > 0,
P(R(1)(t) = 1 | Z) > 0 and P(R(2)(t) = 1 | Z) > 0 for all t ∈ [A, τ ], where
R(1)(t) = I (A ≤ t ≤ A +U ) and R(2)(t) = I (A ≤ t ≤ A + V ).

(C5) Zi is bounded. H10(τ ) < ∞ and H20(τ ) < ∞, where H10(t) and H20(t) are
the true values of H1(t) and H2(t), respectively.

(C6) The true regression vector β0 lies in the interior of a compact set B and there
exist functions s(k)

j (β, t) with k = 0, 1, 2 and j = 1, 2 defined on B × (0, τ ]
satisfying
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(a) supβ∈B,t∈(0,τ ] ||n−1S(k)
j (β, t) − s(k)

j (β, t)|| P→ 0 as n → ∞ with j = 1, 2.

(b) For j = 1, 2, s(0)
j (β, t) is bounded away from 0 for t ∈ (0, τ ].

(c) For k = 0, 1, 2, s(k)
j (β, t) is a continuous function of β uniformly in t ∈ (0, τ ],

where s(1)
j (β, t) = ∂s(0)

j (β, t)/∂β and s(2)
j (β, t) = ∂2s(0)

j (β, t)/∂β∂β� with
j = 1, 2.

(d) For β ∈ B, let v j (β, t) = s(2)
j (β, t)/s(0)

j (β, t) − e j (β, t)e j (β, t)� and

e j (β, t) = s(1)
j (β, t)/s(0)

j (β, t)with j = 1, 2.�(β0) = ∑2
j=1

∫ τ

0 v j (β0, u)s(0)
j

(β0, u)dHj0(u) is positive definite.

Proof of Theorem 3:
The objective function corresponding to the equation (8) is

l(β) = −
n∑

i=1

∫ τ

0

{
β�Zi t + log[S(0)

1 (β, t)]
}
dN (1)

i (t)

−
n∑

i=1

∫ τ

0

{
β�Zi t + log[S(0)

2 (β, t)]
}
dN (2)

i (t).

Note that β̂U2 is obtained by maximizing l(β) or solving the estimating Eq. (10),
the consistency of β̂U2 can be established by applying the arguments in the proof of
Theorem 1. Following Lin et al. (1998), for each i , we know that

M (1)
i (t) = N (1)

i (t) −
∫ t

0
R(1)
i (u) exp{−β�Zi u}dH10(u),

and

M (2)
i (t) = N (2)

i (t) −
∫ t

0
R(2)
i (u) exp{−β�Zi u}dH20(u)

are both martingales.
Also note that n−1/2�(β) can be equivalently expressed as

n−1/2�(β) = n−1/2
n∑

i=1

{ai (β) + bi (β)},

where �(β) is given by (8),

ai (β) =
∫ τ

0

{

Zi t − S(1)
1 (β, t)

S(0)
1 (β, t)

}

dM (1)
i (t),
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and

bi (β) =
∫ τ

0

{

Zi t − S(1)
2 (β, t)

S(0)
2 (β, t)

}

dM (2)
i (t),

for i = 1, . . . , n.
We apply the Taylor expansion about β0 to n

−1/2�(β̂U2) and have

0 = n−1/2�(β̂U2) = n−1/2�(β0) − n1/2(β̂U2 − β0)[n−1 I (β∗)],

where β∗ is between β̂U2 and β0 and I (β) = −∂2 l(β)/∂β∂β�.
By applying the similar arguments in the proof of Theorem 1 and using Conditions

(C4)–(C6), we have

n1/2(β̂U2 − β0)
D→ N (0, �B(β0)

−1�A(β0)�B(β0)
−1),

where�A(β0) is the probability limit of 1
n

∑n
i=1[ai (β0)+bi (β0)][ai (β0)+bi (β0)]�

and �B(β0) is the probability limit of n−1 I (β0).
Proof of Theorem 4:

The proof follows the similar augments in the proofs of Theorems 2 and 3,
and we can conclude that the maximum pairwise pseudo-likelihood estimator β̂ψ

converges to β0 with probability one, and n1/2(β̂ψ − β0) converges to the nor-
mal distribution with mean zero and covariance matrix V2(β0)

−1V1(β0)V2(β0)
−1,

where V1(β0) = 4E{ψ12(β0)ψ13(β0)} and V2(β0) = −E{∂ψ12(β0)/∂β} =
E[ρ⊗2

12 exp(−β�
0 ρ12)/{1 + exp(−β�

0 ρ12)
2}].

Then, by following the similar arguments as in the proof of Theorem 2, we know
that n1/2ε(β0) converges in distribution to a normal distribution with mean zero and
covariance matrix var[n1/2U (β0)] + var[n1/2ψ(β0)] = �A(β0) + V1(β0). Under
Conditions (C4)–(C6), we apply the Taylor expansion about β0 to ε(β̂ε2), and can
conclude that, as n → ∞,

√
n(β̂ε2 − β0) converges to a normal distribution with

mean zero and covariancematrix [�B(β0)+V2(β0)]−1[�A(β0)+V1(β0)][�B(β0)+
V2(β0)]−1.
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