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Abstract
Dynamic (or varying) covariate effects oftenmanifestmeaningful physiologicalmech-
anisms underlying chronic diseases. However, a static view of covariate effects is
typically adopted by standard approaches to evaluating disease prognostic factors,
which can result in depreciation of some important disease markers. To address this
issue, in this work, we take the perspective of globally concerned quantile regression,
and propose a flexible testing framework suited to assess either constant or dynamic
covariate effects. We study the powerful Kolmogorov–Smirnov (K–S) and Cramér–
Von Mises (C–V) type test statistics and develop a simple resampling procedure to
tackle their complicated limit distributions. We provide rigorous theoretical results,
including the limit null distributions and consistency under a general class of alter-
native hypotheses of the proposed tests, as well as the justifications for the presented
resampling procedure. Extensive simulation studies and a real data example demon-
strate the utility of the new testing procedures and their advantages over existing
approaches in assessing dynamic covariate effects.

Keywords Hypothesis testing · Globally concerned quantile regression · Testing
consistency · Resampling

1 Introduction

Identifying useful prognostic factors is often of critical interests in chronic disease
studies. When the disease outcome is captured by a time-to-event, a commonly used
approach is to model the mechanism of a prognostic factor influencing the time-to-
event outcome via a standard survival regressionmodel and then test the corresponding
covariate effects (see a review in Kleinbaum and Klein (2010) and Cox and Oakes
(2018)). The standard survival regression models, such as the Cox proportional hazard
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(PH) regression model and the accelerated failure time (AFT) model, impose assump-
tions like the proportional hazards and the location-shift effects, which implicitly
confine the prognostic factor of interest to be a static portent of disease progression.

There has been growing awareness that a prognostic factor may follow a dynamic
association with a time-to-event disease outcome. Many reports in literature (Dick-
son et al. 1989; Thorogood et al. 1990; Verweij and van Houwelingen 1995; Bellera
et al. 2010), for example) have suggested that postulating constant covariate effects,
sometimes, is not adequate to reflect underlying physiological disease mechanisms,
leading to distorted assessment of the prognostic factor. For example, an analysis of
a dialysis dataset reported by Peng and Huang (2008) suggested that the severity of
restless leg syndrome (RLS) symptoms may be prognostic of mortality for short-term
dialysis survivors but not for long-term dialysis survivors. The standard tests based on
the Cox PH model and the AFT model failed to detect such a dynamic effect.

Quantile regression (Koenker and Bassett 1978), which directly formulates covari-
ate effects on quantile(s) of a response, confers a seminal venue to characterize a
dynamic effect of a prognostic factor. Specifically, given a time-to-event outcome T
and a covariate ˜Z (which represents the prognostic factor of interest), a linear quantile
regression model may assume,

QT (τ |˜Z) = exp{ZT θ0(τ )}, τ ∈ �, (1)

where Z = (1, ˜Z)T , QT (τ |˜Z) ≡ inf{t : Pr(T ≤ t |˜Z) ≥ τ } denotes the τ -th condi-
tional quantile of T given ˜Z , θ0(τ ) ≡ (β

(0)
0 (τ ), β

(1)
0 (τ ))T is an unknown coefficient

vector, and � ⊆ (0, 1) is a pre-specified set including the quantile levels of interest.
The coefficient β(1)

0 (τ ) represents the effect of Z̃ on the τ -th conditional quantile of T ,
and is allowed to change with τ . This implicates that the prognostic factor is permitted
to have different effects across different segments of the distribution of the time-to
event outcome.

Many authors have studied linear quantile regression with a time-to-event outcome
(Powell 1986; Ying et al. 1995; Portnoy 2003; Zhou 2006; Peng and Huang 2008;
Wang and Wang 2009; Huang 2010, for example). Most of the existing methods
concern covariate effects on a single or multiple pre-specified quantile levels (e.g.
� is a singleton set {0.5}), and, following the terminology of Zheng et al. (2015),
are locally concerned. As discussed in Zheng et al. (2015), locally concerned quantile
regression cannot inform of the covariate effect on quantiles other than the specifically
targeted ones (e.g. median), and thus maymiss important prognostic factors. Adopting
the perspective of globally concerned quantile regression, one can simultaneously
examine covariate effects over a continuum of quantile levels (e.g. � is an interval
[0.1, 0.9]), and thus confer a more comprehensive assessment of a prognostic factor.
However, powerful tests tailored to evaluate covariate effects under the perspective of
globally concerned quantile regression have not been formally studied, partly owing
to the associated inferential complexity.

In this work, we develop a new framework for evaluating a survival prognostic
factor following the spirit of globally concerned quantile regression. As a proof of
concept, we shall confine the scope of this work to the standard survival setting where
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the time-to-event outcome T is subject to random censoring. Specifically, our proposal
is to simultaneously assess the influence of the prognostic factor on a range of quantiles
of T , indexed by a τ -interval, [τL , τU ] ⊂ (0, 1). As the key rationale, a significant
prognostic factor is allowed to have a dynamic τ -varying effect,whichmaybenon-zero
throughout the whole τ -interval (i.e. full effect), or only over a part of the τ -interval
(i.e. partial effect). Under this view, when model (1) with� = [τL , τU ] holds, the task
of identifying a prognostic factor reduces to testing the null hypothesis,

H0 : β
(1)
0 (τ ) = 0, τ ∈ [τL , τU ].

Moreover, without assuming any models, we may consider the null hypothesis formu-
lated as,

H∗
0 : QT (τ |˜Z) = QT (τ ) for τ ∈ [τL , τU ],

where QT (τ ) = inf{t : Pr(T ≤ t) ≥ τ }, denoting the τ -th unconditional (or
marginal) quantile of T . The null hypothesis H∗

0 corresponds to the setting where ˜Z
has no influence on the conditional quantile of T at any quantile level between τL and
τU .

It is remarkable that under mild regularity conditions, H∗
0 implies that model (1)

holds with � = [τL , τU ] and β
(1)
0 (τ ) = 0 for τ ∈ [τL , τU ]; on the other hand, model

(1) with � = [τL , τU ] and β
(1)
0 (τ ) = 0 for τ ∈ [τL , τU ] implies QT (τ |˜Z) = QT (τ )

for τ ∈ [τL , τU ]; see Lemma 1 in the Appendix A. This finding sheds an important
insight that a model-based test developed for H0 may be used towards testing the
model-free null hypothesis H∗

0 . From an alternative view, this result suggests that the
globally concerned quantile regression model (1) with � = [τL , τU ] can be used as a
working model to test H∗

0 , which adopts the view that the effect of a prognostic factor
can be assessed through contrasting the conditional versus unconditional quantiles of
T .

Regarding H∗
0 , we study two “omnibus" test statistics constructed based on the

estimator of θ0(τ ) obtained under the working model (1) with � = [τL , τU ]. One
test is a Kolmogorov–Smirnov (K–S) type test statistic defined upon the maximum
“signal” strength (i.e. covariate effect) over τ ’s in [τL , τU ]. The other one is a Cramér–
Von-Mises (C–V) type test statistics based on the average “signal” strength over τ ’s
in [τL , τU ]. These two types of test statistics are known to be very sensitive to detect
any departure from the null hypothesis H0 under model (1). However, the analytic
form of their limit null distributions are generally complex and sometimes intractable.
This challenge is more intense in the quantile regression setting, where coefficient
estimates do not have a closed form, and the corresponding asymptotic variancematrix
involves unknown density functions (Koenker 2005). To overcome these difficulties,
we propose to approximate the limit null distributions through a resampling procedure
that perturbs the influence function associated with the adopted coefficient estimator
under theworkingmodel (1), following similar strategies of Lin et al. (1993) andLi and
Peng (2014). We derive a sample-based procedure to estimate the influence function
without requiring the correct specification of model (1), thereby circumvents directly
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evaluating the unknown density function via smoothing. The proposed resampling
procedure is easy to implement and is shown to perform well even with realistic
sample sizes.Moreover, we provide rigorous theoretical justifications for the proposed
resampling procedure.

The rest of this paper is organized as follows. In Sect. 2, we first briefly review some
existing results about the estimation of model (1), which we use as a working model
for testing H∗

0 . We then present the proposed test statistics along with their theoretical
properties. A resampling procedure is developed to carry out inference regarding H0
or H∗

0 based on the proposed test statistics. We also discuss some computational
strategies to help simplify or improve the implementation of the proposed method. In
Sect. 3, we report extensive simulation studies conducted to evaluate the finite-sample
performance of the proposed testing procedures. Our simulation results show that the
proposed tests have accurate empirical sizes and can be much more powerful than
benchmark methods when assessing a covariate with a dynamic effect. In Sect. 4, we
further demonstrate the usefulness of the proposed testing procedures with a real data
example. Concluding remarks and discussions are provided in Sect. 5.

2 The proposed testing procedures

2.1 Estimation of�0(�) under model (1)

As explained in Sect. 1, we propose to use globally concerned quantile regression as a
vehicle to address the testing problem regarding the general null hypothesis H∗

0 . The

first step is to obtain an estimator of θ0(τ ) (and thus β
(1)
0 (τ )) from fitting the working

model (1) to the observed data. Here and hereafter, we shall set the � in model (1)
as � = [τL , τU ], which is a pre-specified interval within (0, 1). Let C denote time to
censoring, X = min(T , C), and δ = I (T ≤ C). The observed data include n i.i.d.
replicates of (X , δ, Z), denoted by {(Xi , δi , Zi )}n

i=1.
To estimate θ0(τ ) under model (1), we choose to adapt the existing results of

Peng and Fine (2009) developed for competing risks data to the setting with randomly
censored data.Compared to the other available estimators developedbyPortnoy (2003)
and Peng and Huang (2008), which require τL = 0, the estimator derived from Peng
and Fine (2009) is more robust to any realistic violation of the global linearity assumed
by model (1) (Peng 2021). The influence function associated with Peng and Fine
(2009)’s estimator also has a simpler form that can facilitate the development of the
corresponding testing procedures.

The estimator of θ0(τ ) adapted from Peng and Fine (2009)’s work, denoted by
̂θ(τ ), is obtained as the solution to the following estimating equation:

Sn(b, τ ) = n−1/2
n

∑

i=1

Zi

[

I (Xi ≤ exp{ZT
i b})I (δi = 1)

̂G(Xi |Zi )
− τ

]

= 0, (2)

where ̂G(x |Z) is a reasonable estimator of G(x |Z) ≡ Pr(C ≥ x |Z). For simplicity of
illustration, in sequel, we shall assume C is independent of Z̃ and thus take ̂G(x |Z)
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as the Kaplan–Meier estimator of the marginal survival function of C , ̂G(x). As noted
by Peng and Fine (2009), solving (2) can be formulated as a L1-type minimization
problem of the following convex objective function:

Un(b, τ ) =
n

∑

i=1

I (δi = 1)

∣

∣

∣

∣

log(Xi )

̂G(Xi )
− bT Zi

̂G(Xi )

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

M − bT
n

∑

l=1

−Zl I (δl = 1)
̂G(Xi )

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

M − bT
n

∑

k=1

(2τ Zk)

∣

∣

∣

∣

∣

.

Here M is a sufficiently large number. This L1-type minimization problem can be
easily solved using the rq() function in the R package quantreg by Koenker
(2022).

By the results of Peng and Fine (2009), the estimator ̂θ(τ ) enjoys desirable
asymptotic properties. Specifically, under certain regularity conditions, we have (i)
limn→∞ supτ∈[τL ,τU ] ||̂θ(τ ) − θ0(τ )|| →p 0; and (ii)

√
n{̂θ(τ ) − θ0(τ )} converge

weakly to a mean zero Gaussian process for τ ∈ [τL , τU ] with covariance function
�(τ ′, τ ) = E{ξ1(τ ′)ξ1(τ )T }. Here ξ i (τ ) (i = 1, . . . , n) are defined as

ξ i (τ ) ≡ {ξ (0)
i (τ ), ξ

(1)
i (τ )}T = {A(θ0(τ ))}−1

{

Zi

(

I (log(Xi ) ≤ ZT
i θ0(τ ), δi = 1)

G(Xi )
− τ

)

−
∫ ∞

0
w{θ0(τ ), s}y(s)−1d MG

i (s)

}

,

where G(x) = Pr(C > x), A(b) = E[ZZT f (ZT b|Z)] with f (t |Z) denoting the
conditional density of X given Z, w(b, t) = E[ZY (t)I (X ≤ exp{ZT b})I (δ =
1)G(X)−1], and MG

i (t) = N G
i (t) − ∫ ∞

0 Yi (s)d�G(t) with N G
i (t) = I (Xi ≤ t, δi =

0), Yi (t) = I (Xi ≥ t), y(t) = Pr(X ≥ t), λG(t) = lim�→0 P(C ∈ (t, t + �)|C ≥
t)/�, and�G(t) = ∫ t

0 λG(s)ds. In addition, n1/2{̂θ(τ )−θ0(τ )} ≈ n−1/2 ∑n
i=1 ξ i (τ ),

where ≈ indicate asymptotical equivalence uniformly in τ ∈ [τL , τU ]. Consequently,
ξ i (τ ) is referred to as the influence function of n1/2{̂θ(τ ) − θ0(τ )}.

Note that the variance estimation for̂θ(τ ) is complicated by the involvement of the
unknown density f (t |Z) in the asymptotic covariance matrix�(τ ′, τ ). As justified by
Peng and Fine (2009), a sample-based procedure that avoids smoothing-based density
estimation can be used for variance estimation and is outlined below:

(1.a) Compute an consistent variance estimate for Sn(θ0(τ ), τ ) given by

̂�(τ, τ ) = n−1
n

∑

i=1

Z⊗2
i

(

I [log(Xi ) ≤ ZT
i
̂θ(τ )), δi = 1]

̂G(Xi )
− τ

)2

−n−1
n

∑

i=1

I (δi = 0)

⎛

⎝

n
∑

j=1

Z j I (X j ≥ Xi )I [log(X j )
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≤ ZT
i
̂θ(τ ), δ j = 1]{̂G(X j )}−1

/
n

∑

j=1

I (X j ≥ Xi )

⎞

⎠

⊗2

,

where for a vector a, a⊗2 = aaT .
(1.b) Find a symmetric and nonsingular matrix En(τ ) ≡ {en,0(τ ), en,1(τ )} such that

{En(τ )}2 = ̂�(τ, τ ).
(1.c) Calculate Dn(τ ) = {S−1

n {en,0(τ ), τ } −̂θ(τ ), S−1
n {en,1(τ ), τ } −̂θ(τ )}, where

S−1
n {e(τ ), τ } is the solution to the perturbed estimating equation Sn(b, τ ) =

e(τ ).
(1.d) Obtain an estimate for the asymptotic variance of

√
n{̂θ(τ )−θ0(τ )} as V n(τ ) ≡

nD⊗2
n (τ ).

Here En(τ ) can be computed with the eigenvalue eigenvector decomposition of
̂�(τ, τ ) using the R function eigen(). As another important remark, the above
procedure ensures that the perturbation terms, en, j (τ ), j = 1, 2, have the desired
asymptotic order. As a result, this procedure remains valid when en, j (τ ) in step (1.c)
is replaced by u · en, j (τ ) for some constant u. Based on our numerical experiences,
incorporating some constant u can help stabilize variance estimation when sample
size is small or τ is close to 0 or 1. Variance estimation based on the above procedure
is found to have satisfactory finite sample performance based on some unreported
simulation studies.

2.2 The proposed test statistics and theoretical properties

Expresŝθ(τ ) ≡ (̂β(0)(τ ), ̂β(1)(τ ))′ and let σ̂ (1)
n (τ ) denote the square root of the second

diagonal element of V n(τ ), which corresponds to the variance estimate for
√

n̂β(1)(τ )

under H∗
0 . We propose to construct two “omnibus” test statistics based on ̂β(1)(τ ) and

σ̂
(1)
n (τ ):

̂T (1)
sup = sup

τ∈[τL ,τU ]

∣

∣

∣

∣

∣

√
n̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

,

and

̂T (1)
inte =

∫ τU

τL

∣

∣

∣

∣

∣

√
n̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ.

These two test statistics mimic the classic Kolmogorov–Smirnov (K–S) test statistic
and Cramér–Von-Mises (C–V) test statistic for two-sample distribution comparisons
(Darling 1957). Under model (1), ̂T (1)

sup and ̂T (1)
inte capture the maximum and average

magnitude of the covariate effect over τ ∈ [τL , τU ] respectively. By this design, both
test statistics are sensitive to any type of departures from the null hypothesis H0 and
can be used to construct powerful tests for H0.

123



Assessing dynamic covariate effects with survival data 681

Without assuming model (1), we can also show that ̂T (1)
sup and ̂T (1)

inte provide valid
tests for H∗

0 and have power approaching one under a general class of alternative
hypotheses as specified in Theorem 2. The key insight is that even when model (1)
does not hold,̂θ(τ )may still converge in probability to a deterministic function˜θ(τ ) ≡
(˜β(0)(τ ), ˜β(1)(τ ))′ that is the solution to μ(b, τ ) ≡ E[Z{I (log T ≤ ZT b) − τ }] = 0.
It is easy to see that˜θ(τ ) = θ0(τ ) under model (1). By Lemma 1, it follows that under
H∗
0 , ˜β(1)(τ ) = 0 for τ ∈ [τL , τU ]. As detailed in Theorems A1–A2 in Appendix

A, under certain regularity conditions, we further have limn→∞ supτ∈[τL ,τU ] ||̂θ(τ ) −
˜θ(τ )|| →p 0, and

√
n{̂θ(τ )−˜θ(τ )} converge weakly to a mean zero Gaussian process

for τ ∈ [τL , τU ] with covariance function ˜�(τ ′, τ ) = E{˜ξ1(τ ′)˜ξ1(τ )T }, where˜ξ i (τ )

(i = 1, . . . , n) are defined as

˜ξ i (τ ) ≡ {˜ξ (0)
i (τ ),˜ξ

(1)
i (τ )}T = {A(˜θ(τ ))}−1

{

Zi

(

I (log(Xi ) ≤ ZT
i
˜θ(τ ), δi = 1)

G(Xi )
− τ

)

−
∫ ∞

0
w{˜θ(τ ), s}y(s)−1d MG

i (s)

}

.

A useful by-product from the proof of Theorem A2 is that

n1/2{̂θ(τ ) −˜θ(τ )} ≈ n−1/2
n

∑

i=1

˜ξ i (τ ), (3)

We can prove these results by adapting the arguments of Peng and Fine (2009) which
utilize model assumption (1) only through using its implication μ(θ0, τ ) = 0 for
τ ∈ [τL , τU ]. This provides the critical justification for why ̂β(1)(τ ) can be used to
test H∗

0 even when model (1) does not hold. The sample-based procedure reviewed in
Sect. 2.1 is still applicable to estimate the asymptotic covariance matrix ˜�(τ ′, τ ).

In Theorems 1 and 2, we establish useful asymptotic properties of ̂T (1)
sup and ̂T (1)

inte
without assuming model (1). Specifically, in Theorem 1, we provide the limit distri-
butions of the proposed test statistics under the null hypothesis H∗

0 :

Theorem 1 Assuming the regularity conditions (C1)–(C5) in the Appendix hold, under
the null hypothesis H0 or H∗

0 , we have

̂T (1)
sup = sup

τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

→d sup{|X (1)(τ )|, τ ∈ [τL , τU ]}

̂T (1)
inte =

∫ τU

τL

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ →d

∫ τU

τL

{X (1)(τ )}2dτ,

where X (1)(τ ) is a mean zero Gaussian process defined in Appendix C.

We also investigate the asymptotic behavior of the proposed test statistics under a
general class of alternative hypotheses. The findings are stated in Theorem 2.
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Theorem 2 Assuming the regularity conditions (C1)–(C5) in the Appendix hold,

(A) ̂T (1)
sup is consistent against the alternative hypothesis

Ha,1 : sup
τ∈[τL ,τU ]

∣

∣

∣

˜β(1)(τ )

∣

∣

∣ > 0.

(B) ̂T (1)
inte is consistent against the alternative hypothesis:

Ha,2 :
∫ τU

τL

{˜β(1)(τ )}2dτ > 0.

The results of Theorem 2 indicate that the test statistics have power approaching to 1
(as n goes to ∞) under alternative cases subject to very mild constraints. Given the
smoothness of ˜β(1)(·), a general scenario that ensures the consistency of both ̂T (1)

sup and
̂T (1)

inte can be described as

˜Ha : There exists an interval [τ1, τ2] ⊆ [τL , τU ] such that |˜β(1)
0 (τ )| > 0 for τ ∈

[τ1, τ2].
This suggests that the proposed tests are powerful to identify a significant prognos-
tic factor even when it only influences a segment of the outcome distribution, not
necessarily the whole outcome distribution. This feature is conceptually appealing
for handling a dynamic covariate effect, which may not have similar effect strength
across different quantiles. The detailed proofs for Theorems 1 and 2 can be found in
Appendix C.

2.3 The proposed resampling procedure to obtain p values

The results in Theorem 1 suggest that ̂T (1)
sup and ̂T (1)

inte, like the classic K–S test statis-
tic and C–V test statistic, have complex, non-standard limit null distributions. This
motivates us to develop a resampling-based procedure to approximate their limit null
distributions and obtain the corresponding p values for testing H∗

0 .

Our key strategy is to approximate the distribution of n1/2{̂β(1)(τ )−˜β
(1)
0 (τ )}, which

reduces to n1/2
̂β(1)(τ ) under H0, through perturbing the influence function˜ξ

(1)
i (τ ),

which is the second component of˜ξ i (τ ). Similar ideas were used by other authors, for
example, Lin et al. (1993) andLi andPeng (2014). The core justification of our proposal
is provided by equation (3), which suggests that n−1/2 ∑n

i=1
˜ξ

(1)
i (τ )ιi/σ̂

(1)
n (τ ) may

be used to approximate
√

n̂β(1)(τ )/σ̂
(1)
n (τ ), where {ιi }n

i=1 are i.i.d. standard normal
variates.

Specifically, we take the following steps:

(2.a) Generate B independent sets of {ιbi }n
i=1, where {ιbi }n

i=1 are independent random
variables from a standard normal distribution and b = 1, 2, . . . , B.
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(2.b) Compute the estimates for the influence function˜ξ
(1)
i (τ ) as the second compo-

nent of

̂ξ i (τ ) = {̂A(̂θ(τ ))}−1

{

Zi (
I [log(Xi ) ≤ ZT

i
̂θ(τ )), δi = 1]

̂G(Xi )
− τ) − I (δi = 0)

×
∑n

j=1 Z j I (X j ≥ Xi )I [log(X j ) ≤ ZT
j
̂θ(τ ), δ j = 1]{̂G(X j )}−1

∑n
j=1 I (X j ≥ Xi )

}

,

where ̂A{̂θ(τ )}−1 = n1/2Dn(τ )En(τ )−1.
(2.c) For b = 1, . . . , B, calculate

̂T (1)
sup,b = sup

τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n−1/2 ∑n
i=1

̂ξ
(1)
i (τ )ιbi

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

and

̂T (1)
inte,b =

∫ τU

τL

∣

∣

∣

∣

∣

n−1/2 ∑n
i=1

̂ξ
(1)
i (τ )ιbi

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ,

wherêξ
(1)
i (τ ) is the second component of̂ξ i (τ ).

(2.d) The p values based on ̂T (1)
sup and ̂T (1)

inte are calculated respectively as

p(1)
sup =

B
∑

b=1

I (̂T (1)
sup,b > ̂T (1)

sup)/B and p(1)
inte =

B
∑

b=1

I (̂T (1)
inte,b > ̂T (1)

inte)/B.

The resampling procedure presented above is easy to implement without involving
smoothing. The rigorous theoretical justification for the presented resampling proce-
dure is provided in Appendix D.

2.4 Some computational considerations

Note that ̂β(1)(τ ) and σ̂
(1)
n (τ ) are piecewise constant; thus an exact calculation of the

supremum or integration involved in ̂T (1)
sup and ̂T (1)

inte is possible. Alternatively, we may

follow the recommendation of Zheng et al. (2015) to compute ̂T (1)
sup and ̂T (1)

inte based

on a simpler piecewise-constant approximation of ̂R(τ ) ≡ ̂β(1)(τ )/σ̂
(1)
n (τ ) on a pre-

determined fine τ -grid, G ≡ τL = τ1 < τ2 < · · · < τN∗ = τU , with the grid size
max1≤l≤N∗−1(τl+1 − τl) = o(n−1/2). In this case, the proposed test statistics can be
calculated as

̂T (1)
sup = √

n max{R̂(τl) : 1 ≤ l ≤ N∗}, ̂T (1)
inte =

N∗−1
∑

l=1

n{̂R(τl)}2(τl+1 − τl). (4)

When n is not large, the sample-based variance estimation (i.e. the computation of
σ̂

(1)
n (τ )) sometimes is not stable. Our remedy is to replace the en, j (τ ) in step (1.c)
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(see Sect. 2.1) with u · en, j (τ ), where u is a pre-specified constant. We develop the
following algorithm to determine a good choice of the adjusting constant u among a
set of candidate values, U = {1, 2, . . . , U }.
(3.a) For each u ∈ U , calculate ̂R(τ ; u) ≡ ̂β(1)(τ )/σ̂

(1)
n (τ ; u) for τ ∈ G, where

σ̂
(1)
n (τ ; u) is the σ̂

(1)
n (τ ) computed with the adjusting constant u.

(3.b) For each u ∈ U , calculate ̂R∗(u) = maxτ∈G ̂R(τ ; u) and ̂R†(u) =
medianτ∈G ̂R(τ ; u).

(3.c) For each u ∈ U , calculate ˜R(u) = maxτ∈G max{V n(τ ; u)} − minτ∈G
min{V n(τ ; u)}, where V n(τ ; u) is V n(τ ) computed with the adjusting con-
stant u. Here, for a matrix A, max(A) (or min(A)) denotes the largest (or the
smallest) component of the matrix A.

(3.d) Assign a large positive value to A[0] and B[0], say 105. Set k = 1 and u[0] =
U + 1.

(i) If ̂R∗(k) − ̂R†(k) < A[k−1] and ˜R(k) < B[k−1], then let A[k] = ̂R∗(k) − ̂R†(k),
B[k] = ˜R(k), and u[k] = k. Otherwise, let A[k] = A[k−1], B[k] = B[k−1] and
u[k] = u[k−1].

(ii) Increase k by 1 and go back to (i) until k > U .

(3.e) If u[U ] < U + 1, then choose u as u[U ]. Otherwise, no appropriate u can be
selected from U .

By this algorithm, we provide an empirical strategy to select u based on two
estimation instability measures: (A) ̂R∗(k) − ̂R†(k), which reflects the spread of
̂R(τ ) ≡ ̂β(1)(τ )/σ̂

(1)
n (τ ) over τ given u = k; (B) ˜R(k), which measures the max-

imum fluctuation of the estimated variance matrices across τ given u = k. It is clear
that both measures would be large when unstable variance estimation occurs. Our
algorithm first compares them with pre-specified initial values, A[0] and B[0], to rule
out the occurrence of obviously outlying estimates of ̂R(τ ) or σ̂ (1)

n (τ ). Once these two
measures are found to meet the stability criteria set by the initial values with some
u ∈ U , the algorithm will proceed to check if other u’s can yield smaller values of
the instability measures. The output from this algorithm is either the value of u that
produces the smallest instability measures, or an error message indicating that none
of the constants in U can lead to stable estimation required by the proposed testing
procedure. Based on our numerical experiences, setting U = {1, 2, . . . , 6}, which
corresponds to U = 6, works well for small sample sizes such as 200 or 400. In a
rare case where this algorithm fails to identify an appropriate u, we recommend adap-
tively increasing the value of U until an appropriate u can be identified. Our extensive
numerical experiences suggest that incorporating the adjusting constant u selected by
this algorithm results in good and stable numerical performance of the proposed tests.
The algorithm can be easily generalized to allow U to include non-integer values.

3 Simulation studies

We conduct extensive simulation studies to investigate the finite-sample performance
of the proposed resampling-based testing procedures. To simulate randomly censored
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data, we consider six setups where T and ˜Z follow different relationships. In all
setups, we generate ˜Z from Uni f orm(0, 1) and generate censoring time C from
Uni f orm(UL , UU ), whereUL andUU are properly specified to produce 15% or 30%
censoring. Let�(·) denote the cumulative distribution function of the standard normal
distribution. The six simulation set-ups are described as follows.

(I) Setup I: Generate T such that Qτ {log(T )} = �−1(τ ). Set (UL , UU ) = (2, 3.8)
to produce 15% censoring, and set (UL , UU ) = (1, 2.5) to produce 30% cen-
soring.

(II) Setup II: Generate T such that Qτ {log(T )} = 0.2X +�−1(τ ). Set (UL , UU ) =
(2.5, 3.9) to produce 15% censoring and set (UL , UU ) = (1.2, 2.8) to produce
30% censoring.

(III) Setup III: Generate T such that Qτ {log(T )} = 0.5X +�−1(τ ). Set (UL , UU ) =
(2.7, 4.9) to produce 15% censoring, and set (UL , UU ) = (1.5, 3) to produce
30% censoring.

(IV) Setup IV: Generate T such that Qτ {log(T )} = l4(τ )X + �−1(τ ), where l4(τ )

is as plotted in Fig. 1. Set (UL , UU ) = (2, 3.9) to produce 15% censoring, and
set (UL , UU ) = (1, 2.5) to produce 30% censoring.

(V) Setup V: Generate T such that Qτ {log(T )} = l5(τ )X + �−1(τ ), where l5(τ ) is
as plotted in Fig. 1. Set (UL , UU ) = (5.2, 6.5) to produce 15% censoring, and
set (UL , UU ) = (1.5, 3.5) to produce 30% censoring.

(VI) Setup VI: Generate T such that Qτ {log(T )} = l6(τ )X + �−1(τ ), where l6(τ )

is as plotted in Fig. 1. Set (UL , UU ) = (3.5, 5.5) to produce 15% censoring,
and set (UL , UU ) = (1.1, 3.5) to produce 30% censoring.

Under all setups, model (1) holds for τ ∈ (0, 1) and thus for τ ∈ [0.1, 0.6], a pre-
specified τ -interval of interest [τL , τU ]. In Fig. 1, we plot the true coefficient function
β

(1)
0 (τ ) for each setup. It is easy to see that setup (I) represents a null case, where ˜Z

has no effect on any quantile of T . Setup (II) and (III) are two setups where ˜Z has
nonzero constant effects over all τ ∈ [0.1, 0.6]. The constant effect in setup (II) has a
magnitude of 0.2, which is smaller than that in setup (III), which is 0.5. In setups (IV),
(V), and (VII), ˜Z has a dynamic effect varying across different τ ’s. More specifically,
˜Z has a partial effect over the τ -interval [0.1, 0.49] in setup (IV). In setup (V), the
magnitude of ˜Z ’s effect is symmetric around 0.5, while the sign of the effect is opposite
for τ < 0.5 and for τ > 0.5, and the effect equals 0 at τ = 0.5. In setup (VI), the
τ -varying effect pattern of ˜Z is similar to that in setup (V) except that there is a small
interval around 0.5 where ˜Z has no effect in setup(VI).

We compare the proposed method with the Wald test based on the Cox PH model,
denoted by “CPH (Wald)”, as well as the Wald test based on the locally concerned
quantile regression that focuses on τ = 0.4, 0.5, or 0.6, denoted by “CQR (Wald)”.
To implement CQR (Wald), we adopt Peng and Huang (2008)’s estimates with vari-
ance estimated by bootstrapping. The resampling size used for both CQR (Wald) and
the proposed testing procedures is set as 2500. In the sequel, we shall refer the test-
ing procedures based on ̂T (1)

sup and ̂T (1)
inte respectively to as GST and GIT. For all the

methods, we consider sample sizes 200, 400, and 800. We set U = {1, . . . , 6} when
implementing the algorithm for selecting the constant u.
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Assessing dynamic covariate effects with survival data 687

In Table 1, we report the empirical rejection rates based on 1000 simulations. The
results in setup I show that the proposed GIT, and the existing tests, CQR (Wald) and
CPH (Wald), have empirical sizes quite close to the nominal level 0.05. The proposed
GST yields relatively larger empirical type I errors as compared to the other tests. The
empirical size of GST equals 0.1 when the sample size is 200 but decreases to 0.077
when the sample size increases to 800. Such an anti-conservative behavior of GST is
not surprising because the K–S type test statistic is defined based on the largest value
of ̂β(1)(τ )/σ̂

(1)
n (τ ) over τ ∈ [0.1, 0.6], which is more sensitive to a possible outlying

value of σ̂
(1)
n (τ ) at some τ .

When the quantile effect of ˜Z is constant over τ (i.e. setups (II) and (III)), we note
that in setup (II) where the effect size (i.e. magnitude of the constant effect) is relatively
small, CPH (Wald) has lower empirical power as compared to the proposed GIT and
GST, and the power improvement associated with the proposed GIT and GST is more
evident with the smaller sample size 200. In setup (III), where the effect size is larger,
CPH (Wald) still generally has lower empirical power compared to the proposed tests
but its empirical power becomes comparable to that of GIT when the sample size is
large (i.e. n = 800). These observations suggest that even in the trivial constant effect
cases, the proposed tests can outperform the traditional Cox regression based tests in
data scenarios with small effect sizes or sample sizes. In both setups (II) and (III),
the locally concerned CQR (Wald) consistently yields lower empirical power than the
proposed globally concerned GIT and GST. This reflects the power benefit resulted
from integrating information on covariate effects on different quantiles as in GST and
GIT, rather than focusing on the covariate effect on a single quantile as in CQR (Wald).

In setups (IV), (V), and (VI), the effect of ˜Z is τ -varying, reflecting its dynamic
association with T . In these cases, CPH (Wald), which assumes a constant covariate
effect, can have poor power to detect the dynamic effect of ˜Z (e.g. 8.3% empirical
power in setup (VI) with n = 800 in the presence of 30% censoring), while the
proposed GST and GITmay yield much higher power (e.g.>99% power in setup (VI)
with n = 800 in the presence of 30% censoring). The locally concerned CQR (Wald)
can have higher power than CPH (Wald) when the targeted quantile level is within the
τ -region where β

(1)
0 (τ ) is non-zero. When the targeted quantile level is outside the

τ -region with non-zero effect, such as τ = 0.6 in setup (IV) or τ = 0.5 in setups (V)
and (VI), the CQR (Wald) has even poorer power compared to CPH (Wald). This is
well expected because these cases may serve as the null cases for the locally concerned
CQR (Wald). This confirms that CQR (Wald) is inadequate to capture the meaningful
effect of ˜Z that is manifested at non-targeted quantiles.

We compare the simulation results across settings that are only differed by the
censoring distribution. For each relationship between ˜Z and T specified by setups (I)-
(VI), we consider three different censoring distributions to yield 0%, 15%, and 30%
censoring.The results for settingswith 15%and30%censoring are presented inTable 1
and the results based on uncensored data are presented in Table 3 in Appendix E. From
our comparisons, we find that quantile regression based tests, including GST, GIT and
CQR (Wald), demonstrate small variations in empirical powers as the censoring rate
(or distribution) changes. In cases with a constant covariate effect, the Cox regression
based test, CPH (Wald), also has similar performance among settings with different
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Table 1 Empirical rejection rate based on 1000 simulations

Set-up n Proposed test CQR (Wald) CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

15% censoring

I 200 0.100 0.073 0.066 0.062 0.057 0.049

400 0.091 0.078 0.072 0.072 0.066 0.051

800 0.077 0.055 0.064 0.063 0.059 0.061

II 200 0.234 0.167 0.117 0.131 0.117 0.115

400 0.275 0.214 0.155 0.153 0.150 0.178

800 0.410 0.362 0.277 0.265 0.247 0.322

III 200 0.566 0.485 0.359 0.401 0.360 0.450

400 0.786 0.772 0.585 0.592 0.576 0.722

800 0.957 0.957 0.873 0.887 0.865 0.960

IV 200 0.377 0.254 0.097 0.060 0.053 0.063

400 0.652 0.478 0.116 0.065 0.063 0.067

800 0.939 0.816 0.148 0.047 0.058 0.090

V 200 0.653 0.464 0.143 0.070 0.118 0.260

400 0.937 0.827 0.208 0.071 0.153 0.458

800 0.999 0.993 0.291 0.053 0.279 0.757

VI 200 0.731 0.552 0.149 0.062 0.086 0.125

400 0.971 0.896 0.198 0.055 0.095 0.201

800 1.000 0.995 0.260 0.033 0.142 0.364

30% censoring

I 200 0.171 0.095 0.062 0.060 0.048 0.047

400 0.110 0.085 0.069 0.074 0.065 0.056

800 0.066 0.052 0.063 0.059 0.050 0.038

II 200 0.302 0.186 0.115 0.122 0.105 0.122

400 0.305 0.221 0.152 0.156 0.138 0.188

800 0.411 0.359 0.277 0.259 0.245 0.298

III 200 0.681 0.539 0.360 0.393 0.322 0.432

400 0.828 0.791 0.585 0.590 0.534 0.703

800 0.959 0.957 0.874 0.877 0.855 0.952

IV 200 0.440 0.271 0.101 0.061 0.044 0.056

400 0.668 0.480 0.115 0.065 0.062 0.085

800 0.947 0.804 0.150 0.048 0.046 0.089

V 200 0.799 0.573 0.135 0.069 0.103 0.092

400 0.960 0.846 0.206 0.068 0.135 0.140

800 1.000 0.993 0.292 0.054 0.282 0.211

VI 200 0.803 0.587 0.148 0.063 0.077 0.053

400 0.978 0.903 0.199 0.052 0.082 0.064

800 1.000 0.995 0.263 0.033 0.141 0.083
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censoring rates. However, in setup (V), where the covariate effect is not constant over
τ , CPH (Wald) has reasonably good power when there is no censoring or only 15%
censoring, but its performance deteriorates considerably when the censoring rate is
increased to 30%. We have a similar observation for CPH (Wald) in setup (VI). A
reasonable interpretation of these observations is that the capacity to detect a dynamic
effect can be weakened by incorrectly assuming a constant proportional hazard effect
and can be further attenuated by the missing data from censoring.

We also investigate whether the proposed tests are sensitive to the choice of U .
We conduct additional simulation studies with U set as {1, . . . , 3}, {1, . . . , 6}, and
{1, . . . , 12} for the six set-ups with 15% censoring. The results are summarized in
Table 4 in the Appendix. From this table, we note that GIT is quite robust to the
change in U , while GST demonstrates more variations across different choices of U .
Another observation is that GIT becomes less sensitive to the change in U when the
sample size becomes larger. A possible explanation for these results is similar to that
for the observed anti-conservative behavior of GST. That is, GST, by its construction,
is sensitive to any outlying value of σ̂

(1)
n (τ ) with τ ∈ [τL , τU ], which is more likely

to occur when the sample size is not large.
Aligning with the definitions of the proposed tests, the simulation results suggest

that GST, as compared to GIT, is more sensitive to detect a departure from the null
hypothesis, yielding higher power. This observation is also consistent with the anti-
conservative behavior ofGSTobserved in the null cases,which is reflectedby empirical
sizes notably greater than 0.05. With a smaller sample size, such as n = 200, GST
can produce quite elevated type I errors, while GIT yields more reasonable empirical
sizes. Therefore, in practice, one may need to exercise caution for applying GST to a
small dataset, for which we recommend using GIT instead.

In summary, our simulation results demonstrate the proposed testing procedures
have robust satisfactory performance for detecting a covariate of either a constant
or dynamic effect. The new tests tend to exhibit greater advantages over benchmark
approacheswhen the covariate presents a dynamic effect, or the covariate has a constant
effect but of a small magnitude.

4 Real data analysis

To illustrate the utility of the proposed testing framework, we apply our method to
investigate the prognostic factors for dialysis survival based on a dataset collected from
a cohort of 191 incident dialysis patients (Kutner et al. 2002). In this dataset, time to
death is censored in about 35% of dialysis patients due to either renal transplantation
or end of the study as of December 31, 2005. In our analysis, we consider six potential
prognostic factors (or covariates), which include age in years (AGE), indicator of
reporting fish consumption over the first year of dialysis (FISHH), the indicator for
baseline HD dialysis modality (BHDPD); whether the patient has severe symptoms
of restless leg syndrome or not (BLEGS); whether or not education level is equal
or higher than college (HIEDU); and the indicator of being in the black race group
(BLACK). In our analyses, we standardize AGE by subtracting the sample mean and
then dividing the resulting quantity by the sample standard deviation.
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As a part of exploratory analyses, we check the proportional hazard assumption
for each covariate based on Grambsch and Therneau (1994)’s method, using the R
function cox.zph() in the R package survival. The p values corresponding to
AGE, FISHH, BHDPD, BLEGS, HIEDU and BLACK are 0.43, 0.63, 0.55, 0.0006,
0.047 and 0.0004, respectively. These results suggest that the proportional hazard
assumption may be violated for BLEGS, HIEDU and BLACK.

We fit model (1) for time to death (i.e. T ) with each covariate separately. We set
[τL , τU ] as [0.1, 0.6] for FISHH, BLGES, HIEDU, and BLACK, but set [τL , τU ] as
[0.1, 0.54] and [0.1, 0.49] respectively for AGE and BHDPD. This is because the
estimation of β

(1)
0 (τ ) based on Peng and Fine (2009) does not converge for some τ ’s

larger than 0.54 and 0.49 when Z̃ is AGE or BHDPD. Figure 2 presents the estimated
coefficients with the pointwise 95% confidence interval across τ ∈ [τL , τU ]. It is
suggested by Fig. 2 that AGE and BLACK have strong and persistent effects across
all or most quantiles of time to death, implying an apparent survival advantage for
younger or black patients. For each of the rest covariates, FISHH, BHDPD, BLEGS,
or HIEDU, we note a partial effect pattern. For example, FISHH and BLEGS may
only impact some lower quantiles of the survival time. BHDPD and HIEDUmay only
have quantile effects in the τ -intervals, [0.15, 0.3] and [0.3, 0.4], respectively. These
observations suggest the presence of dynamic covariate effects as well as the need to
appropriately accommodate such dynamic covariate effects.

To evaluate each potential prognostic factor considered, we apply the proposed
testing procedures, GST and GIT, along with the benchmark methods, CPH (Wald)
and CQR (Wald), as described in Sect. 3. Table 2 summarizes the p values obtained
from differentmethods for evaluating each covariate.We note that all tests consistently
suggest a strong effect of AGE or BLACK on the survival time. The locally concerned
quantile regression tests, CQR (Wald), reveal τ -varying effects of FISHH, BHDPD,
BLEGS, and HIEDU. For example, BLEGS may significantly influence the 10th and
20th quantiles of the survival time but not the 30th, 40th, 50th, 60th of quantiles.
HIEDU may also have a partial effect, influencing some quantiles, such as the 30th
and 40th quantiles, but not the other quantiles. The classic Cox regression based test,
CPH (Wald), however, fails to capture the partial effects of BLEGS andHIEDU. The p
values for testing the effect of BLEGS and HIEDU based on CPH (Wald) are 0.35 and
0.25 respectively. This is possibly caused by imposing a restrictive static view on how
a covariate can influence the survival time. In contrast, the proposed GIT and GST,
through simultaneously examining covariate effects at quantile levels [τL , τU ], are
able to detect the partial effect of BLEGS, with small p values ≤ 0.001 and to suggest
a trend toward the association between HIEDU and the survival time, with marginal p
values 0.01 and 0.09. The proposed GIT and GST also provide some evidence for the
dynamic prognostic value of FISHH and BHDPD for dialysis survival. For example,
as suggested by CQR (Wald), fish consumption in the first year may benefit dialysis
patients with shorter survival time but may manifest little effect on the long-term
survival. In general, our analysis results are consistent with the analyses of Peng and
Huang (2008) based onmultivariate censored quantile regressionmodel. This example
demonstrates the goodpractical utility of the proposedmethodswhenvarying covariate
effects are present.
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Table 2 A summary of p values for each covariate with different methods

Covariate Proposed test CQR (Wald) CPH (Wald)
GST GIT τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6

AGE <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FISHH <0.001 0.018 0.037 0.055 0.036 0.214 0.473 0.316 0.026

BHDPD <0.001 0.005 0.090 0.021 0.152 0.228 0.229 0.030 0.008

BLEGS <0.001 0.001 <0.001 0.001 0.062 0.082 0.091 0.507 0.349

HIEDU 0.013 0.093 0.596 0.137 0.003 0.032 0.068 0.241 0.245

BLACK <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

5 Discussion

In this paper, we develop a new testing framework for evaluating a survival prognostic
factor. The main thrust of the new framework lies in its flexibility of accommodating
a dynamic covariate effect, which is achieved through adapting the spirit of globally
concerned quantile regression. Our testing procedures are conveniently developed
based on existing results on fitting a working quantile regression model with randomly
censored data. It is important to note that the validity of the testing procedures does
not require that the working model is the true model. Moreover, the proposed methods
can be readily extended to handle more complex survival outcomes, such as time to
event subject to competing risks.

As suggested by one referee, we would like to point out that QT (τ |˜Z) = QT (τ )

for τ ∈ (0, 1) implies the statistical independence between T and ˜Z . Nevertheless, in
this work, we confine our attention to H∗

0 with τU less than 1. This is because right
censoring typically precludes the information on the upper tail of the distribution of T ,
and thus QT (τ ) or QT (τ |Z̃) can become non-identifiable as τ approaches 1. The null
hypothesis H∗

0 entails a weaker version of the independence between T and Z̃ that can
be better assessed with right censored data. Rejecting H∗

0 can provide evidence for
the dependence between T and Z̃ , while accepting H∗

0 may not sufficiently indicate
the independence between T and Z̃ .

Another commendable extension of this work is to generalize the current null
hypothesis and testing procedures to permit evaluating multiple prognostic factors
simultaneously. This work also lays a key foundation for developing a nonparametric
screening method for helping identify useful prognostic factors among a large number
of candidates. These extensions will be reported in separate work.

Appendix A: Lemma 1 and its proof

Lemma 1 Suppose the conditional distribution function of T given ˜Z = z̃ is contin-
uous and strictly monotone for all possible values of z̃. Then QT (τ |˜Z) = QT (τ ) for
τ ∈ [τL , τU ] is equivalent to model (1) holds with � = [τL , τU ] and β

(1)
0 (τ ) = 0 for

τ ∈ [τL , τU ].
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Proof for Lemma 1 Suppose we have QT (τ |˜Z) = QT (τ ) for τ ∈ [τL , τU ]. It is
clear that for τ ∈ [τL , τU ], we can write QT (τ |˜Z) = exp{ZT θ0(τ )} with θ0(τ ) =
(log QT (τ ), 0)T . This means that model (1) holds with� = [τL , τU ] and β

(1)
0 (τ ) = 0

for τ ∈ [τL , τU ].
Suppose model (1) holds with � = [τL , τU ] and β

(1)
0 (τ ) = 0 for τ ∈ [τL , τU ].

This means, QT (τ |˜Z) = exp{β(0)
0 (τ )} for τ ∈ [τL , τU ]. Given that the conditional

distribution function of T given ˜Z is continuous and strictly monotone, it follows
from the definition of QT (τ |˜Z) that Pr(T ≤ exp{β(0)

0 (τ )}|˜Z) = τ for τ ∈ [τL , τU ].
Taking expectation on both sides of this equality with respect to ˜Z , we then get Pr(T ≤
exp{β(0)

0 (τ )} = τ for τ ∈ [τL , τU ]. Given the continuity and strict monotonicity of the
distribution function of T , which is implied by the continuity and strict monotonicity
of the conditional distribution function of T given ˜Z , this implies that exp{β(0)

0 (τ )} =
QT (τ ). Thus, QT (τ |˜Z) = QT (τ ) for τ ∈ [τL , τU ]. This completes the proof of
Lemma 1.

Appendix B: Asymptotic properties of̂� without assumingmodel (1)

We assume the following regularity conditions:

(C1) There exist a constant v such that P(C = v) > 0 and P(C > v) = 0.
(C2) Z̃ is uniformly bounded, i.e. supi |˜Zi | < ∞.
(C3) (i)˜θ(τ ) is Lipschitz continuous for τ ∈ [τL , τU ]; (ii) f (y|z) is bounded above

uniformly in y and z, where f (y|z) denotes the conditional density of X given
Z = z.

(C4) For some ρ0 > 0 and c0 > 0,infb∈B(ρ0) eigminA(b) ≥ c0, where B(ρ) = {b ∈
R2 : infτ∈[τL ,τU ] ||b −˜θ(τ )|| ≤ ρ} and A(b) = E[ZZT f (ZT b|Z)]. Here || · ||
is the Euclidean norm and eigminA(b) represents the minimal eigenvalue of
A(b).

Condition (C1) is adopted to simplify the theoretical arguments to ensure that
̂G(·) is consistent for G(·). This condition is usually satisfied in studies subject to
administrative censoring. Condition (C2) imposes covariate boundedness. Condition
(C3) assumes that the limit coefficient process is smooth and the conditional density
distribution is bounded and smooth. Condition (C4) requires that the asymptotic limit
of Un(b, τ ) is strictly convex in a neighborhood of˜θ(τ ) for τ ∈ [τL , τU ], implying
the uniqueness of the solution to μ(b, τ ) ≡ E{Z I (log T ≤ ZT b) − τ)} = 0. This
plays a critical role in establishing the uniform convergence of̂θ(τ ) to˜θ(τ ).

Theorem A1 Under regularity conditions (C1)–(C4), we have

lim
n→∞ sup

τ∈[τL ,τU ]
||̂θ(τ ) −˜θ(τ )|| →p 0.

Theorem A2 Under regularity conditions (C1)–(C4), we have
√

n(̂θ(τ ) −˜θ(τ )) con-
verge weakly to a mean zero Gaussian process for τ ∈ [τL , τU ] with covariance

˜�(τ ′, τ ) = E{˜ξ1(τ ′)˜ξ1(τ )T }.
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The proofs of Theorems A1 and A2 closely resemble the proofs in Peng and Fine
(2009) and thus are omitted.

Appendix C: Proofs of Theorems 1 and 2

We assume one additional regularity condition:

(C5) infτ∈[τL ,τU ] σ (1)(τ ) > 0, where {σ (1)(τ )}2 is the second diagonal element of
˜�(τ, τ ).

Proof of Theorem 1 Following the lines of Peng and Fine (2009), we can show that the
sample-based variance estimation procedure presented in Sect. 2.1 provides consistent
variance estimation, which implies supτ∈(τL ,τU ] |̂σ (1)

n (τ ) − σ (1)(τ )| →p 0.
Note that under the null hypothesis H∗

0 , we have ˜β(1)(τ ) = 0 and consequently,

n1/2
̂R(τ ) = n1/2{̂β(1)(τ ) − ˜β(1)(τ )}

σ̂
(1)
n (τ )

= n1/2{̂β(τ) − ˜β(1)(τ )}
σ (1)(τ )

(

σ (1)(τ )

σ̂
(1)
n (τ )

− 1

)

+n1/2{̂β(1)(τ ) − ˜β(1)(τ )}
σ (1)(τ )

. (5)

By Theorem A2, n1/2{̂β(1)(τ ) − ˜β(1)(τ )}/σ (1)(τ ) converges weakly to a mean zero
Gaussian process X (1)(τ ) with covariance process

˜�(1)(τ, τ ′) = ˜�
(2,2)

(τ, τ ′)
σ (1)(τ )σ (1)(τ ′)

,

where ˜�
(2,2)

(τ, τ ′) denotes the element in the second row and the second column
of ˜�(τ, τ ′). In addition, condition (C5) and supτ∈(τL ,τU ] |̂σ (1)

n (τ ) − σ (1)(τ )| →p 0

imply supτ∈(τL ,τU ]
∣

∣

∣

∣

σ (1)(τ )

σ̂
(1)
n (τ )

− 1

∣

∣

∣

∣

→p 0. Applying the result of Theorem A2 and the

Slutsky’s Theorem (line 11 of Example 1.4.7 inBoucheron et al. (2013)) to (5), we then
get n1/2

̂R(τ ) →d X (1)(τ ) in l∞(FT ), where l∞(S) is the collection of all bounded

functions f : S �→ R for any index set S and FT = {˜ξ
(1)
1 (c,τ )

σ (1)(τ )
, c ∈ R2, τ ∈ [τL , τU ]}.

Then, by the extended continuous mapping theorem (Theorem 1.11.1 in van der Vaart
et al. (1996)), we can establish the limiting null distribution for ̂T (1)

sup and ̂T (1)
inte as

̂T (1)
sup = sup

τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

= sup
τ∈[τL ,τU ]

∣

∣

∣n1/2
̂R(τ )

∣

∣

∣ →d sup{|X (1)(τ )|, τ ∈ [τL , τU ]},

̂T (1)
inte =

∫ τU

τL

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ =
∫ τU

τL

∣

∣

∣n1/2
̂R(τ )

∣

∣

∣

2
dτ →d

∫ τU

τL

{X (1)(τ )}2dτ.

This completes the proof of Theorem 1. ��
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Proof for Theorem 2 We first investigate the asymptotic limit of ̂T (1)
sup under the alter-

native hypothesis Ha,1. Simple algebra shows that

̂T (1)
sup = sup

τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

= sup
τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2
˜β(1)(τ )

σ̂
(1)
n (τ )

+ n1/2(̂β(1)(τ ) − ˜β(1)(τ ))

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

≥ sup
τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2
˜β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

− sup
τ∈[τL ,τU ]

∣

∣

∣

∣

∣

n1/2(̂β(1)(τ ) − ˜β(1)(τ ))

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

≡ ̂T (1)
sup,1 − ̂T (1)

sup,2.

By the extended continuous mapping theorem, we can show that the ̂T (1)
sup,2 converges

in distribution to supτ∈[τL ,τU ] |X (1)(τ )| and thus is Op(1). At the same time, given

supτ∈(τL ,τU ] |̂σ (1)
n (τ )−σ (1)(τ )| →p 0, under condition (C5), we get n−1/2

̂T (1)
sup,1 →p

ν0, where ν0 = supτ∈[τL ,τU ]
∣

∣

∣

˜β(1)(τ )

σ (1)(τ )

∣

∣

∣.

Under the alternative hypothesis Ha,1 and condition (C5), we have ν0 > 0, and
hence P(n−1/2

̂T (1)
sup,1 > ν0/2) → P(ν0 > ν0/2) = 1 as n → ∞. Furthermore, for

any a > 0, we have n−1/2
̂T (1)

sup,2 +a · n−1/2 = op(1), which implies P(n−1/2
̂T (1)

sup,2 +
a · n−1/2 > ν0/2) → 0 as n → ∞. Note that

P(̂T (1)
sup > a) ≥ P(n−1/2

̂T (1)
sup,1 > n−1/2

̂T (1)
sup,2 + a · n−1/2)

≥ P(n−1/2
̂T (1)

sup,1 > ν0/2) − P(n−1/2
̂T (1)

sup,2 + a · n−1/2 > ν0/2).

It then follows that P(̂T (1)
sup > a) → 1 as n → ∞ under the alternative hypothesis

Ha,1. This immediately implies that ̂T (1)
sup is a consistent test against Ha,1 because

P(̂T (1)
sup > Csup,α) → 1 as n → ∞ given Ha,1 holds, where Csup,α denotes the α-

level critical value determined upon the limit null distribution of ̂T (1)
sup, which is greater

than 0.
Next, we consider ̂T (1)

inte under the alternative hypothesis Ha,2. Write ̂T (1)
inte as

̂T (1)
inte =

∫ τU

τL

∣

∣

∣

∣

∣

n1/2
̂β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ =
∫ τU

τL

∣

∣

∣

∣

∣

n1/2
˜β(1)(τ )

σ̂
(1)
n (τ )

− n1/2(˜β(1)(τ ) − ̂β(1)(τ ))

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ

≥
∫ τU

τL

∣

∣

∣

∣

∣

n1/2
˜β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

2

dτ −
∫ τU

τL

2

∣

∣

∣

∣

∣

n1/2
˜β(1)(τ )

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

n1/2(˜β(1)(τ ) − ̂β(1)(τ ))

σ̂
(1)
n (τ )

∣

∣

∣

∣

∣

dτ

≡ ̂T (1)
inte,1 − ̂T (1)

inte,2.

By the continuous mapping theorem, combined with supτ∈(τL ,τU ] |̂σ (1)
n (τ ) − σ (1)(τ )

| →p 0 and condition (C5), we get n−1
̂T (1)

inte,1 →p ν∗
0 , where ν∗

0 = ∫ τU
τL

∣

∣

∣

˜β(1)(τ )

σ (1)(τ )

∣

∣

∣

2
dτ ,

and
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n−1/2
̂T (1)

inte,2 →d

∫ τU

τL

2

∣

∣

∣

∣

∣

˜β(1)(τ )

σ (1)(τ )

∣

∣

∣

∣

∣

· {X (1)(τ )}dτ

and thus Op(1). By condition (C5), the alternative hypothesis Ha,2 implies ν∗
0 > 0.

Then following the same arguments for showing P(̂T (1)
sup > a) → 1 for any a > 0

based on the results that n−1/2
̂T (1)

sup,1 →p ν0 > 0 and ̂T (1)
sup,2 = Op(1), we can prove

that P(n−1/2
̂T (1)

inte > a) → 1 as n → ∞ for any a > 0 under Ha,2. This implies

that P(̂T (1)
inte > a) → 1 as n → ∞ for any a > 0 under Ha,2. Therefore, ̂T (1)

inte is a
consistent test against the alternative hypothesis Ha,2. ��

Appendix D: Justification for the proposed resampling procedure

Given the observed data denoted by {O i }n
i=1 ≡ {(Xi , δi , Z̃i )}n

i=1, since {ιbi }n
i=1 are

i.i.d. standard normal random variables, we have

E

{

n−1/2 ∑n
i=1

̂ξ
(1)
i (τ )ιbi

σ̂
(1)
n (τ )

· n−1/2 ∑n
i=1

̂ξ
(1)
i (τ ′)ιbi

σ̂
(1)
n (τ ′)

∣

∣

∣

∣

{O i }n
i=1

}

= n−1
n

∑

i=1

̂ξ
(1)
i (τ )̂ξ

(1)
i (τ ′)

σ̂
(1)
n (τ )̂σ

(1)
n (τ ′)

→p ˜�(1)(τ, τ ′).

By the arguments of Lin et al. (1993), the distribution of n−1/2 ∑n
i=1

̂ξ
(1)
i (τ )ιbi /σ̂

(1)
n (τ )

convergesweakly toX (1)(τ ), the same limit as that of n1/2{̂β(1)(τ )−˜β(1)(τ )}/σ̂ (1)
n (τ ),

for almost all realizations of {O i }n
i=1. Applying the extended continuous mapping

theorem as in the proof of Theorem 2, we have that under H∗
0 , the conditional distri-

bution of ̂T (1)
sup,b (or ̂T (1)

inte,b) given the observed data is asymptotically equivalent to the

unconditional distributions of T (1)
sup,b (or T (1)

inte,b). This justifies using the resampling
procedure in Sect. 2.3 to obtain the p values of the proposed tests.

Appendix E: Additional simulation results

See Tables 3 and 4.
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Table 3 Empirical rejection rate for the uncensored case based on 1000 simulations

Set-up n Proposed test CQR (Wald) CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

I 200 0.098 0.070 0.055 0.052 0.056 0.048

400 0.093 0.075 0.069 0.064 0.060 0.047

800 0.076 0.058 0.053 0.053 0.048 0.061

II 200 0.215 0.156 0.104 0.108 0.108 0.121

400 0.275 0.216 0.162 0.156 0.139 0.183

800 0.420 0.372 0.276 0.265 0.238 0.328

III 200 0.541 0.478 0.344 0.374 0.337 0.456

400 0.790 0.771 0.589 0.595 0.590 0.745

800 0.958 0.961 0.883 0.886 0.873 0.963

IV 200 0.378 0.250 0.074 0.045 0.049 0.060

400 0.656 0.476 0.101 0.056 0.055 0.049

800 0.935 0.808 0.118 0.034 0.045 0.085

V 200 0.618 0.452 0.106 0.057 0.121 0.428

400 0.939 0.828 0.169 0.071 0.165 0.737

800 1.000 0.994 0.255 0.041 0.313 0.968

VI 200 0.729 0.543 0.095 0.047 0.088 0.228

400 0.971 0.898 0.154 0.048 0.097 0.446

800 1.000 0.995 0.243 0.020 0.154 0.756

123



698 Y. Cui , L. Peng

Table 4 Empirical rejection rate for the proposed test with different choices of U on the six set-ups subject
to 15% censoring based on 1000 simulations

Set-up n U = {1, . . . , 3} U = {1, . . . , 6} U = {1, . . . , 12}
GST GIT GST GIT GST GIT

I 200 0.128 0.074 0.091 0.067 0.092 0.065

400 0.126 0.079 0.086 0.067 0.081 0.063

800 0.112 0.060 0.080 0.059 0.072 0.058

II 200 0.287 0.178 0.228 0.161 0.225 0.158

400 0.359 0.231 0.283 0.218 0.256 0.206

800 0.472 0.379 0.415 0.369 0.376 0.361

III 200 0.666 0.549 0.593 0.510 0.585 0.513

400 0.841 0.789 0.779 0.773 0.761 0.757

800 0.975 0.964 0.956 0.956 0.940 0.957

IV 200 0.427 0.257 0.364 0.242 0.362 0.243

400 0.702 0.490 0.666 0.470 0.649 0.471

800 0.952 0.808 0.942 0.811 0.936 0.808

V 200 0.695 0.478 0.649 0.452 0.649 0.446

400 0.962 0.850 0.948 0.831 0.944 0.827

800 1.000 0.994 1.000 0.991 1.000 0.993

VI 200 0.768 0.558 0.723 0.534 0.726 0.535

400 0.981 0.902 0.971 0.894 0.970 0.892

800 1.000 0.997 1.000 0.997 1.000 0.998
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