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Abstract
It is well-known that the additive hazards model is collapsible, in the sense that when
omitting one covariate from a model with two independent covariates, the marginal
model is still an additive hazards model with the same regression coefficient or func-
tion for the remaining covariate. In contrast, for the proportional hazards model under
the same covariate assumption, the marginal model is no longer a proportional hazards
model and is not collapsible. These results, however, relate to the model specification
and not to the regression parameter estimators. We point out that if covariates in risk
sets at all event times are independent then both Cox and Aalen regression estimators
are collapsible, in the sense that the parameter estimators in the full and marginal
models are consistent for the same value. Vice-versa, if this assumption fails, then the
estimates will change systematically both for Cox and Aalen regression. In particular,
if the data are generated by an Aalen model with censoring independent of covari-
ates both Cox and Aalen regression is collapsible, but if generated by a proportional
hazards model neither estimators are. We will also discuss settings where survival
times are generated by proportional hazards models with censoring patterns providing
uncorrelated covariates and hence collapsible Cox and Aalen regression estimates.
Furthermore, possible consequences for instrumental variable analyses are discussed.

Keywords Additive hazards models · Instrumental variables · Linear hazards
models · Matched cohort study · Proportional hazards models · Randomized clinical
study

1 Introduction

The concept of collapsibility was discussed by Whittemore (1978) who investigated
conditions for when inference from lower dimensional contingency tables would be
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the same as from high dimensional. Later on it has been used in the context of regres-
sion models as the situation where removal of some covariates, independent of the
remaining, will not change the regression parameters of the remaining covariates in
themarginalmodel. Collapsibility is of relevance for causalmodeling (Greenland et al.
1999). A context where collapsibility is important is a trial where exposure is random-
ized and thereby made independent of otherwise potentially confounding variables
which may be unobserved. Collapsibility is then the condition for unbiased estimation
of a common exposure effect from such a randomized study when the other variables
are not taken into account and there is no interaction between them and the exposure
(Gail et al. 1984). Furthermore, for handling unobservable confounding by means of
instrumental variables (Tchetgen Tchetgen et al. 2015), the concept of collapsibility
is important.

Gail et al. (1984) demonstrated that for generalized linear models the collapsibility
property holds with identity and log-links and that these essentially are the only links
giving collapsibility and so for instance logistic regression is non-collapsible. For
survival analysis it was demonstrated by several authors that with the proportional
hazards model, removal of an independent covariate gives attenuation towards zero
for regression parameters of the remaining covariates (Struthers and Kalbfleisch 1986;
Solomon 1984; Bretagnolle and Huber-Carol 1988; Gail et al. 1984). In contrast, for
the additive hazards model (Aalen 1980) an appendix of Aalen (1989) demonstrates
the collapsibility property.

In this paper we will distinguish between collapsible models and collapsible esti-
mators. By a collapsible model we will mean that the marginal model after integrating
out some covariates that are independent of the remaining will have the same regres-
sion coefficients for the remaining covariates. A collapsible estimator is similarly an
estimator which is consistent for the same value in the full and the marginal mod-
els, and so the estimate does not systematically change after removing independent
covariates from the model.

Sometimes both models and estimators are collapsible, for instance (Gail et al.
1984) showed that maximum likelihood and moment estimators are collapsible under
generalized linear models with identity and log-links. However, an estimator need not
be collapsible even if the model is collapsible and it can be possible that an estimator
is collapsible even if the model is not. A simple example is least squares estimators
which are collapsible when covariates are uncorrelated irrespectively of whether the
data generating model is collapsible.

Wewill specifically in this paper discuss survival data and show that even if the addi-
tive hazards model is collapsible, estimators under this model can be non-collapsible
under situations that will be discussed. By a flip of the coin Cox-estimators can be
collapsible even if the proportional hazards model is not.

As a background for the results we refer to Aalen et al. (2015) who pointed out
that under an additive hazards model covariates that are independent at the outset will
continue to be so at all later times among individuals that have not yet experienced
the event of interest. They also showed that this in fact is equivalent with an additive
hazards model specification. Thus under other hazard specifications such as the pro-
portional hazards model a dependence between the covariates will develop as time
evolves and non-collapsibility of these models can be explained from this perspective.
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However, if postulating that covariates are independent in all risk sets then also Cox
regression will become collapsible, as will be demonstrated.

Independence in all risk sets can arise in several ways. Our first example is that the
data was generated by an additive hazards model, but very possibly the researchers
were unaware of this and perhaps by convention chose Cox regression for the data
analysis. But it is also possible that right censoring or left truncation patterns had
a structure maintaining independence over risk sets. Other settings that may lead to
independence of covariates over risk sets are commented on in Sect. 2 and in the
Discussion section.

Such schemes can be considered artificial, but still knowledge of the fact is useful.
For instance it has been noted that proportional hazards models are approximately
collapsible with low incidence which can be understood by that the model induced
dependence can then not have developed extensively.

Also, it is very likely that the data are not exactly generated by an additive haz-
ards model and so dependence between covariates may develop which can give rise
to non-collapsible estimation in such models. Furthermore censoring, for instance
by a competing risk, may generate dependence between covariates leading to non-
collapsible estimation. Dependence and non-collapsible estimation in additive hazards
models could also arise from for instance left-truncation.

In the next section we set up the framework for collapsible and non-collapsible
models and estimators and specify this within a survival analysis framework. We then
demonstrate that additive hazardsmodels are collapsible,whereas proportional hazards
models are non-collapsible. Furthermore, the condition for the (standard) estimators
under these models to be collapsible, namely that covariates are independent in all risk
sets, is derived. In Sect. 3 these properties are studied by means of data simulated from
additive and proportional hazards models with censoring independent and dependent
on covariates and analyzed by Cox regression and regression methods for additive
hazards. Following in the section we consider instrumental variables estimation under
both the additive and proportional hazards models and give examples demonstrating
that under both models valid estimation requires that the instrument and the unknown
confounders are independent in all risk sets. The paper is rounded off with a short
discussion section.

2 Models andmain results

2.1 Collapsibility in general

Assume that a response Y depends on covariates Z = (Z1, Z2) where in general
Z j can be vectors of length p j , j = 1, 2. However, for presentational ease we let
p1 = p2 = 1 and so the Z j are scalars. The general results with one or both p j > 1
are obvious extensions. We consider the Z j as random and assume that Z1 and Z2
are independent. Conditional on Z = z = (z1, z2) the distribution of Y is given
as f (y|z) = f0(y; θ, β1z1 + β2z2) for some distribution function f0(y; θ, η). The
model is then collapsible if the distribution of Y only given Z1 = z1 can be written
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as f1(y; γ, β1z1) with the same β1 as in f0(y; θ, β1z1 + β2z2) and non-collapsible if
not.

An estimator β̂1 of β1 based on a model specification of Y conditional only on
the covariate Z1 = z1 is collapsible if β̂1 is consistent for the same β1 as in the
specification f0(y; θ, β1z1 + β2z2). With a consistent estimator (β̃1, β̃2) under this
specification we thus have that there is no a systematic difference between β̂1 and β̃1.

2.2 Survival framework

Wewill be concerned with survival models and survival data. Themodels are specified
by the hazard functions and in particular the proportional hazards model is given as
the hazard with covariate z (Cox 1972; Aalen et al. 2008),

λ(t; z) = λ0(t) exp(β
′z) = λ0(t) exp(β1z1 + β2z2)

for some baseline hazard function λ0(t) with z j = 0, j = 1, 2, β = (β1, β2)
′ and a

regression vector z. In contrast the additive hazards model of Aalen (1989) is written
as

λ(t; z) = β0(t) + β(t)′z = β0(t) + β1(t)z1 + β2(t)z2

whereβ0(t) is also a baseline hazard function andβ j (t), j = 1, 2 regressions functions
corresponding to the j-th component of z. Other specifications of the additive hazards
model are given by setting β j (t) = β j as a fixed parameter for both j (Lin and Ying
1994) and only for one components of β(t) (McKeague and Sasieni 1994). We will
in several simulations consider the regression parameter formulation of Lin and Ying
because it corresponds to the Cox model in parametrization with a baseline hazard
function λ0(t) or β0(t) and a linear predictor β1z1 + β2z2. A thorough treatment of
additive hazards model can be found in Martinussen and Scheike (2006) and these
models can be fitted using their R-library timereg.

2.3 Collapsibilty of additive hazards models

The survival function corresponding to the additive hazards model considering the
covariates Z = (Z1, Z2) as random becomes

S(t |Z) = exp

(
−

∫ t

0
λ(s; Z)ds

)
= exp(−B0(t) − B1(t)Z1 − B2(t)Z2)

with cumulative regression functions Bj (t) = ∫ t
0 β j (s)ds, j = 0, 1, 2. Thus condi-

tioning on only Z1 we obtain

S(t |Z1) = E [S(t |Z)|Z1] = ∫
exp(−B0(t) − B1(t)Z1 − B2(t)z2)g2(z2|Z1)dz2

= exp(−B0(t) − B1(t)Z1)
∫
exp(−B2(t)z2)g2(z2)dz2
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where the conditional density of Z2|Z1 is g2(z2|Z1) = g2(z2) due to the inde-
pendence between the Z j . The hazard corresponding to this conditional survival
function equals γ0(t) + β1(t)z1 where the baseline hazard is given by γ0(t) =
β0(t) − d

dt log(
∫
exp(−B2(t)z2)g2(z2)dz2). This is an additive hazards model with

regression function β1(t) and baseline hazard γ0(t), thus the additive hazards model
is collapsible. Note that the result holds also when one or both of the β j (t) = β j are
constant.

Collapsibility also holds for a more general version of the additive model where
terms β j (t)z j are extended to regression functions β j (t; z j ) and cumulative regres-
sion functions Bj (t, z j ) = ∫ t

0 β j (s; z j )ds. For this model we get that the density
g(z1, z2; t) of (Z1, Z2) conditional on the survival time T > t can be written as

g(z1, z2; t) ∝ g(z1, z2) exp(−B0(t) − B1(t, z1) − B2(t, z2))

and sowe canwrite g(z1, z2; t) = g1(z1; t)g2(z1; t) formarginal conditional densities
g j (z j ; t) of Z j given T > t . Thus under additive hazards models Z1 and Z2 are
independent given T > t for all t. As pointed out by Aalen et al. (2015) this property
will only hold under the generalized additive hazards model with regression functions
β j (t; z j ).

2.4 Non-collapsibilty of proportional hazards models

In contrast for the proportional hazards assumption we get the survival function of
T > t given Z = (Z1, Z2) as

S(t |Z) = exp

(
−

∫ t

0
λ(s; Z)ds

)
= exp(−�0(t) exp(β1Z1 + β2Z2)).

where �0(t) = ∫ t
0 λ0(s)ds and the marginal survival function only given Z1 becomes

S(t |Z1) = E [S(t |Z)|Z1] =
∫

exp(−�0(t) exp(β1Z1 + β2z2))g2(z2)dz2

which can not be written as a survival function under a proportional hazards model
and so, as several authors has demonstrated (Struthers and Kalbfleisch 1986; Solomon
1984; Bretagnolle and Huber-Carol 1988), the proportional hazards model is not col-
lapsible. Also note that since the proportional hazards model is different from the
additive hazards model, a dependence between Z1 and Z2 among individuals with
survival T > t will develop as time t increases when data were generated under a
proportional hazards model with the Z j independent at time t = 0.

2.5 Collapsibilty of estimators from additive hazards models

Regarding estimation, the additive hazards models are usually fitted with least squares
techniques. The most commonly used method, suggested by Aalen (1980), Aalen

123



408 S. O. Samuelsen

(1989), consists in estimating the cumulative regression functions Bj (t) = ∫ t
0 β j (s)ds

as a sum of increments at each event time t j where the increments are the least squares
solution using indicators of event dNi (t j ) of individual i as responses with a design
matrix consisting of the covariates of individuals at risk at that time. If the Z j were
independent at the outset and the data were generated by the additive hazards model,
the Z j among those who have not yet experienced the event will be independent. Also,
if censoring is independent of covariates the Z j will continue to be independent. A
basic fact about least squares estimators is that one can remove uncorrelated covariates
without changing the estimate for the remaining covariates. Thus in this situation the
increment estimates do not change systematically and so the estimator of the cumu-
lative regression function is collapsible. This property will also hold, as commented
in more detail on in the end of this subsection, if censoring depend on covariates
according to an additive hazards model since then the overall model for leaving the
risk sets will follow an additive hazards model and the covariates will continue to be
independent and uncorrelated.

With the specification of the additive model with some or all β j (t) = β j constant
the estimators suggested by Lin andYing (1994) and byMcKeague and Sasieni (1994)
were presented as a two step procedure where the constant β j are estimated first and
the non-constant β0(t) and β j (t) in the next step.

Specifically the Lin-Ying estimator of β = (β1, β2)
′ is given as

β̂ = [
n∑

i=1

∫
Yi (t)(Zi − Z̄(t))⊗2dt]−1

n∑
i=1

∫
(Zi − Z̄(t))dNi (t)

where Zi = (Zi1, Zi2)
′, Yi (t) the indicator that individual i is at risk at t−, dNi (t)

and indicator of event of individual i at time t, Z̄(t) = ∑n
i=1 ZiYi (t)/Y (t) with

Y (t) = ∑n
i=1 Yi (t) and a⊗2 = aa′. It then follows that one can not remove one

covariate from the model and retain exactly the same estimate for the remaining
covariate when

n∑
i=1

∫
Yi (t)(Zi1 − Z̄1(t))(Zi2 − Z̄2(t))dt �= 0

In a finite sample there will practically always be a slight change in the estimate of β1
when excluding zi2 from the model. However, when Z1 and Z2 are independent the
correlations between zi1 and zi2 among those at risk at different event times tk will
tend to zero and the estimates of β1 in the full and marginal model will be consistent
for the same value.

As previously mentioned, independence between the covariates will cease to be
if the data generating mechanism is not an additive hazards model or if censoring
or truncation forces the distribution of the observed z1 and z2 in different risk set to
be correlated. In particular for the right-censoring situation we have that the times to
event and censoring are typically assumed independent given covariates z1 and z2 with
hazards λ(t, z) = β0(t) + β1(t, z1) + β2(t, z2) for the event time and λC (t, z) for the
censoring time. Then the censored survival time, i.e. theminimumof the event time and
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the censoring time, has a hazard λ(t, z) + λC (t, z) which is an additive hazard model
if and only if the hazard for censoring λC (t, z) = β0C (t) + β1C (t, z1) + β2C (t, z2),
i.e. is an additive hazards model. From Aalen et al. (2015) it then follows that the
covariates will be independent at all event times. We can also note that this extends
to a competing risk situation with all cause-specific hazards and also the censoring
hazards are following additive models.

2.6 Collapsibilty of estimators from proportional hazards models

We will now demonstrate that also Cox regression is collapsible when the covariates
are independent in all risk sets. The argument is presented assuming Z2 is omitted in the
marginal model. The score-function of the (erroneously specified) partial likelihood
with only Z1 as covariate is then given as

UM
1 (β1) =

n∑
i=1

∫ [
Zi1 − S(1)

M (β1, t)/S
(0)
M (β1, t)

]
dNi (t) = 0

where Ni (t) is (still) the counting process for the number of events up to time t,
R(t) the risk set at this time and S(k)

M (β1, t) = ∑
i∈R(t) Z

k
i1 exp(β1Zi1), k = 0, 1.

(Alternatively and perhaps typographically more pleasing we can write S(k)
M (β1, t) =∑n

i=1 Z
k
i1Yi (t) exp(β1Zi1) and similarly for S(1)

F1(β, t) and S(0)
F (β, t) below, but in this

context it is useful to emphasize independence conditional on risk setsR(t)).
Similarly the first component of the score function from the full partial likelihood

(for the full model) with both covariates can be written as

UF
1 (β) =

n∑
i=1

∫ [
Zi1 − S(1)

F1(β, t)/S(0)
F (β, t)

]
dNi (t) = 0

with the definitions S(1)
F1(β, t) = ∑

i∈R(t) Zi1 exp(β1Zi1 + β2Zi2) and S(0)
F (β, t) =∑

i∈R(t) exp(β1Zi1 + β2Zi2).
When the risk set sizes grows to infinity we get for the fraction between the terms

S(1)
M (β1, t) and S(0)

M (β1, t) of the marginal score that

S(1)
M (β1, t)

S(0)
M (β1, t)

→ E [Zi1 exp(β1Zi1)|i ∈ R(t)]
E [exp(β1Zi1)|i ∈ R(t)] = e(β1, t)

for a function e(β1, t).
In comparison for the term S(1)

1F (β, t)/S(0)
F (β, t) in the first component of the full

score we get
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S(1)
1F (β, t)

S(0)
F (β, t)

→ E [Zi1 exp(β1Zi1 + β2Zi2)|i ∈ R(t)]
E [exp(β1Zi1 + β2Zi2)|i ∈ R(t)]

= E [Zi1 exp(β1Zi1)|i ∈ R(t)]
E [exp(β1Zi1)|i ∈ R(t)] = e(β1, t)

for the same function e(β1, t). This since Zi1 and Zi2 are independent in all risk
sets. Thus the terms have the same limit and depend only on β1. It then follows that
the estimator of β1 obtained from the marginal partial likelihood and the full partial
likelihood will be consistent for the same value and so Cox regression is collapsible.

Collapsible Cox regression is then obtained when covariates are independent at
all event times. This will be achieved under additive hazards model with initially
independent covariates and censoring that is either independent of covariates or more
generally following an additive hazards model. But it can also be obtained if the event
timemodels differ from an additive hazardsmodel, say are generated by a proportional
hazards model, but the censoring mechanisms counters the dependency generated by
the model and so ensuring independence between covariates at all event times.

In the simulations of Sect. 3.2.1 a censoring mechanism is developed that gives
approximately uncorrelated covariates over all risk sets resulting in approximate col-
lapsible estimation. But there actually exists one mechanism that will give exact
independence. Assume that the event times follow a proportional hazards model
λ(t; z) = λ0(t) exp(β ′z) = λ0(t) exp(β1z1 + β2z2) and that the censoring times
are drawn from a hazard λC (t; z) = β0(t) + β1(t, z1) + β2(t, z2) − λ(t; z) ≥ 0 for
all possible z j , j = 1, 2. Then the hazard of the censored survival time is given as
λ(t; z) + λC (t; z) which is an additive hazards model, and so with right censored
data the covariates will be independent for all risk sets. Furthermore, with competing
risk data and only right censoring, independence will be achieved if the sum of the
cause-specific hazards and the hazard for the censoring is an additive hazard.

Furthermore, with left-truncation where indivudals at their event or censoring time
are replaced by individuals with exactly the same covariates would lead to collapsible
Cox regression. This is then related to a renewal or (Andersen and Gill 1982) process
where indidividuals may return to the risk set after events. It is then also closely
connected to Poisson-processes dependent on covariates through log-linear intensities
for which collapsibilty follows from the results of Gail et al. (1984). Some other
possible mechanism leading to independence between covariates in all risk sets are
commented on in the Discussion section.

3 Simulation studies

In this section we will use simulations to illustrate non-collapsible estimation under
additive hazards models specifications and collapsible estimation under proportional
hazards specifications.

Wewill first consider data generated by proportional hazardsmodelswith censoring
independent of covariates and study the non-collapsibility both with Cox regression
and with Aalen regression and Lin-Ying regression. These results are then contrasted
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with data generated by aLin-Yingmodel alsowith censoring independent of covariates
and demonstrate that there is then no systematic change using either estimators for
assuming additive or proportional hazards model specification when omitting one
covariate.

In a next set of simulations we will also consider survival times generated with
additive or proportional hazards models, but with censoring mechanism that induces
dependency between the covariates under the additive hazards specification or reduces
the induced dependency under the proportional hazards specification. The effects this
will have on collapsibility or non-collapsibility ofCox regression andLing-Ying/Aalen
regression is then demonstrated.

Finally instrumental variable analysis developed for additive hazards models will
be considered discussing the issue of independence between the instrument and the
unknown confounders in all risk sets.

3.1 Independent censoring

3.1.1 Proportional hazards model data, independent censoring

The model for the simulation is given by the hazard for event λ(t |z1, z2) =
λ0(t) exp(β1z1 + β2z2) where β1 = 0.5, β2 = 1 and the baseline hazard λ0(t) = 1.
The covariates z1 and z2 are uniform on [0, 2] and independent. The censoring times
have a constant hazard equal to 2.2 and is independent of the covariates. This model
was simulated with n = 5000 individuals for 1000 runs. This gave a proportion of
uncensored event times of 67%.

Thedatawere thenfittedwithCox regression andLin-Ying regressionboth in bivari-
ate models with z1 and z2 included and in univariate models with only z1 included.
Results for the average estimated regression parameters β̂1 are presented in Table 1.

We note that with Cox regression β1 is estimated without bias in the bivariate Cox
regression with both z1 and z2 included. In the univariate models only including z1
the average estimate drops from 0.498 to 0.421, in accordance with Cox regression
being non-collapsible. This gives a fraction between the average β̂1 estimates in these
two models of 0.850. For Lin-Ying regression the estimated β̂1 naturally differs, but
again we see that the univariate estimates are considerably smaller than the bivariate
β̂1 and the fraction between these averages are 0.846, so the degree of bias introduced

Table 1 Average of β̂1 for bivariate and univariate Cox- and Lin-Ying-regressions under simulated Cox-
models

Model specification Average estimate of β1 Univariate/bivariate

Bivariate Cox 0.498

Univariate Cox 0.421 0.850

Bivariate Lin-Ying 2.130

Univariate Lin-Ying 1.811 0.846
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by omitting z2 is the same as for the Cox regression. Thus the Lin-Ying regression
was also non-collapsible.

Univariate λ0(t) + β1(t)z1 and bivariate λ0(t) + β1(t)z1 + β2(t)z2 Aalen-models
were also fitted. The estimated B1(t) = ∫ t

0 β1(s)ds for one run both bivariate with
both covariates and univariate with only z1 included is displayed in Panel A in Figure
S1 in the supplement. The cumulative regression function is visibly smaller for the
univariate model. This impression is confirmed in Panel B showing the averages of
1000 such B̂1(t). The curvature of these functions is due to the simulated Cox-model
and is similar to findings in Aalen (1989) and Henderson and Milner (1991).

Panel C of Figure S1 in the supplement shows how empirical correlations of z1
and z2 of those at risk changes as time increases both in one run and averaged over
the runs. Uncertainty limits for one run ±1.96/

√
Y (t) where Y (t) is the number at

risk at time t are included. From initially being uncorrelated we see that a negative
correlation develops, due to the Cox-model, as time increases. The average of such
correlations over all runs confirms that this negative correlation is not random.

3.1.2 Additive hazards model data, independent censoring

The hazard for the data generating model is now given by the Lin-Ying model
λ(t |z1, z2) = β0(t) + β1z1 + β2z2 where again β1 = 0.5 and β2 = 1, z1 and z2
are independent and uniformly distributed over [0, 1] and the baseline regression
function equals β0(t) = 1. This is thus a Lin-Ying model with cumulative intercept
function B0(t) = t and cumulative regression function B1(t) = 0.5t and B2(t) = t .
The censoring distribution is given by a constant hazard equal to 1. We simulated
populations of size n = 5000 and repeated this for 1000 runs. The average proportion
of uncensored observations now became 65%.

The data were also as in Sect. 3.1.1 fitted with Lin-Ying regression and Cox regres-
sion under both bivariate and univariate model specifications. The average of the
regression parameter estimatesβ1 are given in Table 2.We note that the average param-
eter estimates are equal to 3 (actually 4) decimals between the bivariate and univariate
models, although they naturally differ when fitting the (wrong) Cox-model or the
(correct) Lin-Ying model. The simulation thus demonstrates the results that neither
Lin-Ying nor Cox-regression estimates are changed systematically when excluding
an independent covariates with data generated by an additive hazards model with

Table 2 Average of β̂1 for bivariate and univariate Cox- and Lin-Ying-regressions under simulated Lin-Ying
models

Model specification Average estimate of β1 Univariate/bivariate

Bivariate Cox 0.288

Univariate Cox 0.288 1.000

Bivariate Lin-Ying 0.494

Univariate Lin-Ying 0.494 1.000
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censoring independent of covariates and hence covariates are independent in all risk
sets.

Again Aalen models were fitted and Panel A of Figure S2 in the supplement gives
estimated B1(t) in univariate and bivariate model specifications for one run, similarly
Panel B gives corresponding averages over the 1000 runs. In accordance with theory
there is no systematic difference between the curves in Panel A. This confirmed in
Panel B where averages of the bivariate and univariate estimates are indistinguishable
from each other and the true B1(t) = 0.5t .

Furthermore, Panel C gives correlations between z1 and z2 among individuals at
risk for different t. The line for one run falls generally within the uncertainty limits
±1.96/

√
Y (t) and the average over 1000 runs is very close to zero. As theory predicts

no correlation will develop as time increases.

3.2 Dependent censoring

3.2.1 Proportional hazards model data, dependent censoring

It was shown in Sect. 3 that Cox regression is collapsible if covariates are independent
over all risk sets. However, when data are generated by a proportional hazards model
a dependence will develop as time increases. This dependency could be counteracted
on by also letting the hazard of censoring depend on a proportional hazards model.

In this section it will be demonstrated that with data generated by a proportional
hazards model, but with a suitably chosen proportional hazards model also for the
censoring it is possible to obtain a situation where the covariates will be approximately
uncorrelated in all risk sets. It is then demonstrated that Cox regression under this
correct model is approximately collapsible and the same holds true for the (wrong)
Lin-Ying and Aalen models.

We use the same Cox-model as in Sect. 3.1.1 for generating the data, thus z j , j =
1, 2, are uniform on [0, 2], β1 = 0.5, β2 = 1 and λ0(t) = 1. A censoring model that
for this event time model gave close to uncorrelated covariates in all risk sets, found
after some tuning of parameters, was given by hazardsλC (t) = exp(1.15β1z1−2β2z2)
for censoring times Ci . This model was fitted both with bivariate and univariate Cox-
and Lin-Ying models with n = 5000 observation in 1000 simulations. The proportion
uncensored observations was 67%. Results are given in Table 3 and show that both

Table 3 Average of β̂1 for bivariate and univariate Cox- and Lin-Ying-regressions under simulated Cox
models with dependent censoring

Model specification Average estimate of β1 Univariate/bivariate

Bivariate Cox 0.498

Univariate Cox 0.495 1.007

Bivariate Lin-Ying 2.279

Univariate Lin-Ying 2.296 0.993
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Cox regression and Lin-Ying was practically collapsible with this setting.
As in previous sections results for fitting the Aalen model are compared between

the bivariate models with both covariates and univariate models using only z1. The
cumulative regression functions B̂1(t) in one run are shown in Figure S3 in the sup-
plement, panel A, and the corresponding averages over 1000 simulations in Panel B.
Both panels indicate approximate collapsibility under the given setting.

Panel C in Figure S3 then shows the correlations between z1 and z2 in different
risk sets for one run with uncertainty limits and averaged over 1000 runs. This panel
demonstrates that the covariates were close to uncorrelated over the risk sets.

3.2.2 Additive hazards model data, dependent censoring

We will in this section demonstrate that even when event times data are generated by
an additive hazards, Lin-Ying and Aalen regressions may fail to be collapsible if the
censoring times are dependent on covariates with a non-additive hazards model. For
convenience we choose a proportional hazards model for the censoring times. The
event times follow the same model as in Sect. 3.1.2, so the covariates z1 and z2 are
uniform [0, 1], the additive hazards model is λ(t |z1, z2) = β0(t)+β1z1 +β2z2 where
β1 = 0.5 and β2 = 1. The censoring times, though, are generated by the proportional
hazards λC (t) = exp(−2.2+ 3β2z1 + 2β1z1) found after some tuning of parameters.
This model was simulated with sample size n = 5000 for 1000 simulations. The
proportion of uncensored event times then became 67%.

As above both univariate and bivariate Cox-models and Lin-Ying models were
fitted. Results are given in Table 4. Both Cox regression and Lin-Ying display non-
collapsibility as estimates are clearly biased when z2 is omitted from the model. The
ratios between bivariate and univariate regression coefficients for z1 and in relative
terms the bias is almost equal.

Also, as above, Aalen models where fitted with the data. Results are displayed in
Figure S4 in the supplement with panel A for one run and Panel B for the average
over all 1000 runs. Both panels display that the cumulative regression function B̂1(t)
in the model with z1 only included are lower than the corresponding estimates in the
model with both z1 and z2, this in accordance with the results in Table 4.

Furthermore, in Panel C of Figure S4we see the correlations between the covariates
over different risk sets. One clearly see that a negative correlation develops as time

Table 4 Average of β̂1 for bivariate and univariate Cox- and Lin-Ying-regressions under simulated Lin-Ying
models with dependent censoring

Model specification Average estimate of β1 Univariate/bivariate

Bivariate Cox 0.296

Univariate Cox 0.258 0.872

Bivariate Lin-Ying 0.493

Univariate Lin-Ying 0.432 0.876
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increases, and the bias of the regression coefficients and in B̂1(t) univariate models
can be explained by this dependence.

3.3 Instrumental variables

Instrumental variables analysis is a technique allowing for adjustment for unknown
confounding. The basic setup is that there is one exposure variable X, an unobserved
confounder U dependent with X, an instrument I that is correlated with X but inde-
pendent of U and an outcome variable Y dependent on X and U. Since X and U are
dependent the estimated regression parameter of X alone on Y will be biased since
it also reflects the effect of U. However, one may first carry out a least squares fit
of I on X and use the predicted values X̂(I ) as predictor for Y . Then since X̂(I ) is
independent of U an unbiased effect of X on Y is obtained if the model (in particular
with least squares estimation) is collapsible.

Tchetgen Tchetgen et al. (2015) and Li et al. (2015)developed instrumental variable
analysis for survival data with the additive hazards model based on the collapsibil-
ity of this model. As we have seen collapsibility for Aalen regression and additive
hazards regression more generally requires that covariates are independent in all risk
sets. But it has also been pointed out that Cox regression will be collapsible under
the same conditions. In this section it will first be demonstrated by simulation that
instrumental variable analysis can be valid both for Lin-Ying and Aalen regression
and for Cox regression when the data are generated by additive hazards and censoring
is independent of covariates. Secondly it will be demonstrated that the instrumental
variable method can be biased both for Lin-Ying and Aalen regression and for Cox
regression when data are generated by a proportional hazards regression model.

3.3.1 Instrumental variables analysis under additive hazards model

The unknown confounder U and the instrument I were simulated from uniform [0, 1]
distributions and the exposurewas given as X = U+I+εwhere εwas also drawn from
a uniform [0, 1]. The n = 5000 event times were then drawn from an exponential with
hazard rates 1+ X +U and the censoring times from a uniform [0, 1]. The instrument
X̂(I )was generated as the fitted values from a least squares regression ofX on I and so
X̂(I ) is independent of U. This simulation was repeated 1000 times. The proportion
exact observed event times was 65%.

For each simulation three models were fitted both with Lin-Ying- and Cox regres-
sions, first a model which is in practice impossible including both the exposure X
and the unknown confounder U, then a model using only the exposure X and finally
a model including only the instrumental variable with covariate X̂(I ). Results from
Table 5 show that both the unrealistic and the instrumental variable approach fits a
value in accordance with the true β1 = 1 for the Lin-Ying regression whereas the
analysis with only X is biased. With Cox regression one similarly finds that the unre-
alistic analysis with X andU and the analysis with X̂(I ) gives approximately the same
results corresponding to the collapsibility property of Cox regression for independent
X̂(I ) and U, whereas the analysis with only X differs from these.
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Table 5 Instrumental variable analysis based on event data from an additive hazards model analyzed with
Lin-Ying and Cox regression

Additive hazards Lin-Ying-regression Cox regression

Average β̂1 in model X +U 1.003 0.374

Average β̂1 in model X 1.223 0.457

Average β̂1 in model X̂(I ) 1.006 0.376

Aalen regression models based on X̂(I ) and U simultaneously, X alone and X̂(I )
alone were also fitted. The upper panel of Figure S5 in the supplement gives the
estimated B̂1(t) for one run and themiddle panel the average over 1000 B̂1(t) estimates.
As theory predicts there is no systematic difference between the two estimates with
both X and U and with X̂(I ), but the curve with only X overestimates the relation.
Finally, the correlations between X̂(I ) and U among those at risk at different times
are plotted in the lower panel of the figure and confirms that these two terms stay
uncorrelated.

3.3.2 Instrumental variables analysis under proportional hazards model

For simulation with proportional hazards for the event time the instrument I , the
unknown confounderU and the exposure variable X were generated with same model
as in the previous section. However, now the event times were drawn according to
hazards λ(t, x, u) = exp(−0.8+ x + u), i.e. with a regression coefficient for X equal
to β1 = 1. The censoring times were again drawn from a uniform [0, 1]. In each
simulation the sample size was n = 5000 and the simulations were repeated for 1000
runs. This gave a proportion exact observed events of 63%.

Table 6 presents results from the simulations for the fitted Lin-Ying and Cox regres-
sion models. It is seen that for the correct, but in practice impossible Cox regression
with X andU, the true value β1 = 1 is replicated. Only using X gives a biased result as
does the analysis based on the instrument X̂(I ). For the Lin-Ying analyses the model
with X alone give a higher result than with X andU whereas the analysis with only the
instrument X̂(I ) give a lower result than with both X and U. These results are thus in
accordance with non-collapsibility of proportional hazards models. We also note that

Table 6 Instrumental variable analysis based on event data from proportional hazards model analyzed with
Lin-Ying and Cox regression

Proportional hazards Lin-Ying-regression Cox regression

Average β̂1 in model X +U 2.556 1.002

Average β̂1 in model X 3.023 1.182

Average β̂1 in model X̂(I ) 2.270 0.885
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the relative degree of bias compared to the model with both X ands U is the same for
the Cox- and the Lin-Ying estimates.

Finally Aalen regression models were fitted both in models with X and U, only X
and only X̂(I ). The results are given in Figure S6 in the supplement with B̂1(t) for
one run in the upper panel and averaged over the 1000 runs in the middle panel. One
observes that there is a difference in the curves and cumulative regression function
for the unknown confounder U lies between those for only X and only X̂(I ). The
lower panel then gives correlations betweenU and X̂(I ) among those still at risk over
different times and one observes that a negative correlation develops as time increases.

4 Discussion

It has in this paper been demonstrated theoretically and illustrated by means of sim-
ulation that Aalen/Lin-Ying-regression estimators and Cox regression estimators are
collapsible when covariates are independent in all risks sets. The results thus gives
conditions for when common exposure effects can be estimated without bias in ran-
domized clinical studies both for additive hazards regression and for Cox-regressions.
The results also gives a condition for when the simple instrumental variable analysis
gives valid results again both for additive hazards and Cox-regressions.

At the same time the results shows that one should be somewhat cautious about
concluding about causation from analyses of additive hazards regression, as with
instrumental variable analysis, since it is generally not know that the data were gen-
erated by such a model. Furthermore, even with data generated from an additive
hazards model, a correlation between covariates in risk sets may result from covariate
dependent censoring patterns. This in turn can amount to biased estimation of (com-
mon) regression parameters for exposure or treatment effects when confounders are
unknown and can not be accounted for.

The paper also demonstrates that it is possible to have practically uncorrelated
covariates in all risk sets even when the data are generated by a proportional hazards
model if censoring counters the model induced dependence and suggested that trun-
cation patterns can generate a similar structure. Other mechanisms that may generate
uncorrelated covariates in risk sets can be time-dependency of covariates zi (t) and
time-dependency of effects, e.g. an extended proportional hazards model with regres-
sion functions β j (t). It may be considered that such structures are not very common
in practice. Nevertheless, the condition of independence of covariates in all risk sets
could provide a background for evaluating the potential for estimation of unbiased
regression parameters.

It should be mentioned that the present work was not set out to be a discussion
of estimation of treatment or causal effects. Rather, the start point was related to
considerations of matched cohort studies. In such studies one will study a subset of the
entire cohort obtained by, for each individual with a particular (often rare) exposure,
selecting a small number unexposed reference individuals. These are matched, i.e.
chosen equal to the index (exposed) individual, on a number of known and otherwise
potentially confounding variables. Thus the matched data are made balanced and the
exposure and confounders are initially uncorrelated. The idea was to investigate the
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use of additive hazards regression where confounders are ignored in the analyses.
However, it turned out that this did not work well if the data were in fact generated by
proportional hazards models.
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